請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16929完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 方偉宏(Woei-Horng Fang) | |
| dc.contributor.author | Pei-Rong Wu | en |
| dc.contributor.author | 吳佩蓉 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:50:05Z | - |
| dc.date.copyright | 2014-02-25 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-02-11 | |
| dc.identifier.citation | Campbell, & Reece. (2005). Biology. San Francisco: Pearson.
Cao Weiguo. (2013). Endonuclease V: an unusual enzyme for repair of DNA deamination. Cellular and Molecular Life Sciences, 1-12. Carraway Margaretha, & Martin G Marinus. (1993). Repair of heteroduplex DNA molecules with multibase loops in Escherichia coli. Journal of bacteriology, 175(13), 3972-3980. Dalhus Bjorn, Andrew S Arvai, Ida Rosnes, et al. (2009). Structures of endonuclease V with DNA reveal initiation of deaminated adenine repair. Nature structural & molecular biology, 16(2), 138-143. Fang Woei-Horng, Jiun-Yi Wu, & Ming-Jang Su. (1997). Methyl-directed repair of mismatched small heterologous sequences in cell extracts from Escherichia coli. Journal of Biological Chemistry, 272(36), 22714-22720. Gros Laurent, Murat K Saparbaev, & Jacques Laval. (2002). Enzymology of the repair of free radicals-induced DNA damage. Oncogene, 21(58), 8905-8925. Hitchcock Thomas M, Honghai Gao, & Weiguo Cao. (2004). Cleavage of deoxyoxanosine-containing oligodeoxyribonucleotides by bacterial endonuclease V. Nucleic acids research, 32(13), 4071-4080. Howard-Flanders Paul, Richard P Boyce, & Lee Theriot. (1966). Three loci in Escherichia coli K-12 that control the excision of pyrimidine dimers and certain other mutagen products from DNA. Genetics, 53(6), 1119. Lahue RS, KG Au, & P Modrich. (1989). DNA mismatch correction in a defined system. Science(Washington), 245(4914), 160-164. Lee Chia-Chia, Ya-Chien Yang, Steven D Goodman, et al. (2010). Endonuclease V-mediated deoxyinosine excision repair in vitro. DNA repair, 9(10), 1073-1079. Lee Chia-Chia, Ya-Chien Yang, Steven D Goodman, et al. (2013). The excision of 3′ penultimate errors by DNA polymerase I and its role in endonuclease V-mediated DNA repair. DNA repair, 12(11), 899-911. Lindahl Tomas, & Richard D Wood. (1999). Quality control by DNA repair. Science, 286(5446), 1897-1905. Madzak C, CFM Menck, J Armier, et al. (1989). Analysis of single-stranded DNA stability and damage-induced strand loss in mammalian cells using SV40-based shuttle vectors. Journal of molecular biology, 205(3), 501-509. Makiela‐Dzbenska Karolina, Malgorzata Jaszczur, Magdalena Banach‐Orlowska, et al. (2009). Role of Escherichia coli DNA polymerase I in chromosomal DNA replication fidelity. Molecular microbiology, 74(5), 1114-1127. Memisoglu Asli, & Leona Samson. (2000). Base excision repair in yeast and mammals. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 451(1), 39-51. Modrich Paul. (1991). Mechanisms and biological effects of mismatch repair. Annual review of genetics, 25(1), 229-253. Moe Ane, Jeanette Ringvoll, Line M Nordstrand, et al. (2003). Incision at hypoxanthine residues in DNA by a mammalian homologue of the Escherichia coli antimutator enzyme endonuclease V. Nucleic acids research, 31(14), 3893-3900. Parker Breck O, & Martin G Marinus. (1992). Repair of DNA heteroduplexes containing small heterologous sequences in Escherichia coli. Proceedings of the National Academy of Sciences, 89(5), 1730-1734. Sancar Aziz. (1996). DNA excision repair. Annual review of biochemistry, 65(1), 43-81. Sanders ME, & TR Klaenhammer. (1980). Restriction and modification in group N streptococci: effect of heat on development of modified lytic bacteriophage. Applied and environmental microbiology, 40(3), 500-506. Van Houten B. (1990). Nucleotide excision repair in Escherichia coli. Microbiological reviews, 54(1), 18. Weiss Bernard. (2008). Removal of deoxyinosine from the Escherichia coli chromosome as studied by oligonucleotide transformation. DNA repair, 7(2), 205-212. Yao Min, & Yoke W Kow. (1995). Interaction of deoxyinosine 3′-endonuclease from Escherichia coli with DNA containing deoxyinosine. Journal of Biological Chemistry, 270(48), 28609-28616. Yao Min, & Yoke Wah Kow. (1996). Cleavage of insertion/deletion mismatches, flap and pseudo-Y DNA structures by deoxyinosine 3′-endonuclease from Escherichia coli. Journal of Biological Chemistry, 271(48), 30672-30676. Yao Min, Zafer Hatahet, Robert J Melamede, et al. (1994). Purification and characterization of a novel deoxyinosine-specific enzyme, deoxyinosine 3'-endonuclease, from Escherichia coli. Journal of Biological Chemistry, 269(23), 16260-16268. 尤詠絮. (2009). 亞黃嘌呤核酸鹼基切除修復試管中測定系統之研發. 王議霆. (2010). 核酸內切酶第五型主導之修復系統於試管中亞黃嘌呤核酸修復區段之分析. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16929 | - |
| dc.description.abstract | DNA中的腺嘌呤經由自發性水解或者是遭受紫外光、亞硝酸等外源性傷害,會進行脫胺作用變成亞黃嘌呤。倘若生物體內的亞黃嘌呤核酸未被修復,核酸複製時傾向將其與dC配對,則可能造成A:T→G:C的突變產生。
目前已知在大腸桿菌中主要是由核酸內切酶第五型(endonuclease V)主導之修復系統負責修復亞黃嘌呤核酸,先前本實驗室利用噬菌體M13mp18衍生的異雙股核酸探討於試管中亞黃嘌呤核酸之修復反應,利用不同基因突變之大腸桿菌的蛋白質萃取液以及純化蛋白的系統來探討亞黃嘌呤核酸所需的因子及其修復機制,結果顯示核酸內切酶第五型、第一型去氧核醣核酸聚合酶(DNA polymerase I)以及去氧核醣核酸連接酶(DNA ligase)參與亞黃嘌呤核酸之修復。首先由核酸內切酶第五型辨識亞黃嘌呤核酸的位置,於其3’端之第二個磷酸雙酯鍵水解產生缺口起始修復反應,研究結果我們推測由第一型去氧核醣核酸聚合酶中3’往5’核酸外切酶活性負責移除亞黃嘌呤核酸,最後由DNA連接酶修補缺口。 為了印證在細菌體中核酸內切酶第五型與第一型去氧核醣核酸聚合酶中3’往5’核酸外切酶活性對於亞黃嘌呤核酸修復的必要性,我們嘗試研究於in vivo中,核酸內切酶第五型與第一型去氧核醣核酸聚合酶中3’往5’核酸外切酶活性對於亞黃嘌呤核酸修復也是不可或缺。我們利用轉形作用將含亞黃嘌呤核酸的異雙股核酸送入含不同基因突變之大腸桿菌勝任細胞,挑出溶菌斑以限制酶鑑定並計數,分別比較野生型與核酸內切酶第五型突變株(nfi)、第一型去氧核醣核酸聚合酶突變株(polA1)以及配對錯誤修復蛋白突變株(mut S)之差異。結果顯示於野生型菌株中可移除亞黃嘌呤核酸的比例約56%,在mut S突變菌株中可移除亞黃嘌呤核酸的比例約58%至62%,由此結果可知配對錯誤修復系統對於修復亞黃嘌呤核酸無關;在缺乏nfi之菌株中只有15%至18%,與野生型菌株相比約差四倍,可知nfi 基因產物對於修復亞黃嘌呤核酸的重要性;而在缺乏polA1之菌株中只有6%至9%,與野生型菌株相比約差八倍,更顯得pol I基因產物在亞黃嘌呤核酸修復路徑中扮演極為重要之角色。 我們in vivo實驗結果顯示突變型菌株和野生型菌株的差異趨勢與先前實驗室in vitro的結果一致,核酸內切酶第五型以及第一型去氧核醣核酸聚合酶在修復亞黃嘌呤核酸中扮演十分重要的角色。 | zh_TW |
| dc.description.abstract | Deamination of adenine can occur spontaneously under physiological conditions, generating highly mutagenic lesion, hypoxanthine (deoxyinosine in DNA). The process is enhanced by exposure of DNA in ionizing radiation, UV light and nitrous ion. If not repaired, hypoxanthine tends to generate A:T to G:C transition mutations. In Escherichia coli, deoxyinosine is primarily removed through a repair pathway by endonuclease V. According to our previous studies, the purified protein system containing Endonuclease V, DNA Polymerase I, and E. coli DNA ligase was sufficient to reconstitute the repair of G-I, T-I and A-I substrate in vitro. To comfirm in physiological condition, endonuclease V and DNA polymerase I are important to deoxyinosine correction in vivo. We therefore constructed deoxyinosine-containing bacteriophage M13mp18 DNA to evaluate its repair in vivo. We designed G-I and T-I in the recognition sequences of specific restriction endonucleases. After transfection of dI-containing phage DNA into E. coli, the correction can be evaluated by restriction digestion of replication form DNA from resulting plaques. E. coli mutS (MutS deficient), nfi (endonuclease V deficient) and polA (pol I deficient) as well as wild type strains were used for repair evaluation. The repair level in wild type E. coli was 55%, and about 60% in mutS mutant. It suggested that mismatch repair plays little role in processing deoxyinosine in vivo. In contrast, the repair level in nfi mutant decreased to less than 18%, and the repair level in polA mutant was further decreased to 8%. These results highly suggested the gene products of nfi and polA are very important for the deoxyinosine repair. The in vivo results are consistent with our previous in vitro study that DNA polymerase I and endonuclease V are the enzymes required for removing deoxyinosine in endonuclease V-initiated repair pathway. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:50:05Z (GMT). No. of bitstreams: 1 ntu-103-R00424012-1.pdf: 1579738 bytes, checksum: d57ba155aecdf224d28916a95fef26d5 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 摘要 I
Abstract III 圖目次 VI 表目次 VII 縮寫表 VIII 第一章 前言 1 1.1 核酸的重要性 1 1.2 核酸基本修復機制 1 1.3 亞黃嘌呤受損核酸的產生 2 1.4 核酸內切酶第五型主導之修復系統 3 1.5 核酸內切酶第五型 3 1.6 研究動機與目的 4 第二章 材料與方法 6 2.1 菌株 6 2.2 載體 7 2.3 酵素 7 2.4 突變噬菌體M13mp18 mutant之設計與建構 7 2.5 M13mp18系列雙股核酸之製備 10 2.6 M13mp18系列單股核酸之製備 11 2.7 具亞黃嘌呤核酸鹼基之異雙股核酸之製備 12 2.8 大腸桿菌細胞萃取物之製備 14 2.9 異雙股核酸對測定用限制酶之敏感度分析 15 2.10 亞黃嘌呤異雙股環狀核酸在大腸桿菌萃取物中之修復反應 15 2.11 利用純化的蛋白質觀察含亞黃嘌呤的異雙股環狀核酸之修復反應 16 2.12 亞黃嘌呤核酸鹼基切除修復於生物體體內修復系統之研發 17 第三章 結果 20 3.1 G-I受質之限制酶敏感度分析 20 3.2 T-I受質之建構與限制酶敏感度分析 20 3.3 T-I試管中大腸桿菌萃取液修復反應 21 3.4 T-I於純化蛋白系統之修復情形 23 3.5 G-I於不同細胞株之體內修復反應 24 3.6 T-I於不同細胞株之體內修復反應 25 第四章 討論 27 4.1 藍白篩方法於生物體體內修復系統之測試 27 4.2 大腸桿菌KA796、KA796突變株(Exo-)於生物體體內修復系統之測試 28 4.3探討亞黃嘌呤核酸鹼基切除修復於生物體體內修復系統 29 參考文獻 49 | |
| dc.language.iso | zh-TW | |
| dc.subject | 第一型去氧核醣核酸聚合? | zh_TW |
| dc.subject | 亞黃嘌呤核酸 | zh_TW |
| dc.subject | 脫胺作用 | zh_TW |
| dc.subject | 核酸修復 | zh_TW |
| dc.subject | 核酸內切?第五型 | zh_TW |
| dc.subject | DNA polymerase I | en |
| dc.subject | Hypoxanthine | en |
| dc.subject | Deoxyinosine | en |
| dc.subject | Endonuclease V | en |
| dc.title | 核酸內切酶第五型主導之修復系統於生物體內亞黃嘌呤核酸修復之分析 | zh_TW |
| dc.title | The Repair of Endonuclease V-Mediated Alternative Excision Repair of Deoxyinosine in vivo | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許濤(Tao Hsu),蔡芷季(Jhih-Ji Tsai),楊雅倩(Ya-Chien Yang) | |
| dc.subject.keyword | 亞黃嘌呤核酸,脫胺作用,核酸修復,核酸內切?第五型,第一型去氧核醣核酸聚合?, | zh_TW |
| dc.subject.keyword | Hypoxanthine,Deoxyinosine,Endonuclease V,DNA polymerase I, | en |
| dc.relation.page | 51 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-02-11 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
