請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16911
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳炳煇(Ping-Hei Chen) | |
dc.contributor.author | Yi-Fan Hsieh | en |
dc.contributor.author | 謝一帆 | zh_TW |
dc.date.accessioned | 2021-06-07T23:49:34Z | - |
dc.date.copyright | 2014-03-18 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-02-12 | |
dc.identifier.citation | [1]Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, Allen J, Tahirli R, Blakemore R, Rustomjee R, Milovic A, Jones M, O'Brien SM, Persing DH, Ruesch-Gerdes S, Gotuzzo E, Rodrigues C, Alland D, Perkins MD (2010) Rapid molecular detection of tuberculosis and rifampin resistance. N. Engl. J. Med. 363: 1005–1015.
[2]Mullis KB, Ferre F, Gibbs RA (1994) The Polymerase Chain Reaction. Birkhauser, Boston. [3]Wittwer CT, Herrmann MG, Moss AA, Rasmussen RP (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. BioTechniques 22: 130–138. [4]Wittwer CT, Ririe KM, Andrew RV, David DA, Gundry RA, Balis UJ (1997) The LightCyclerTM: a microvolume multisample fluorimeter with rapid temperature control. BioTechniques 22: 176–181. [5]Nakano H, Matsuda K, Yohda M, Nagamune T, Endo I, Yamane T (1994) High-speed polymerase chain-reaction in constant flow. Biosci. Biotechnol. Biochem. 58: 349-352. [6]Kopp MU, de Mello AJ, Manz A (1998) Chemical amplification: Continuous-flow PCR on a chip. Science 280: 1046-1048. [7]Chiou J, Matsudaira P, Sonin A, Ehrlich D (2001) A closed cycle capillary polymerase chain reaction machine. Anal. Chem. 73: 2018-2021. [8]Krishnan M, Ugaz VM, Burns MA (2002) PCR in a rayleigh-benard convection cell. Science 298: 793-793. [9]Chandrasekhar S (1981) Hydrodynamic and Hydromagnetic Stability. Dover. [10]Braun D, Goddard NL, Libchaber A (2003) Exponential DNA replication by laminar convection. Phys. Rev. Lett. 91: 158103. [11]Braun D (2004) PCR by thermal convection. Mod. Phys. Lett. B 18: 775-784. [12]Chen ZY, Qian SZ, Abrams WR, Malamud D, Bau HH (2004) Thermosiphon-based PCR reactor: Experiment and modeling. Anal. Chem. 76: 3707-3715. [13]Krishnan N, Agrawal N, Burns MA, Ugaz VM (2004) Reactions and fluidics in miniaturized natural convection systems. Anal. Chem. 76: 6254-6265. [14]Wheeler EK, Benett W, Stratton P, Richards J, Chen A, Christian A, Ness KD, Ortega J, Li LG, Weisgraber TH, Goodson K, Milanovich F (2004) Convectively driven polymerase chain reaction thermal cycler. Anal. Chem. 76: 4011-4016. [15]Hennig M, Braun D (2005) Convective polymerase chain reaction around micro immersion heater. Appl. Phys. Lett. 87: 183901. [16]Yariv E, Ben-Dov G, Dorfman KD (2005) Polymerase chain reaction in natural convection systems: A convection-diffusion-reaction model. Europhys. Lett. 71: 1008-1014. [17]Agrawal N, Hassan YA, Ugaz VM (2007) A pocket-sized convective PCR thermocycler. Angew. Chem. Int. Ed. 46: 4316-4319. [18]Zhang C, Xing D (2009) Parallel DNA amplification by convective polymerase chain reaction with various annealing temperatures on a thermal gradient device. Anal. Biochem. 387: 102-112. [19]Muddu R, Hassan YA, Ugaz VM (2011) Chaotically accelerated polymerase chain reaction by microscale rayleigh-benard convection. Angew. Chem. Int. Ed. 50: 3048-3052. [20]Tsai YL, Lin YC, Chou PH, Teng PH, Lee PY (2012) Detection of white spot syndrome virus by polymerase chain reaction performed under insulated isothermal conditions. J. Virol. Methods 181: 134-137. [21]Chung KH, Park SH, Choi YH (2010) A palmtop PCR system with a disposable polymer chip operated by the thermosiphon effect. Lab Chip 10: 202-210. [22]Tsai YL, Wang HTT, Chang HFG, Tsai CF, Lin CK, Teng PH, Su C, Jeng CC, Lee PY (2012) Development of TaqMan probe-based insulated isothermal PCR (iiPCR) for sensitive and specific on-site pathogen detection. Plos One 7: 121-125. [23]Chang HFG., Tsai YL, Tsai CF, Lin CK, Lee PY, Teng PH, Su C, Jeng CC (2012) A thermally baffled device for highly stabilized convective PCR. Biotech. J. 7: 662-666. [24]Chou WP, Chen PH, Miao J Ming, Kuo LS, Yeh SH, Chen PJ (2011) Rapid DNA amplification in a capillary tube by natural convection with a single isothermal heater. Biotechniques 50: 52-57. [25]Lee DS, Chou WP, Yeh SH, Chen PJ, Chen PH (2011) DNA detection using commercial mobile phones. Biosens. Bioelectron. 26: 4349-4354. [26]Higuchi R, Fockler C, Dollinger G, Watson R (1993) Kinetic PCR analysis - real-time monitoring of DNA amplification reactions. Bio-technology 11: 1026-1030. [27]Gibson UEM, Heid CA, Williams PM (1996) A novel method for real time quantitative RT-PCR. Gen. Res. 6: 995-1001. [28]Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Gen. Res. 6: 986-994. [29]Winer J, Jung CKS, Shackel I, Williams PM (1999) Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal. Biochem. 270: 41-49. [30]Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25: 169-193. [31]Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW (2000) Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: Comparison of endpoint and real-time methods. Anal. Biochem. 285: 194-204. [32]Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, Mathieu C (2001) An overview of real-time quantitative PCR: Applications to quantify cytokine gene expression. Methods 25: 386-401. [33]Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25: 402-408. [34]Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucl. Acids Res. 29: e45. [35]Liu WH, Saint DA (2002) A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal. Biochem. 302: 52-59. [36]Chen CF, Ridzon DA, Broomer AJ, Zhou ZH, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33: e179. [37]Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J. Comput. Biol. 12: 1047-1064. [38]Yuan JS, Reed A, Chen F, Stewart CN (2006) Statistical analysis of real-time PCR data. BMC Bioinformatics 7: 85. [39]Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat. Prot. 3: 1101-1108. [40]Schnell S, Mendoza C (1997) Enzymological considerations for a theoretical description of the quantitative competitive polymerase chain reaction (QC-PCR). J. Theor. Biol. 184: 433-440. [41]Schnell S, Mendoza C (1997) Theoretical description of the polymerase chain reaction. J. Theor. Biol. 188: 313-318. [42]Gevertz JL, Dunn SM, Roth CM (2005) Mathematical model of real-time PCR kinetics. Biotechnol. Bioeng. 92: 346-355. [43]Mehra S, Hu WS (2005) A kinetic model of quantitative real-time polymerase chain reaction. Biotechnol. Bioeng. 91: 848-860. [44]Smith MV, Miller CR, Kohn M, Walker NJ, Portier CJ (2007) Absolute estimation of initial concentrations of amplicon in a real-time RT-PCR process. BMC Bioinformatics 8: 409. [45]Boggy GJ, Woolf PJ (2010) A mechanistic model of PCR for accurate quantification of quantitative PCR data. Plos One 5: e12355. [46]Booth CS, Pienaar E, Termaat JR, Whitney SE, Louw TM, Viljoen HJ (2010) Efficiency of the polymerase chain reaction. Chem. Eng. Sci. 65: 4996-5006. [47]Liu WH, Saint DA (2002) Validation of a quantitative method for real time PCR kinetics. Biochem. Biophys. Res. Commun. 294: 347-353. [48]Rutledge RG (2004) Sigmoidal curve-fitting redefines quantitative real-time PCR with the prospective of developing automated high-throughput applications. Nucleic Acids Res. 32: e178. [49]Durtschi JD, Stevenson J, Hymas W, Voelkerding KV (2007) Evaluation of quantification methods for real-time PCR minor groove binding hybridization probe assays. Anal. Biochem. 361: 55-64. [50]Swillens S, Dessars B, El Housni H (2008) Revisiting the sigmoidal curve fitting applied to quantitative real-time PCR data. Anal. Biochem. 373: 370-376. [51]http://www.gene-quantification.de/efficiency01.html. [52]Greenberg MD (1998) Advanced Engineering Mathematics. Prentice-Hall International, Inc., 2nd edition. [53]http://shiyan.ebioe.com/Real-TimePCR&ConventionalPCR_2.htm. [54]http://commons.wikimedia.org/wiki/File:SYBR_Green_I_spectra.png. [55]謝一帆,單一溫控熱對流聚合酶連鎖反應系統之開發與研究,國立台灣大學機械工程學研究所碩士論文,台北,2007。 [56]Hsieh YF, Lee DS, Chen PH, Liao SK, Yeh SH, Chen PJ, Yang AS (2013) A real-time convective PCR machine in a capillary tube instrumented with a CCD-based fluorometer. Sens. Actuat. B 183: 434-440. [57]https://www.roche-applied-science.com/. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16911 | - |
dc.description.abstract | 本論文主要是針對動態的熱對流聚合酶連鎖反應(cPCR)定量檢測,建立出模型化公式並開發出可偵測核酸初始濃度之即時同步定量毛細管熱對流聚合酶連鎖反應平台以驗證之。cPCR相較於商用機台有著輕便小型化、簡單、反應時間短及價格低廉等優點,因此讓cPCR成為市場上另一個有潛力的選擇。針對目前cPCR並無適合的模型化公式去探討分析,因cPCR並無循環的概念且變性作用、引子煉合及延伸作用同時發生,其原理與傳統PCR不同。故本論文針對連續時間的cPCR建立出一套模組化公式來定量核酸初始濃度,利用實驗建立出標準化曲線分析及進行單管定量。此外,本論文也建立即時定量熱對流聚合酶連鎖反應平台來驗證模組化公式,其主要組成元件為480nm的LED為激發光和裝置530nm濾光片偵測螢光的感光耦合元件(CCD)。實驗結果顯示針對B型肝炎(HBV)及使用可嵌入鹼基對的螢光染劑(SYBR Green I)可成功擴增及靈敏度可達5 copies/tube和相關係數(R2)為0.985以上。期望此即時定量熱對流聚合酶連鎖反應平台可以在準確度,反應時間,便攜性和成本方面提供良好的性能,進而顯著提升生物醫療的品質。 | zh_TW |
dc.description.abstract | This thesis developed a phenomenal model for convective quantitative polymerase chain reaction and designed prototype platforms to demonstrate the validness of the model. Although the compactness, simplicity, fast reaction time, and low cost of the platform let convective PCR (cPCR) be a potential alternative of commercial PCR, lacking of a suitable model for quantitative detection of DNA amplification limits its applications in many fields. The current models for quantitative PCR (qPCR) based on thermocycling, however, are not applicable to cPCR since three reactions of denaturation, annealing, and extension occur simultaneously in the capillary and the concept of thermocycling is irrelevant to cPCR. Considering the dynamics of DNA reactions of cPCR, this thesis developed a phenomenal model in time domain to determine the initial DNA concentration quantitatively. The model shows that cPCR possess a standard line of inflection points (SLIP), similar to the standard curve for conventional PCR. Moreover, the model indicates cPCR can give the quantitative method for single assay test. To test the validness of the model, this thesis designed the fluorescence detection systems of cPCR to verify the model. It mainly consists of a 480-nm LED as an excitation light source, a CCD camera, and an optical filter to provide a fluorescence detection channel at a wavelength of 530 nm for real-time cPCR DNA quantification. The experimental results show that real-time quantitative cPCR can give the sensitivity as low as 5 copies and R2 larger than 0.985 for the PCR mix containing hepatitis B virus (HBV) plasmid samples, by using SYBR Green I fluorescence labeling dye to assess the prototype performance. The experimental results expect that the capillary convective qPCR can provide good performance from the aspect of accuracy, time, portability, and cost. This result has the potential to enhance significantly the medical care of life. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T23:49:34Z (GMT). No. of bitstreams: 1 ntu-103-D96522030-1.pdf: 3468086 bytes, checksum: 8f2857654cde045193bf276190cfadd0 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 中文摘要 III Abstract V Table of Content VII List of Tables IX List of Figures X Abbreviation XIII Nomenclature XIV Chapter1 Introduction 1 Chapter2 Mathematical Analysis 12 2.1 Quantitative Analysis of the Commercial RT-PCR Machine 12 2.2 Mathematical Analysis of RT-cPCR 13 2.2.1 Inflection Point 16 2.2.2 Exponential Behaviors near Beginning and Ending of the Reactions 16 2.2.3 Amplification Factor 17 2.2.4 Standard Line of Inflection Points (SLIP) 17 2.2.5 Single-Assay Quantification Method (SQM) 18 Chapter3 Materials and Experimental Apparatus 22 3.1 Reagents and Chemical Materials 22 3.1.1 Polymerase Chain Reaction 22 3.1.2 Agarose Gel Electrophoresis 25 3.2 Experimental Apparatus 26 3.2.1 Experimental Containers 26 3.2.2 RT-cPCR Platform 27 3.2.3 The Commercial RT-PCR Machine 28 3.2.4 Measurement Apparatus 29 Chapter4 Experimental Results and Discussions 37 4.1 Computational Analysis 37 4.2 Correlation between Fluorescent Reagents and DNA Concentrations 40 4.3 The Results of Temperature Measurement 41 4.4 PCR Amplification Test Results 42 4.4.1 Qualitative Analysis 42 4.4.2 Real-Time Quantitative Analysis 43 Chapter5 Conclusions and Future Works 58 Reference 62 Appendix 70 A.1 Design and Development of the Loop pipe 70 A.2 RT-clcPCR Platform 71 A.3 Temperature Measurement and Flow Visualization Results 71 A.4 Results of Real-Time Quantitative Analysis 72 A.5 Conclusions and Future Works 73 Publication List 81 | |
dc.language.iso | en | |
dc.title | 即時定量熱對流聚合酶連鎖反應平台定量方法之研究與開發 | zh_TW |
dc.title | Development of a quantification method for the real-time convective polymerase chain reaction platforms | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳培哲(Pei-Jer Chen),葉秀慧(Shiou-Hwei Yeh),丁詩同(Shih-Torng Ding),李達生(Da-Sheng Lee) | |
dc.subject.keyword | 即時偵測同步定量聚合?連鎖反應,熱對流聚合?連鎖反應,標準化曲線分析,單管定量, | zh_TW |
dc.subject.keyword | qPCR,convective PCR,Standard line of inflection points,Single-assay quantification method, | en |
dc.relation.page | 82 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-02-12 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 3.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。