請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16900完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊性芳 教授(Hsin-Fang Yang-Yen) | |
| dc.contributor.author | Uan-I Chen | en |
| dc.contributor.author | 陳婉怡 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:49:16Z | - |
| dc.date.copyright | 2014-02-25 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-02-13 | |
| dc.identifier.citation | References
Akgul, C., Moulding, D.A., White, M.R.H., and Edwards, S.W. (2000). In vivo localisation and stability of human Mcl-1 using green fluorescent protein (GFP) fusion proteins. FEBS letters 478, 72-76. Arbour, N., Vanderluit, J.L., Le Grand, J.N., Jahani-Asl, A., Ruzhynsky, V.A., Cheung, E.C., Kelly, M.A., MacKenzie, A.E., Park, D.S., Opferman, J.T., et al. (2008). Mcl-1 is a key regulator of apoptosis during CNS development and after DNA damage. The Journal of neuroscience : the official journal of the Society for Neuroscience 28, 6068-6078. Borgese, N., and Fasana, E. (2011). Targeting pathways of C-tail-anchored proteins. Biochimica et biophysica acta 1808, 937-946. Bratic, A., and Larsson, N.G. (2013). The role of mitochondria in aging. The Journal of clinical investigation 123, 951-957. Brix, J. (1997). Differential Recognition of Preproteins by the Purified Cytosolic Domains of the Mitochondrial Import Receptors Tom20, Tom22, and Tom70. Journal of Biological Chemistry 272, 20730-20735. Brix, J. (1999). Distribution of Binding Sequences for the Mitochondrial Import Receptors Tom20, Tom22, and Tom70 in a Presequence-carrying Preprotein and a Non-cleavable Preprotein. Journal of Biological Chemistry 274, 16522-16530. Cannon, B., and Nedeergaard, J. (2004). Brown Adipose Tissue: Function and Physiological Significance. Physiol Rev 84, 277-359. Chang, C.H., Curtis, J.D., Maggi, L.B., Jr., Faubert, B., Villarino, A.V., O'Sullivan, D., Huang, S.C., van der Windt, G.J., Blagih, J., Qiu, J., et al. (2013). Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239-1251. Chen, H., Vermulst, M., Wang, Y.E., Chomyn, A., Prolla, T.A., McCaffery, J.M., and Chan, D.C. (2010). Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141, 280-289. Colombini, M. (1979). A candidate for the permeability pathway of the outer mitochondrial membrane Nature 279, 643-645. De Biasio, A., Vrana, J.A., Zhou, P., Qian, L., Bieszczad, C.K., Braley, K.E., Domina, A.M., Weintraub, S.J., Neveu, J.M., Lane, W.S., et al. (2007). N-terminal truncation of antiapoptotic MCL1, but not G2/M-induced phosphorylation, is associated with stabilization and abundant expression in tumor cells. The Journal of biological chemistry 282, 23919-23936. DePierre, J.W., and Ernster, L. (1977). Enzyme Topology of Intracellular Membranes. Ann Rev Biochem 46, 201-262. Dewson, G., and Kluck, R.M. (2010). Bcl-2 family-regulated apoptosis in health and disease. Cell Health and Cytoskeleton 2, 9-22. Edwards, S.W., Derouet, M., Howse, M., and Moots, R.J. (2004). Regulation of neutrophil apoptosis by Mcl-1. Biochemical Society Transactions 32, 489-492. Endres, M., Neupert, W., and Brunner, M. (1999). Transport of the ADP/ATP carrier of mitochondria from the TOM complex to the TIM22•54 complex. The EMBO Journal 18, 3214-3221. Florez-Duquet, M., and Mcdonald, R.B. (1998). Cold-Induced Thermoregulation and Biological Aging. Physiological Reviews 78, 339-358. Gartner, F., Bomer, U., Guiard, B., and Pfanner, N. (1995). The sorting signal of cytochrome b2 promotes early divergence from the general mitochondrial import pathway and restricts the unfoldase activity of matrix Hsp7O. The EMBO Journal 14 6043-6057. Glick, B.S., Brandt, A., Cunningham, K., Miiller, S., Hallberg, R.L., and Schatz, G. (1992). Cytochromes cl and b2 Are Sorted to the Intermembrane Space of Yeast Mitochondria by a Stop-Transfer Mechanism. Cell 69, 809-622. Guerra, C., Koza, R.A., Walsh, K., Kurtz, D.M., Wood, P.A., and Kozak, L.P. (1998). Abnormal Nonshivering Thermogenesis in Mice with Inherited Defects of Fatty Acid Oxidation. J Clin Invest 102, 1724-1731. Hallermayer, G., and Neupert, W. (1974). Lipid Composition of Mitochondrial Outer and Inner Membranes of Neurospora crassa. Hoppe-Seyler's Z Physiol Chem 355, 279-288. Heijne, G.v. ( 1986). Mitochondrial targeting sequences may form amphiphilic helices. The EMBO Journal 5 1335 -1342. Heijne, G.v., Steppuhn, J., and Herrmann, R.G. (1989). Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180, 535-545 Himms-Hagen, J. (1985). Brown Adipose Tissue Metabolism and Thermogenesis. Ann Rev Nutr 5, 69-94. Huang, C.R., and Yang-Yen, H.F. (2010). The fast-mobility isoform of mouse Mcl-1 is a mitochondrial matrix-localized protein with attenuated anti-apoptotic activity. FEBS letters 584, 3323-3330. Hurt, E.C., Pesold-Hurt, B., and Schatz, G. (1984). The cleavable prepiece of an imported mitochondrial protein is sufficient to direct cytosolic dihydrofolate reductase into the mitochondrial matrix. FEBS letters 178, 306-310. Jamil, S., Mojtabavi, S., Hojabrpour, P., Cheah, S., and Duronio, V. (2008). An essential role for MCL-1 in ATR-mediated CHK1 phosphorylation. Molecular biology of the cell 19, 3212-3220. Jamil, S., Sobouti, R., Hojabrpour, P., Raj, M., Kast, J., and Duronio, V. (2005). A proteolytic fragment of Mcl-1 exhibits nuclear localization and regulates cell growth by interaction with Cdk1. Biochem J 387, 659-667. John, G.B., Shang, Y., Li, L., Renken, C., Mannella, C.A., Selker, J.M., Rangell, L., Bennett, M.J., and Zha, J. (2005). The mitochondrial inner membrane protein mitofilin controls cristae morphology. Molecular biology of the cell 16, 1543-1554. Kim, P.K., Annis, M.G., Dlugosz, P.J., Leber, B., and Andrews, D.W. (2004). During Apoptosis Bcl-2 Changes Short Article Membrane Topology at Both the Endoplasmic Reticulum and Mitochondria. Molecular cell 14, 523-529. Kojima, S., Hyakutake, A., Koshikawa, N., Nakagawara, A., and Takenaga, K. (2010). MCL-1V, a novel mouse antiapoptotic MCL-1 variant, generated by RNA splicing at a non-canonical splicing pair. Biochemical and biophysical research communications 391, 492-497. Kozopas, K.M., Yang, T., Buchan, H.L., Zhou, P., and Craig, R.W. (1993). MCLI, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci USA 90, pp. 3516-3520. L.Horwichl, A., Kalousekl, F., Mellman, I., and E.Rosenberg, L. (1985). A leader peptide is sufficient to direct mitochondrial import of a chimeric protein. The EMBO Journal 4, 1129-1135. Lakso, M., Pichl, J.G., Gorman, J.R., Sauer, B., Okamoto, Y., Lee, E., Alt, F.W., and Westphal, H. (1996). Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc Natl Acad Sci USA 93, 5860-5865. Liu, H., Eksarko, P., Temkin, V., Haines, G.K., Perlman, H., Koch, A.E., Thimmapaya, B., and Pope, R.M. (2005). Mcl-1 Is Essential for the Survival of Synovial Fibroblasts in Rheumatoid Arthritis. 175, 8337-8345. Lowell, B.B., and Spiegelman, B.M. (2000). Towards a molecular understanding of adaptive thermogenesis. Nature 404, 652-660. McBride, H.M., Neuspiel, M., and Wasiak, S. (2006). Mitochondria: more than just a powerhouse. Current biology : CB 16, R551-560. Michalska, A.E. (2007). Isolation and propagation of mouse embryonic fibroblasts and preparation of mouse embryonic feeder layer cells. Current protocols in stem cell biology Chapter 1, Unit1C 3. Neupert, W., and Herrmann, J.M. (2007). Translocation of proteins into mitochondria. Annual review of biochemistry 76, 723-749. Olichon-Berthe, C., Obberghen, E.V., and Marchand-Brustel, Y.L. (1992). Effect of cold acclimation on the expression of glucose transporter Glut 4. Mol Cell Endocrinol 89, 11-18. Opferman, J.T., Iwasaki, H., Ong, C.C., Suh, H., Mizuno, S., Akashi, K., and Korsmeyer, S.J. (2005). Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science 307, 1101-1104. Opferman, J.T., Letai, A., Beard, C., Sorcinelli, M.D., Ong, C.C., and Korsmeyer, S.J. (2003). Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 426, 671-676. Pan, C., Kumar, C., Bohl, S., Klingmueller, U., and Mann, M. (2009). Comparative Proteomic Phenotyping of Cell Lines and Primary Cells to Assess Preservation of Cell Type-specific Functions. Molecular & Cellular Proteomics 8, 443-450. Papa, S., Martino, P.L., Capitanio, G., Gaballo, A., De Rasmo, D., Signorile, A., and Petruzzella, V. (2012). The oxidative phosphorylation system in mammalian mitochondria. Advances in experimental medicine and biology 942, 3-37. Perciavalle, R.M., Stewart, D.P., Koss, B., Lynch, J., Milasta, S., Bathina, M., Temirov, J., Cleland, M.M., Pelletier, S., Schuetz, J.D., et al. (2012). Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nature cell biology 14, 575-583. Pfanner, N., and Geissler, A. (2001). Versatility of the mitochondrial protein import machinery. Nat Rev Mol Cell Biol 2, 339-349. Rinkenberger, J.L., Horning, S., Klocke, B., Roth, K., and Korsmeyer, S.J. (2000). Mcl-1 deficiency results in peri-implantation embryonic lethality. GENES & DEVELOPMENT 14, 23-27. Rogers, S., Wells, R., and Rechsteiner, M. (1986). Amino Acid Sequences Common to Rapidly Degraded Proteins: The PEST Hypothesis. Science 234, 364-368. Roisel, D., J.Horvath, S., M.Tomich, J., H.Richards, J., and Schatz, G. (1986). A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. The EMBO Journal 5 1327 - 1334. Rossignol, R., Gilkerson, R., Aggeler, R., Yamagata, K., Remington, S.J., and Capaldi, R.A. (2004). Energy Substrate Modulates Mitochondrial Structure and Oxidative Capacity in Cancer Cells. Cancer Res 64, 985-993. Schnaitman, C., and Greenawalt, J.W. (1968). Enzymatic Properties of The Inner And Outer Membranes of Rat Liver Mitochondria. The Journal of Cell Biology 38, 158-175. Schuler, A.M., Gower, B.A., Matern, D., Rinaldo, P., Vockley, J., and Wood, P.A. (2005). Synergistic heterozygosity in mice with inherited enzyme deficiencies of mitochondrial fatty acid beta-oxidation. Molecular genetics and metabolism 85, 7-11. Shibata, H., Perusse, F., Vallerand, A., and Bukowiecki, L.J. (1989). Cold exposure reverses inhibitory effects of fasting on peripheral glucose uptake in rats. Am J Physiol Regul Integr Comp Physiol 257, R96-R101. Srere, P.A. (1980). The infrastructure of the mitochondrial matrix. Trends Biochem Sci 5, 120-121. Steimer, D.A., Boyd, K., Takeuchi, O., Fisher, J.K., Zambetti, G.P., and Opferman, J.T. (2009). Selective roles for antiapoptotic MCL-1 during granulocyte development and macrophage effector function. Blood 113, 2805-2815. Stewart, D.P., Koss, B., Bathina, M., Perciavalle, R.M., Bisanz, K., and Opferman, J.T. (2010). Ubiquitin-independent degradation of antiapoptotic MCL-1. Molecular and cellular biology 30, 3099-3110. Stojanovski, D., Guiard, B., Kozjak-Pavlovic, V., Pfanner, N., and Meisinger, C. (2007). Alternative function for the mitochondrial SAM complex in biogenesis of alpha-helical TOM proteins. J Cell Biol 179, 881-893. Szendroedi, J., Phielix, E., and Roden, M. (2012). The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nature reviews Endocrinology 8, 92-103. Thomas, L.W., Lam, C., and Edwards, S.W. (2010). Mcl-1; the molecular regulation of protein function. FEBS letters 584, 2981-2989. Vermulst, M., Bielas, J.H., and Loeb, L.A. (2008). Quantification of random mutations in the mitochondrial genome. Methods 46, 263-268. Wallace, D.C., Fan, W., and Procaccio, V. (2010). Mitochondrial energetics and therapeutics. Annual review of pathology 5, 297-348. Wang, R., Dillon, C.P., Shi, L.Z., Milasta, S., Carter, R., Finkelstein, D., McCormick, L.L., Fitzgerald, P., Chi, H., Munger, J., et al. (2011). The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871-882. Warr, M.R., and Shore, G.C. (2008). Unique Biology of Mcl-1: Therapeutic Opportunities in Cancer. Current Molecular Medicine 8, 138-147. Wiedemann, N., Pfanner, N., and T.Ryan, M. (2001). The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. The EMBO Journal 20 951-960. Yang, T., Buchan, H.L., Townsend, K.J., and Craig, R.W. (1996). MCL-1, a Member of the BCL-2 Family, Is Induced Rapidly in Response to Signals for Cell Differentiation or Death, But Not to Signals for Cell Proliferation. Journal of Cellular Physiology 166, 523-536. Yang, T., Kozopas, K.M., and Craig, R.W. (1995). The Intracellular Distribution and Pattern of Expression of Mcl-1 Overlap with, but Are Not Identical to, Those of Bcl-2. The Journal of Cell Biology 128, I 173-1184. Zalman, L.S., Nikaido, H., and Kagawal, Y. (1980). Mitochondrial Outer Membrane Contains a Protein Producing Nonspecific Diffusion Channels. J Biol Chem 255, 1771-1774. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16900 | - |
| dc.description.abstract | Mcl-1是Bcl-2蛋白家族的一員,它最主要的功能在於抵抗細胞凋亡的發生。先前的研究已經發現在跑蛋白電泳時,Mcl-1 會出現大小不同的兩條分子片段,而這兩條分子片段在我們實驗室先前的結果中證實泳動速率較慢的Mcl-1異形體主要位在粒線體的外膜上,然而泳動速率較快的異形體則是會進到粒線體的基質當中。更進一步的,我們發現位在粒線體外膜的Mcl-1是主要具有抗細胞凋亡功能的異形體;而位在粒線體基質的Mcl-1異形體則沒有這樣的功能。直到最進,Perciavalle等人的研究指出,位在粒線體基質的Mcl-1異形體在調控生物能量轉換的過程扮演重要的角色。然而它是透過什麼樣的機制作用目前仍不得而知。在這篇研究中,我們製造出一種Mcl-1的基因突變鼠(3RG突變鼠),在這些基因突變鼠中,Mcl-1沒有辦法產生位於粒線體基質的異形體。令人意外的是,這些3RG突變鼠的出生符合孟德爾遺傳定律並且可以正常的生長發育且外觀無明顯異常。除此之外,我們的實驗數據顯示和先前發表的報導相反的結果:缺少Mcl-1粒線體基質異形體的小鼠胚胎纖維母細胞和控制組相比有類似的細胞生長速率、氧氣消耗率以及腺苷三磷酸產量 (ATP)。更進一步的研究發現,無論是在正常情形或是曝露在寒冷的環境後,3RG突變鼠的骨骼肌組織中含有的腺苷三磷酸量 (ATP) 相較於控制組有些微減少的趨勢,這個結果可能顯示位在粒線體基質的Mcl-1異形體只在特定的組織中調控生物能量的代謝。 | zh_TW |
| dc.description.abstract | Mcl-1 is a member of Bcl-2 protein family. The well-known function of Mcl-1 is its ability to antagonize cell apoptosis. Previous studies have shown that when proteins are subjected to electrophoresis, Mcl-1 appears as a doublet. Earlier works done in our lab indicates that the slow mobility isoform of Mcl-1 localizes to mitochondria outer membrane whereas the fast mobility isoform exclusively to the mitochondria matrix. Moreover, we showed that the outer membrane-localized isoform is the one that contributes to the anti-apoptosis activity of Mcl-1 whereas the matrix matrix-localized isoform is devoid of such activity. Recently, Perciavalle et al. (2012) reported that the matrix isoform plays a role in the regulation of cellular bioenergetics. However how matrix-localized Mcl-1 influences the cellular bioenergetics is still a mystery. In this study, we generated a mouse model (the 3RG mutant) that possesses a mutation that lacks the matrix-localized Mcl-1 isoform. Surprisingly, the 3RG mice were born with expected Mendelian frequency, and appeared to be developmentally normal with a gross normal appearance. Moreover, in contrast to what was reported by Perciavalle et al. (2012), 3RG MEFs manifested similar growth rate, oxygen consumption and ATP production as the wild type cells. Further analysis revealed a very minor phenotype in the 3RG mice, that is, their muscle tended to have lower amounts of ATP both under normal and under cold stress conditions. This results support that the matrix isoform of Mcl-1 may regulate cellular bioenergetics in a tissue-specific manner.
| en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:49:16Z (GMT). No. of bitstreams: 1 ntu-103-R00448015-1.pdf: 4665726 bytes, checksum: 0587ffbd2f2a798f59ed06e8a01b3d7a (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Contents
誌謝 1 摘要 2 Abstract 3 Contents 5 Introduction 8 Mitochondria 8 Structure of mitochondria 8 Powerhouse of cells 10 Mitochondria-targeting proteins 11 Mcl-1 (Myeloid cell leukemia-1) 13 Structure of Mcl-1 14 Functions of Mcl-1 14 Isoforms of mouse Mcl-1 16 Functions of different mMcl-1 isoforms 18 Specific aims 20 Materials and Methods 21 Genotyping 21 Cells and cell culture 21 Flow cytometry 21 In vitro T cell proliferation assay 22 In vitro T cell differentiation assay 23 Glycolytic flux assay 24 Purification of mitochondria from MEFs 24 Proteinase K treatment of mitochondria 25 Co-immunoprecipitation and mass spectrometry 26 Oxygen consumption 27 Mitochondrial DNA quantification 28 Subcellular fractionation 28 Immunofluorescence 29 High fat diet treatment 30 Glucose tolerance test 30 Cold tolerance test 30 Cellular and tissue ATP measurement 31 Transmission electron microscopy 32 Results 34 Generation of the 3RG mutant mice 34 Subcellular localization of the 3RG mutant in mice 35 The matrix isoform is dispensable for CD4+ T cell activation 36 The matrix-localized isoform of Mcl-1 is dispensable for mitochondrial bioenergetics 37 Lack of mMcl-1 matrix-localized isoform did not induce glucose intolerance upon high fat diet challenge 39 Mitochondrial matrix-localized Mcl-1 isoform-interacting proteins 40 Lack of mitochondrial matrix-localized Mcl-1 did not induce cold intolerance within short term exposure to cold 41 Discussion 45 Figures 50 Figure 1. Schematic representation of the Mcl-1 locus, targeting vector and the Mcl-13RG mutant allele 50 Figure 2. Mating strategy of this study 52 Figure 3. Genotyping and body weight 54 Figure 4. Subcellular localization of WT and the 3RG mutant of mMcl-1 56 Figure 5. Mitochondrial matrix-localized Mcl-1 isoform is dispensable for T cell activation 59 Figure 6. The 3RG mutation did not affect activation-induced T cells proliferation 61 Figure 7. The mitochondrial matrix isoform of Mcl-1 is dispensable for T cell activation 62 Figure 8. The matrix-localized isoform of Mcl-1 is dispensable for mitochondrial bioenergetics 65 Figure 9. HFD challenge does not cause glucose intolerance in mutant mice 67 Figure 10. Candidates of mitochondrial matrix-localized Mcl-1 interacting proteins 68 Table I. Possible candidates that interact with mitochondrial matrix-localized Mcl-1 70 Figure 11. The 3RG mutant mice tended to have a lower ATP level in the skeletal muscle 71 Figure 12. Mitochondria numbers and morphology in brown adipose tissue from mice exposed to cold stress 73 Figure 13. Mitochondria numbers and morphology in skeletal muscle (vastus lateralis) drom mice exposed to cold stress 74 References 77 Appendix 84 I. Procedures of in-gel digestion for mass spectrometry 84 | |
| dc.language.iso | en | |
| dc.subject | Mcl-1異形體 | zh_TW |
| dc.subject | 粒線體 | zh_TW |
| dc.subject | Mcl-1 | en |
| dc.subject | mitochondria | en |
| dc.title | 表現於粒線體基質之Mcl-1異形體的功能性探討 | zh_TW |
| dc.title | Functional characterization of mitochondrial matrix-localized isoform of Mcl-1 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 嚴仲陽 教授(Jeffrey Jong-Young Yen),徐立中 助理教授(Li-Chung Hsu) | |
| dc.subject.keyword | Mcl-1異形體,粒線體, | zh_TW |
| dc.subject.keyword | Mcl-1,mitochondria, | en |
| dc.relation.page | 93 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-02-13 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 4.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
