Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16892
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃慶璨
dc.contributor.authorYu-Ju Linen
dc.contributor.author林玉儒zh_TW
dc.date.accessioned2021-06-07T23:49:03Z-
dc.date.copyright2014-02-26
dc.date.issued2014
dc.date.submitted2014-02-13
dc.identifier.citation1. Veena (2008) Engineering plants for future: tools and options. Physiol. Mol. Biol. Plants 14.
2. Desai PN, Shrivastava N, & Padh H (2010) Production of heterologous proteins in plants: strategies for optimal expression. Biotechnol Adv 28(4):427-435.
3. Itakura K, et al. (1977) Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science 198(4321):1056-1063.
4. Pillai O & Panchagnula R (2001) Insulin therapies - past, present and future. Drug Discov Today 6(20):1056-1061.
5. Sorensen HP & Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115(2):113-128.
6. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11):1393-1398.
7. Hitzeman RA, et al. (1981) Expression of a human gene for interferon in yeast. Nature 293(5835):717-722.
8. Cregg JM, Barringer KJ, Hessler AY, & Madden KR (1985) Pichia pastoris as a host system for transformations. Mol Cell Biol 5(12):3376-3385.
9. Jamshad M, et al. (2008) Structural characterization of recombinant human CD81 produced in Pichia pastoris. Protein Expr Purif 57(2):206-216.
10. Smith GE, Summers MD, & Fraser MJ (1983) Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol 3(12):2156-2165.
11. Jarvis DL (2003) Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production. Virology 310(1):1-7.
12. Zeitlin L, et al. (1998) A humanized monoclonal antibody produced in 77
transgenic plants for immunoprotection of the vagina against genital
herpes. Nat Biotechnol 16(13):1361-1364.
13. Richter LJ, Thanavala Y, Arntzen CJ, & Mason HS (2000) Production of
hepatitis B surface antigen in transgenic plants for oral immunization.
Nat Biotechnol 18(11):1167-1171.
14. Ruhlman T, Ahangari R, Devine A, Samsam M, & Daniell H (2007)
Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts--oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotechnol J 5(4):495-510.
15. Simons JP, Wilmut, I., Clark, A. J., Archibald, A. L., Bishop, J. O., Lathe, A. L. (1988) Gene transfer into sheep. Biotechnology 6(2):179–183.
16. Yin J, Li G, Ren X, & Herrler G (2007) Select what you need: a comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes. J Biotechnol 127(3):335-347.
17. Boehm R (2007) Bioproduction of therapeutic proteins in the 21st century and the role of plants and plant cells as production platforms. Ann N Y Acad Sci 1102:121-134.
18. de Groot MJ, Bundock P, Hooykaas PJ, & Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16(9):839-842.
19. Gouka RJ, Punt PJ, & van den Hondel CA (1997) Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Appl Microbiol Biotechnol 47(1):1-11.
20. Avise JC (2004) Hope, hype, and reality of genetic engineering (Oxford University Press).
21. Magana-Gomez JA & de la Barca AM (2009) Risk assessment of genetically modified crops for nutrition and health. Nutr Rev 67(1):1-16.
22. Rai M, Padh, H.. (2001) Expression systems for production of heterologous proteins. Curr. Sci. 80(9):1121-1128.
23. Franken E, Teuschel U, & Hain R (1997) Recombinant proteins from transgenic plants. Curr Opin Biotechnol 8(4):411-416.
78
24. Fischer R & Emans N (2000) Molecular farming of pharmaceutical proteins. Transgenic Res 9(4-5):279-299; discussion 277.
25. Sijmons PC, et al. (1990) Production of correctly processed human serum albumin in transgenic plants. Biotechnology (N Y) 8(3):217-221.
26. Joshi L & Lopez LC (2005) Bioprospecting in plants for engineered proteins. Curr Opin Plant Biol 8(2):223-226.
27. Wilde CD, Peeters, K., Jacobs, A., Peck, I., and Depicker, A. (2002) Expression of antibodies and Fab fragments in transgenic potato plants: a case study for bulk production in crop plants. Mol. Breed 9:271-282.
28. Horn ME, Woodard SL, & Howard JA (2004) Plant molecular farming: systems and products. Plant Cell Rep 22(10):711-720.
29. Curtiss RI, Cardineau, C. A. (1990) Oral immunisation by transgenic plants. World Patent Application.
30. Mason HS, Lam DM, & Arntzen CJ (1992) Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci U S A 89(24):11745-11749.
31. Ehsani P, Khabiri A, & Domansky NN (1997) Polypeptides of hepatitis B surface antigen produced in transgenic potato. Gene 190(1):107-111.
32. McGarvey PB, et al. (1995) Expression of the rabies virus glycoprotein in transgenic tomatoes. Biotechnology (N Y) 13(13):1484-1487.
33. Arakawa T, Chong DK, Merritt JL, & Langridge WH (1997) Expression of cholera toxin B subunit oligomers in transgenic potato plants. Transgenic Res 6(6):403-413.
34. Tackaberry ES, et al. (1999) Development of biopharmaceuticals in plant expression systems: cloning, expression and immunological reactivity of human cytomegalovirus glycoprotein B (UL55) in seeds of transgenic tobacco. Vaccine 17(23-24):3020-3029.
35. Carrillo C, et al. (1998) Protective immune response to foot-and-mouth disease virus with VP1 expressed in transgenic plants. J Virol 72(2):1688-1690.
36. Yuki Y & Kiyono H (2009) Mucosal vaccines: novel advances in technology and delivery. Expert Rev Vaccines 8(8):1083-1097.
79
37. Daniell H, Streatfield SJ, & Wycoff K (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6(5):219-226.
38. Kusnadi AR, Nikolov ZL, & Howard JA (1997) Production of recombinant proteins in transgenic plants: Practical considerations. Biotechnol Bioeng 56(5):473-484.
39. Sethuraman N & Stadheim TA (2006) Challenges in therapeutic glycoprotein production. Curr Opin Biotechnol 17(4):341-346.
40. Fox JL (2003) Puzzling industry response to ProdiGene fiasco. Nat Biotechnol 21(1):3-4.
41. Hileman B (2003) ProdiGene and StarLink incidents provide ammunition to critics. Chem. Eng. News 81:25-33.
42. Zeng Q, Morales AJ, & Cottarel G (2001) Fungi and humans: closer than you think. Trends Genet 17(12):682-684.
43. Baldauf SL & Palmer JD (1993) Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci USA 90(24):11558-11562.
44. Punt PJ, et al. (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20(5):200-206.
45. Ko JL, Hsu CI, Lin RH, Kao CL, & Lin JY (1995) A new fungal immunomodulatory protein, FIP-fve isolated from the edible mushroom, Flammulina velutipes and its complete amino acid sequence. Eur J Biochem 228(2):244-249.
46. Dunn-Coleman NS, et al. (1991) Commercial levels of chymosin production by Aspergillus. Biotechnology (N Y) 9(10):976-981.
47. Pluddemann A & Van Zyl WH (2003) Evaluation of Aspergillus niger as host for virus-like particle production, using the hepatitis B surface antigen as a model. Curr Genet 43(6):439-446.
48. Ward M, et al. (2004) Characterization of humanized antibodies secreted by Aspergillus niger. Appl Environ Microbiol 70(5):2567-2576.
49. Ding Y, et al. (2011) Agrobacterium tumefaciens mediated fused egfp-hph gene expression under the control of gpd promoter in
80
Pleurotus ostreatus. Microbiol Res 166(4):314-322.
50. Burns C, et al. (2005) Efficient GFP expression in the mushrooms
Agaricus bisporus and Coprinus cinereus requires introns. Fungal
Genet Biol 42(3):191-199.
51. Chen X, Stone M, Schlagnhaufer C, & Romaine CP (2000) A fruiting
body tissue method for efficient Agrobacterium-mediated transformation
of Agaricus bisporus. Appl Environ Microbiol 66(10):4510-4513.
52. Gelvin SB (2010) Finding a way to the nucleus. Curr Opin Microbiol
13(1):53-58.
53. Combier JP, Melayah D, Raffier C, Gay G, & Marmeisse R (2003)
Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. FEMS Microbiol Letters 220(1):141-148.
54. Rho HS, Kang S, & Lee YH (2001) Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Molecules and Cells 12(3):407-411.
55. Mullins ED, et al. (2001) Agrobacterium-Mediated Transformation of Fusarium oxysporum: An Efficient Tool for Insertional Mutagenesis and Gene Transfer. Phytopathology 91(2):173-180.
56. Sullivan TD, Rooney PJ, & Klein BS (2002) Agrobacterium tumefaciens integrates transfer DNA into single chromosomal sites of dimorphic fungi and yields homokaryotic progeny from multinucleate yeast. Eukaryotic cell 1(6):895-905.
57. Hiatt A, Cafferkey R, & Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342(6245):76-78.
58. Punt PJ, et al. (1990) Functional elements in the promoter region of the Aspergillus nidulans gpdA gene encoding glyceraldehyde-3-phosphate dehydrogenase. Gene 93(1):101-109.
59. Comai L, Moran P, & Maslyar D (1990) Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS elements. Plant Mol Biol 15(3):373-381.
60. Lugones LG, Scholtmeijer K, Klootwijk R, & Wessels JG (1999) Introns
81
are necessary for mRNA accumulation in Schizophyllum commune. Mol
Microbiol 32(4):681-689.
61. Scholtmeijer K, Wosten HA, Springer J, & Wessels JG (2001) Effect of
introns and AT-rich sequences on expression of the bacterial hygromycin B resistance gene in the basidiomycete Schizophyllum commune. Appl Environ Microbiol 67(1):481-483.
62. Lu J, et al. (2008) Gene expression enhancement mediated by the 5' UTR intron of the rice rubi3 gene varied remarkably among tissues in transgenic rice plants. Mol Genet Genomics 279(6):563-572.
63. Gomord V & Faye L (2004) Posttranslational modification of therapeutic proteins in plants. Curr Opin Plant Biol 7(2):171-181.
64. Chen M, et al. (2005) Modification of plant N-glycans processing: the future of producing therapeutic protein by transgenic plants. Med Res Rev 25(3):343-360.
65. Ko K, et al. (2003) Function and glycosylation of plant-derived antiviral monoclonal antibody. Proc Natl Acad Sci U S A 100(13):8013-8018.
66. Hanif M, Pardo AG, Gorfer M, & Raudaskoski M (2002) T-DNA transfer and integration in the ectomycorrhizal fungus Suillus bovinus using hygromycin B as a selectable marker. Curr Genet 41(3):183-188.
67. Szymczak AL & Vignali DA (2005) Development of 2A peptide-based strategies in the design of multicistronic vectors. Expert Opin Biol Ther 5(5):627-638.
68. de Felipe P (2002) Polycistronic viral vectors. Curr Gene Ther 2(3):355-378.
69. de Felipe P (2004) Skipping the co-expression problem: the new 2A 'CHYSEL' technology. Genet Vaccines Ther 2(1):13.
70. Ryan MD, King AM, & Thomas GP (1991) Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. J Gen Virol 72 ( Pt 11):2727-2732.
71. Ryan MD & Drew J (1994) Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. EMBO J 13(4):928-933.
82
72. Donnelly ML, et al. (2001) The 'cleavage' activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring '2A-like' sequences. J Gen Virol 82(Pt 5):1027-1041.
73. Donnelly ML, et al. (2001) Analysis of the aphthovirus 2A/2B polyprotein 'cleavage' mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal 'skip'. J Gen Virol 82(Pt 5):1013-1025.
74. Precious B, et al. (1995) Inducible expression of the P, V, and NP genes of the paramyxovirus simian virus 5 in cell lines and an examination of NP-P and NP-V interactions. J Virol 69(12):8001-8010.
75. Ralley L, et al. (2004) Metabolic engineering of ketocarotenoid formation in higher plants. Plant J 39(4):477-486.
76. de Felipe P & Ryan MD (2004) Targeting of proteins derived from self-processing polyproteins containing multiple signal sequences. Traffic 5(8):616-626.
77. Lorens JB, et al. (2004) Stable, stoichiometric delivery of diverse protein functions. J Biochem Biophys Methods 58(2):101-110.
78. El Amrani A, et al. (2004) Coordinate expression and independent subcellular targeting of multiple proteins from a single transgene. Plant Physiol 135(1):16-24.
79. Percy N, Barclay WS, Garcia-Sastre A, & Palese P (1994) Expression of a foreign protein by influenza A virus. J Virol 68(7):4486-4492.
80. Mir FA, Kaufmann SH, & Eddine AN (2009) A multicistronic DNA
vaccine induces significant protection against tuberculosis in mice and offers flexibility in the expressed antigen repertoire. Clin Vaccine Immunol 16(10):1467-1475.
81. Fallot S, et al. (2009) Alternative-splicing-based bicistronic vectors for ratio-controlled protein expression and application to recombinant antibody production. Nucleic Acids Res 37(20):e134.
82. de Felipe P, Hughes LE, Ryan MD, & Brown JD (2003) Co-translational, intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide. J Biol Chem 278(13):11441-11448.
83
83. Mlotshwa S, et al. (2002) Subcellular location of the helper component-proteinase of Cowpea aphid-borne mosaic virus. Virus Genes 25(2):207-216.
84. Ma C & Mitra A (2002) Intrinsic direct repeats generate consistent post-transcriptional gene silencing in tobacco. Plant J 31(1):37-49.
85. Deibel R & Flanagan TD (1979) Central nervous system infections. Etiologic and epidemiologic observations in New York State, 1976-1977. N Y State J Med 79(5):689-695.
86. Schmidt NJ, Lennette EH, & Ho HH (1974) An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis 129(3):304-309.
87. Hagiwara A, Tagaya I, & Yoneyama T (1978) Epidemic of hand, foot and mouth disease associated with enterovirus 71 infection. Intervirology 9(1):60-63.
88. Komatsu H, Shimizu Y, Takeuchi Y, Ishiko H, & Takada H (1999) Outbreak of severe neurologic involvement associated with Enterovirus 71 infection. Pediatr Neurol 20(1):17-23.
89. Chua KB, et al. (2007) Genetic diversity of enterovirus 71 isolated from cases of hand, foot and mouth disease in the 1997, 2000 and 2005 outbreaks, Peninsular Malaysia. Malays J Pathol 29(2):69-78.
90. Zhang Y, et al. (2010) An emerging recombinant human enterovirus 71 responsible for the 2008 outbreak of hand foot and mouth disease in Fuyang city of China. Virol J 7:94.
91. Huang SW, et al. (2009) Reemergence of enterovirus 71 in 2008 in Taiwan: dynamics of genetic and antigenic evolution from 1998 to 2008. J Clin Microbiol 47(11):3653-3662.
92. Solomon T, et al. (2010) Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis 10(11):778-790.
93. Plevka P, Perera R, Cardosa J, Kuhn RJ, & Rossmann MG (2012) Crystal structure of human enterovirus 71. Science 336(6086):1274.
94. Wang X, et al. (2012) A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nature structural & molecular
84
biology 19(4):424-429.
95. Acharya KR & Lloyd MD (2005) The advantages and limitations of
protein crystal structures. Trends Pharmacol Sci 26(1):10-14.
96. Sams RN, Carver HW, 2nd, Catanese C, & Gilson T (2013) Suicide with
hydrogen sulfide. American J Forensic Med Pathol 34(2):81-82.
97. Roingeard P (2008) Viral detection by electron microscopy: past, present and future. Biology of the cell / under the auspices of the
European Cell Biology Organization 100(8):491-501.
98. Lee H, et al. (2013) A strain-specific epitope of Enterovirus 71 identified
by cryoEM of the complex with Fab from neutralizing antibody. J Virol.
99. Cifuente JO, et al. (2013) Structures of the procapsid and mature virion
of enterovirus 71 strain 1095. J Virol 87(13):7637-7645.
100. Chen HF, Chang MH, Chiang BL, & Jeng ST (2006) Oral immunization of mice using transgenic tomato fruit expressing VP1 protein from
enterovirus 71. Vaccine 24(15):2944-2951.
101. Ong KC, Devi S, Cardosa MJ, & Wong KT (2010)
Formaldehyde-inactivated whole-virus vaccine protects a murine model of enterovirus 71 encephalomyelitis against disease. J Virol 84(1):661-665.
102. Zhang D & Lu J (2010) Enterovirus 71 vaccine: close but still far. Int J Infect Dis 14(9):e739-743.
103. Tung WS, Bakar SA, Sekawi Z, & Rosli R (2007) DNA vaccine constructs against enterovirus 71 elicit immune response in mice. Genet Vaccines Ther 5:6.
104. Wu CN, et al. (2001) Protection against lethal enterovirus 71 infection in newborn mice by passive immunization with subunit VP1 vaccines and inactivated virus. Vaccine 20(5-6):895-904.
105. Foo DG, et al. (2007) Identification of neutralizing linear epitopes from the VP1 capsid protein of Enterovirus 71 using synthetic peptides. Virus Res 125(1):61-68.
106. Chung CY, et al. (2010) Enterovirus 71 virus-like particle vaccine: improved production conditions for enhanced yield. Vaccine
85
28(43):6951-6957.
107. Ho M (2000) Enterovirus 71: the virus, its infections and outbreaks. J
Microbiol Immunol Infect 33(4):205-216.
108. Chen HL, et al. (2008) Expression of VP1 protein in the milk of
transgenic mice: a potential oral vaccine protects against enterovirus 71
infection. Vaccine 26(23):2882-2889.
109. Hsu Y-H (2008) Study on the expression system of Flammulina
velutipes by Agrobacterium tumefaciens-mediated transformation.
National Taiwan University Master Thesis.
110. Kuo CY, Chou SY, & Huang CT (2004) Cloning of
glyceraldehyde-3-phosphate dehydrogenase gene and use of the gpd promoter for transformation in Flammulina velutipes. Appl Microbiol Biotechnol 65(5):593-599.
111. Doyle JJ, and Doyle, J. L. (1990) Isolation of plant DNA from fresh tissue. Focus 12:3.
112. Chen J, Kadlubar FF, & Chen JZ (2007) DNA supercoiling suppresses real-time PCR: a new approach to the quantification of mitochondrial DNA damage and repair. Nucleic Acids Res 35(4):1377-1388.
113. Kuo CY, Chou, S. Y., Hseu, R. S., and Huang, C. T. (2010) Heterologous expression of EGFP in enoki mushroom Flammulina velutipes. Botanical Studies 51:7.
114. Ying TL (2010) Enhancement of protein expression in Agrobacterium-mediated transformation system of Flammulina velutipes by optimized promoter sequence. (National Taiwan University).
115. Kastner B, et al. (2008) GraFix: sample preparation for single-particle electron cryomicroscopy. Nature Methods 5(1):53-55.
116. Dube P, Tavares P, Lurz R, & van Heel M (1993) The portal protein of bacteriophage SPP1: a DNA pump with 13-fold symmetry. EMBO J 12(4):1303-1309.
117. Chen SC, et al. (2011) Sumoylation-promoted enterovirus 71 3C degradation correlates with a reduction in viral replication and cell
86
apoptosis. J Biol Chem 286(36):31373-31384.
118. de Felipe P, et al. (2006) E unum pluribus: multiple proteins from a
self-processing polyprotein. Trends Biotechnol 24(2):68-75.
119. Andrianantoandro E, Basu S, Karig DK, & Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Molecular
Systems Biol 2:2006 0028.
120. Kilaru S, et al. (2006) Expression of laccase gene lcc1 in Coprinopsis
cinerea under control of various basidiomycetous promoters. Appl
Microbiol Biotechnol 71(2):200-210.
121. Cheng S, Yang P, Guo L, Lin J, & Lou N (2009) Expression of
multi-functional cellulase gene mfc in Coprinus cinereus under control
of different basidiomycete promoters. Bioresource technol 100(19):4475-4480.
122. Trcek T, Larson DR, Moldon A, Query CC, & Singer RH (2011) Single-molecule mRNA decay measurements reveal promoter- regulated mRNA stability in yeast. Cell 147(7):1484-1497.
123. Feng L & Niu DK (2007) Relationship between mRNA stability and length: an old question with a new twist. Biochem Genet 45(1-2):131-137.
124. Kanesashi SN, et al. (2003) Simian virus 40 VP1 capsid protein forms polymorphic assemblies in vitro. J Gen Virol 84(Pt 7):1899-1905.
125. Hendry E, et al. (1999) The crystal structure of coxsackievirus A9: new
insights into the uncoating mechanisms of enteroviruses. Structure
7(12):1527-1538.
126. Catanese MT, et al. (2013) Ultrastructural analysis of hepatitis C virus
particles. Proc Natl Acad Sci U S A 110(23):9505-9510.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16892-
dc.description.abstract菇類分子農場是利用菇類作為生物反應器,以生產醫藥用或特用蛋白質,如 抗體及酵素等,其中又以開發口服疫苗(edible vaccine)最受矚目。本實驗室已建 立穩定的菇類農桿菌媒介轉形系統表現異源蛋白質。然而,實際應用與發展仍然 受限於異源基因表現量低與無法同時生產特用蛋白質複合體兩大問題。本研究成 功建立金針菇多基因表現平台,利用病毒來源之 2A 短鏈胜肽(2A peptides)可在 共轉譯時期經由 2A 胜肽媒介截切(2A-mediated cleavage)分離上下游基因產物 的特性,建構單基因多拷貝數系統以直接提高異源蛋白質表現量;以及多基因單 至多拷貝數系統以同時表現多個目標基因。具體完成目標如下:(1) 建構菇類雙 基因表現系統探討 2A 胜肽媒介截切應用於菇類的可行性。利用 2A 短鏈胜肽聯 結潮黴素篩選基因(hph)及綠色螢光蛋白質基因(egfp),並探討綠色螢光蛋白質基 因位於 2A 短鏈胜肽上下游表現量差異。萃取經農桿菌媒介轉形成功之金針菇轉 形株菌絲體總可溶蛋白質,以西方墨點分析結果證實 2A 短鏈胜肽可在金針菇轉 形株中媒介截切,以專一性單株抗體可偵測到正確大小約 27 kDa 的綠色螢光蛋 白質。酵素連結免疫分析結果顯示,當綠色螢光蛋白質基因位於 2A 短鏈胜肽上 游,因直接被啟動子驅動使表現量優於位於 2A 短鏈胜肽下游。 (2) 建構單基因 多拷貝數表現系統,利用 2A 短鏈胜肽串接一至四個綠色螢光蛋白質基因等不同 表現載體探討異源基因表現量。以南方氏墨點法及即時定量 PCR 確定嵌入金針 菇轉形株染色體之 egfp 拷貝數後以螢光顯微鏡與酵素連結免疫分析,結果顯示 金針菇轉形株可激發綠色螢光,螢光量與表現載體所帶之 egfp 拷貝數成正比, 以 3 倍基因拷貝數表現螢光量最強。(3) 建構多基因單至多拷貝數系統,並應用 於開發菇類腸病毒 71 型口服疫苗。腸病毒 71 型為感染幼兒的重要病原體,重 症病患致死率高,目前疫苗生產操作繁複、成本昂貴不易推廣,因此開發腸病毒71 型口服疫苗為當務之急。本研究建構一系列腸病毒 71 型類病毒顆粒表現載體, 利用 2A 短鏈胜肽聯結腸病毒外鞘蛋白質 P1 及 3C 蛋白質截切酶等基因,以洋 菇 gpd 啟動子或適當刪減之金針菇 gpd-d1 啟動子轉錄,經 2A 短鏈胜肽媒介截 切作用於共轉譯時期分離 P1 和 3C 後,3C 蛋白質截切酶接著將病毒外鞘蛋白質 分割成 VP1、VP2、VP3、VP4 等 4 個病毒次單元,可於胞內組裝成類病毒顆 粒。為提升生產病毒次單元的效率,利用單點突變法將 3C 蛋白質截切酶的第 52 胺基酸由 lysine 突變成 arginine,以避免宿主細胞 SUMO 蛋白質修飾化 (sumoylation)而提高轉錄活性。挑取經農桿菌媒介轉形後可穩定繼代的金針菇轉 形株,以南方氏墨點法分析顯示異源基因嵌入宿主染色體拷貝數介於 1-2 個。續 以西方墨點法經專一性單株抗體辨識,可偵測病毒次單元 VP1 及 VP2 訊號;各 病毒次單元之部分胺基酸序列亦可成功經液相層析質譜儀探測比對,即 2A 短鏈 胜肽及 3C 蛋白質截切酶皆具有功能可順利將 P1 外鞘蛋白質截切成四種病毒次 單元。進一步以蛋白質複合體熱穩定性分析法測試最適類病毒顆粒組裝緩衝液環 境後,經蔗糖連續梯度法純化及戊二醛固定蛋白質,利用穿透式電子顯微鏡取得 類病毒顆粒 2 維影像,並以電腦影像分析技術成功模擬類病毒顆粒之 3 維立體 結構,證實病毒次單元可於金針菇菌絲體內自行組裝成完整類病毒顆粒。本研究 成果期望為後續菇類口服疫苗發展奠定基石。zh_TW
dc.description.abstractA reliable Agrobacterium tumefaciens-mediated transformation (ATMT) for the basidiomycete Flammulina velutipes, or commonly knows as enoki mushroom, has been established in our lab previously. However, the enhancement of protein production and expression of multi-target genes remain a big challenge. The 2A peptides mediated cleavage is emerging as a highly effective and novel tool for co-expression of polyproteins. In this study, a feasible polycistronic expression system was developed in F. velutipes. The several objectives have been achieved including: (1) Establishment of polycistronic expression system in enoki mushroom F. velutipes using selectable marker, hph, and reporter gene, egfp, linked by 2A peptides from porcine teschovirus-1. After ATMT, the F. velutipes tramsformants carrying antibiotic resistant capability expressed EGFP as evidenced by fluorescent microscopy and western blotting. Position effect of transgene expression was also investigated by locating egfp at upstream or downstream of 2A peptides. The EGFP amount of F. velutipes transformants assayed by ELISA showed that transgene at upstream of 2A peptides, which was directly driven by the promoter, was expressed more than that at downstream. (2) Enhancement of transgene expression using tandem repeated egfp linked by 2A peptides. The results of western blotting, ELISA and fluorescent microscopy showed that heterologous protein expression in the transgenic F. velutipes was notably enhanced via 2A peptide-mediated cleavage to co-express up to three copies of single gene. (3) Establishment of an EV71 virus-like particles (VLPs) expression system. The genes of EV71 P1 structural protein and 3C protease were constructed in the same transcript linked by 2A peptides. After P1 and 3C were separated via 2A peptides mediated cleavage in co-translational level, 3C protease can proteolytically cleavage P1 into four subunits, VP1, VP2, VP3, and VP4. These four subunits automatically assemble to form VLPs within transgenic mycelia. To increase the efficiency of subunits production, a site-directed mutation K52R of 3C protease was made to prevent sumoylation from host cell. After ATMT and F. velutipes transformants selection, the crude extraction of EV71 VLPs from transgenic mycelia were purified and fixed by GraFix method. The subunits VP1 and VP2 were detected using specific monoclonal antibodies. The partial peptide sequences of VP1 to VP4 were assigned by LC-MS/MS and mascot. These results demonstrated that both of 2A peptides and 3C protease are functional and successfully produce the EV71 VLPs in transgenic F. velutipes via poly-heterologous gene expression system. Moreover, the 2D images of EV71 VLPs can be observed under TEM, and their 3D structure was reconstructed de novo from the TEM-images of class III. This study is the first report regarding the establishment of mushroom polycistronic system. The polycistronic strategy using 2A peptide-mediated cleavage developed in this study can not only be used to express single gene in multiple copies, but also to express multiple genes in a single reading frame. It is a promising strategy for the application of mushroom molecular pharming.en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:49:03Z (GMT). No. of bitstreams: 1
ntu-103-D98b47403-1.pdf: 44466883 bytes, checksum: 9097131a0604408b868e20c1c8f63843 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsContents ......................................................................................................... I Table contents..................................................................................................V Figure contents................................................................................................VI 中文摘要........................................................................................................VIII Abstract ...........................................................................................................X
Chapter I. Introduction .................................................................................. 1 1. Applications of heterologous gene expression....................................... 1
1.1. Production of recombinant proteins.....................................................2 1.2. Application of recombinant proteins .................................................... 3 1.3. Factors affecting the application of recombinant proteins ................... 3
2. Molecular pharming................................................................................4 2.1. Applications of molecular pharming..................................................... 4 2.2. Advantages of molecular pharming over traditional fermentation ....... 5 2.3. Potential risk of plant molecular pharming........................................... 6
3. Mushroom molecular pharming..............................................................6
3.1. Advantages of the filamentous fungi expression system..................... 6
3.2. Unique advantages of MMP over PMP ............................................... 7
3.3. Advantages of enoki mushroom F. velupties....................................... 7
3.4. Current status of MMP ......................................................................... 8
4. Obstacles to overcome in MMP ............................................................. 9
4.1. Transformation .................................................................................... 9 4.2. Low expression level ......................................................................... 10
4.3. Expression of Multiple transgenes..................................................... 10
5. Strategies of heterologous gene expression enhancement in mushrooms .. 11
5.1. Molecular strategies .......................................................................... 11 5.2. Polycistronic strategies......................................................................13
5.3. 2A peptide mediated cleavage .......................................................... 13 5.4. Application of 2A peptide-mediated cleavage ................................... 15
6. Enterovirus 71 (EV71) .......................................................................... 16 6.1. Introduction of EV71 .......................................................................... 16 6.2. Structure analysis of EV71 ................................................................ 17
7. Development of EV71 vaccines ........................................................... 18
7.1. Types of EV71 vaccines .................................................................... 18 7.2. Edible vaccines of EV71....................................................................19
8. Motivations ........................................................................................... 19
9. Goals and Objectives ........................................................................... 20
Chapter II. Materials and Methods.............................................................. 22
1. Development of polycistronic system in F. velupties heterologous gene expression .................................................................................................. 22
1.1. Strains and medium........................................................................... 22 1.2. Primers design................................................................................... 23 1.3. Construction of polycistronic gene expression plasmids ................... 25 1.4. A. tumefaciens transformation...........................................................27 1.5. Agrobacterium-mediated transformation of F. velutipes....................27
1.6. Co-cultivation and selection of F. velutipes transformants ................ 28 1.7. Analysis of copy number ................................................................... 28
1.8. Analysis of gene expression..............................................................29
1.9. Analysis of F. velutipes transformants by fluorescence microscopy . 32
2. Expression of EV71 VLPs by polycistronic stategy in F. velupties....... 33
2.1. Primers and constructions ................................................................. 33 2.2. Site-directed mutation........................................................................ 33 2.3. Copy number analysis by southern blot ............................................ 36 2.4. Preparation of protein samples.......................................................... 36 2.5. Liquid chromatography–tandem mass spectrometry......................... 39
2.6. TEM observation ............................................................................... 40 2.7. Reconstruction of 3D structure .......................................................... 41
Chapter III. Results ..................................................................................... 42 1. Development of 2A peptide mediated cleavage in F. velupties heterologous gene expression.................................................................... 42
1.1. Plasmids construction and Agrobacterium electroporation ............... 42 1.2. Agrobacterium-mediated transformation ........................................... 43 1.3. Nucleotide analysis............................................................................ 43 1.4. Western blot analysis ........................................................................ 44 1.5. Fluorescence microscopic observation ............................................. 45
1.6. EGFP quantification via ELISA..........................................................45
2. Expression of EV71 VLPs in F. velutipes.............................................53
2.1. Plasmids construction and Agrobacterium electroporation ............... 53 2.2. Site-directed mutation........................................................................ 53 2.3. Agrobacterium-mediated transformation ........................................... 54 2.4. Nucleotide analysis............................................................................ 54 2.5. Protein expression analysis...............................................................55
2.6. VP1 quantification via ELISA.............................................................56
2.7. VLPs purification and VLP qualification by LC-MS/MS ..................... 56
2.8. TEMobservationandImageprocessing...........................................57
Chapter IV. Discussions.............................................................................. 71
1. The influence of gene expression ........................................................ 71 1.1. Promoter strength..............................................................................71 1.2. mRNA stability ................................................................................... 72
2. Polymorphic assemblies of EV71 VLPs ............................................... 73
Chapter V. Conclusion ................................................................................ 75 Chapter VI. Future prospects...................................................................... 76 References .................................................................................................... 77 Appendixes.................................................................................................... 88 Published literature........................................................................................ 91
dc.language.isoen
dc.subject多基因表現系統zh_TW
dc.subject農桿菌媒介轉形zh_TW
dc.subject菇類分子農場zh_TW
dc.subject金針菇zh_TW
dc.subject腸病毒71型類病毒顆粒zh_TW
dc.subject2A胜?媒介截切zh_TW
dc.subject2A短鏈胜?zh_TW
dc.subjectAgrobacterium tumefaciens-mediated transformationen
dc.subjectmushroom molecular pharmingen
dc.subjectenterovirus 71en
dc.subjectpolycistronen
dc.subjectFlammulina velutipesen
dc.subject2A peptidesen
dc.title金針菇多基因表現系統之建立及其於腸病毒71型類病毒顆粒生產之應用zh_TW
dc.titleEstablishment of poly-heterologous gene expression system in Flammunila velutipes and its application on enterovirus 71 virus-like particles productionen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree博士
dc.contributor.oralexamcommittee許瑞祥,江伯倫,施信如,楊健志
dc.subject.keyword菇類分子農場,金針菇,農桿菌媒介轉形,多基因表現系統,2A短鏈胜?,2A胜?媒介截切,腸病毒71型類病毒顆粒,zh_TW
dc.subject.keywordFlammulina velutipes,Agrobacterium tumefaciens-mediated transformation,2A peptides,polycistron,enterovirus 71,mushroom molecular pharming,en
dc.relation.page98
dc.rights.note未授權
dc.date.accepted2014-02-13
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
43.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved