請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16869完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志傑 | |
| dc.contributor.author | Chia-Wei Hsu | en |
| dc.contributor.author | 徐嘉偉 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:48:24Z | - |
| dc.date.copyright | 2014-02-25 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-02-17 | |
| dc.identifier.citation | AHAM (2003). Method for measuring performance of portable household electric room air cleaners. Standard AC-1-2006 Association of Home Appliance.
Alexander, R. M. (1949). Fundamentals of cyclone design and operation, in Proc. Aust. Inst. Min. Met, 202. Avci, A. and Karagoz, I. (2003). Effects of flow and geometrical parameters on the collection efficiency in cyclone separators. Journal of Aerosol Science 34:937-955. Bögelein, J. and Lee, G. (2010). Cyclone selection influences protein damage during drying in a mini spray-dryer. International journal of pharmaceutics 401:68-71. Büttner, H. (1988). Size separation of particles from aerosol samples using impactors and cyclones. Particle & Particle Systems Characterization 5:87-93. Behboudi-Jobbehdar, S., Soukoulis, C., Yonekura, L. and Fisk, I. (2013). Optimization of spray-drying process conditions for the production of maximally viable microencapsulated L. acidophilus NCIMB 701748. Drying Technology 31:1274-1283. Bernardo, S., Mori, M., Peres, A. and Dionísio, R. (2006). 3-D computational fluid dynamics for gas and gas-particle flows in a cyclone with different inlet section angles. Powder Technology 162:190-200. Blakeman, T. C., Toth, P., Rodriquez, D. and Branson, R. D. (2010). Mechanical ventilators in the hot zone: Effects of a CBRN filter on patient protection and battery life. Resuscitation 81:1148-1151. Bland, S. (2009). Chemical, biological and radiation casualties: critical care considerations. Journal of the Royal Army Medical Corps 155:160-171. Boubel, R. W. (1971). A high volume stack sampler. Journal of the Air Pollution Control Association 21:783-787. Bricknell, M. C. and Williamson, R. (2011). Medical planning and the estimate. Journal of the Royal Army Medical Corps 157:S434-S438. Brown, R. and Wake, D. (1999). Loading filters with monodisperse aerosols: macroscopic treatment. Journal of aerosol science 30:227-234. Bryant, H., Silverman, R. and Zenz, F. (1983). How dust in gas affects cyclone pressure drop. Hydrocarbon Process.;(United States) 62. Chen, C.-C., Chen, W.-Y., Huang, S.-H., Lin, W.-Y., Kuo, Y.-M. and Jeng, F.-T. (2001). Experimental study on the loading characteristics of needlefelt filters with micrometer-sized monodisperse aerosols. Aerosol Science & Technology 34:262-273. Chen, C.-C. and Huang, S.-H. (1999). Shift of aerosol penetration in respirable cyclone samplers. American Industrial Hygiene Association Journal 60:720-729. Chen, C., Lehtimäki, M. and Willeke, K. (1993). Loading and filtration characteristics of filtering facepieces. The American Industrial Hygiene Association Journal 54:51-60. Dietz, P. (1981). Collection efficiency of cyclone separators. AIChE Journal 27:888-892. Dirgo, J. and Leith, D. (1985). Cyclone collection efficiency: comparison of experimental results with theoretical predictions. Aerosol Science and Technology 4:401-415. Dugan, N. R. and Williams, D. J. (2004). Removal of Cryptosporidium by in-line filtration: effects of coagulant type, filter loading rate and temperature. Journal of Water Supply: Research & Technology-AQUA 53. Dziubak, T. (2009). The problems of dust extraction from air intake cyclonic dedusters of special vehicle engines. Silniki Spalinowe 48:34-44. Elsayed, K. and Lacor, C. (2010). Application of response surface methodology for modeling and optimization of the cyclone separator for minimum pressure drop, in Fifth European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2010), Lisbon, Portugal. Ficici, F., Ari, V. and Kapsiz, M. (2010). The effects of vortex finder on the pressure drop in cyclone separators. International Journal of the Physical Sciences 5:804-813. Funk, P. and Baker, K. (2013). Dust cyclone technology for gins–A literature review. Journal of Cotton Science 17:40-51. Galperin, V. and Shapiro, M. (1999). Cyclones as dust concentrators. Journal of Aerosol Science 30:S897-S898. Gautam, M. and Sreenath, A. (1997). Performance of a respirable multi-inlet cyclone sampler. Journal of aerosol science 28:1265-1281. Gerrard, A. and Liddle, C. (1976). The optimal choice of multiple cyclones. Powder Technology 13:251-254. Gimbun, J., Chuah, T., Fakhru’l-Razi, A. and Choong, T. S. (2005). The influence of temperature and inlet velocity on cyclone pressure drop: a CFD study. Chemical Engineering and Processing: Process Intensification 44:7-12. Gupta, A. K., Lilley, D. G. and Syred, N. (1984). Swirl flows. Tunbridge Wells, Kent, England, Abacus Press, 1984, 488 p. 1. Harney, R. C. (2007). Fighting Dirty! Sustaining Operations in a CBRN Environment. Naval Engineers Journal 119:107-121. Hinds, W. C. (1999). Aerosol Technology: Properties. Behavior, and Measurement of airborne Particles (2nd. Hoffmann, A., De Jonge, R., Arends, H. and Hanrats, C. (1995). Evidence of the ‘natural vortex length’and its effect on the separation efficiency of gas cyclones. Filtration & Separation 32:799-804. Holdsworth, D., Bland, S. and O’Reilly, D. (2012). CBRN Response and the Future. Journal of the Royal Army Medical Corps 158:58-63. Hsiao, T.-C., Chen, D.-R. and Son, S. Y. (2009). Development of mini-cyclones as the size-selective inlet of miniature particle detectors. Journal of Aerosol Science 40:481-491. Iozia, D. L. and Leith, D. (1989). Effect of cyclone dimensions on gas flow pattern and collection efficiency. Aerosol Science and Technology 10:491-500. Iozia, D. L. and Leith, D. (1990). The logistic function and cyclone fractional efficiency. Aerosol science and technology 12:598-606. Japuntich, D., Stenhouse, J. and Liu, B. (1997). Effective pore diameter and monodisperse particle clogging of fibrous filters. Journal of aerosol science 28:147-158. Japuntich, D., Stenhouse, J. and Liu, B. (1994). Experimental results of solid monodisperse particle clogging of fibrous filters. Journal of aerosol science 25:385-393. Ji, Z., Wu, X. and Shi, M. (1993). Experimental research on the natural turning length in the cyclone. ACTA PETROLEI SINICA PETROLEUM PROCESSING SECTION 9:86-86. Karadimos, A. and Ocone, R. (2003). The effect of the flow field recalculation on fibrous filter loading: a numerical simulation. Powder technology 137:109-119. Karagoz, I. and Avci, A. (2005). Modelling of the pressure drop in tangential inlet cyclone separators. Aerosol science and technology 39:857-865. Kim, H., Zhu, Y., Hinds, W. and Lee, K. (2002). Experimental study of small virtual cyclones as particle concentrators. Journal of aerosol science 33:721-733. Kim, J. and Lee, K. (1990). Experimental study of particle collection by small cyclones. Aerosol Science and Technology 12:1003-1015. Kumar, V., Goel, R., Chawla, R., Silambarasan, M. and Sharma, R. K. (2010). Chemical, biological, radiological, and nuclear decontamination: Recent trends and future perspective. Journal of Pharmacy And Bioallied Sciences 2:220. Lack, D. A., Cappa, C. D., Covert, D. S., Baynard, T., Massoli, P., Sierau, B., Bates, T. S., Quinn, P. K., Lovejoy, E. R. and Ravishankara, A. (2008). Bias in filter-based aerosol light absorption measurements due to organic aerosol loading: Evidence from ambient measurements. Aerosol Science and Technology 42:1033-1041. Lim, K., Kim, H. and Lee, K. (2004). Characteristics of the collection efficiency for a cyclone with different vortex finder shapes. Journal of Aerosol science 35:743-754. Lim, K., Kim, H., Park, Y. and Lee, K. (2005). Particle collection and concentration for cyclone concentrators. Aerosol science and technology 39:113-123. Lim, K., Kwon, S. and Lee, K. (2003). Characteristics of the collection efficiency for a double inlet cyclone with clean air. Journal of aerosol science 34:1085-1095. Lohrenz, S. E. (2000). A novel theoretical approach to correct for pathlength amplification and variable sampling loading in measurements of particulate spectral absorption by the quantitative filter technique. Journal of Plankton Research 22:639-657. Mainza, A., Powell, M. and Knopjes, B. (2004). Differential classification of dense material in a three-product cyclone. Minerals engineering 17:573-579. Marple, V., Lundgren, D. and Olson, B. (2013). A PM 1.0/2.5/10 Trichotomous Virtual Impactor Based Sampler: Design and Applied to Arid Southwest Aerosols Part I: Design. KONA: Powder & Particle Journal. Marple, V. A. and Willeke, K. (1976). Impactor Design. Atmospheric Environment 10:891-896. Martinez-Benet, J. and Casal, J. (1984). Optimization of parallel cyclones. Powder technology 38:217-221. May, K. (1945). The cascade impactor: an instrument for sampling coarse aerosols. Journal of Scientific instruments 22:187. Mercer, T., Tillery, M. and Newton, G. (1970). A multi-stage, low flow rate cascade impactor. Journal of Aerosol Science 1:9-15. Moore, M. E. and McFarland, A. R. (1993). Performance modeling of single-inlet aerosol sampling cyclones. Environmental science & technology 27:1842-1848. Nixdorf, R. D., Green, J. B., Story, J. M. and Wagner, R. M. (2001). Microwave-regenerated diesel exhaust particulate filter, Industrial Ceramic Solutions, LLC; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN. Palmer, I. (2004). The psychological dimension of chemical, biological, radiological and nuclear (CBRN) terrorism. Journal of the Royal Army Medical Corps 150:3-9. Ramachandran, G., Leith, D., Dirgo, J. and Feldman, H. (1991). Cyclone optimization based on a new empirical model for pressure drop. Aerosol Science and Technology 15:135-148. Saltzman, B. E. and Hochstrasser, J. M. (1983). Design and performance of miniature cyclones for respirable aerosol sampling. Environmental science & technology 17:418-424. Stern, A., Caplan, K. and Bush, P. (1955). Cyclone dust collectors. American Petroleum Institute, New York:1. Surmen, A., Avci, A. and Karamangil, M. (2011). Prediction of the maximum-efficiency cyclone length for a cyclone with a tangential entry. Powder Technology 207:1-8. Swamee, P. K., Aggarwal, N. and Bhobhiya, K. (2009). Optimum design of cyclone separator. AIChE journal 55:2279-2283. Thomas, D., Contal, P., Renaudin, V., Penicot, P., Leclerc, D. and Vendel, J. (1999). Modelling pressure drop in HEPA filters during dynamic filtration. Journal of Aerosol Science 30:235-246. Werther, J. and Hartge, E.-U. (2004). Modeling of industrial fluidized-bed reactors. Industrial & engineering chemistry research 43:5593-5604. Xiang, R., Park, S. and Lee, K. (2001). Effects of cone dimension on cyclone performance. Journal of Aerosol Science 32:549-561. Zhou, L. and Soo, S. (1990). Gas—Solid flow and collection of solids in a cyclone separator. Powder Technology 63:45-53. Zhu, Y., Kim, M., Lee, K., Park, Y. and Kuhlman, M. (2001). Design and performance evaluation of a novel double cyclone. Aerosol Science & Technology 34:373-380. Zhu, Y. and Lee, K. (1999). Experimental study on small cyclones operating at high flowrates. Journal of Aerosol Science 30:1303-1315. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16869 | - |
| dc.description.abstract | 自1995年3月東京地下鐵的沙林事件以及一連串恐怖攻擊事件發生,引起了一連串的恐慌,恐怖組織使用核生化(chemical, biological, radiological, or nuclear, CBRN)武器引發之戰爭,造成嚴重的傷亡。如今各國皆積極研發新的方法與技術以偵測、控制、並移除有關化學性、生物性、放射性、微粒態的污染。 一個標準裝甲車的空氣清淨系統應包含供氣之動力風扇、一旋風式分徑器以去除大粒徑微粒、折疊式濾材去除通過旋風式分徑器的剩餘微粒、活性碳層吸附空氣中的有機蒸氣,每單元皆有其作用,缺一不可。虛擬旋風分徑器由於底部有一小孔,可將蒐集之微粒由底部開口排出減少微粒負載效應,因此格外重要。為增進虛擬旋風分徑器之效能,本研究分三個階段,其概述分別如下:
第一階段,旋風式分徑器品質提升研究: 採用過濾品質(filtration quality factor)的觀點,於相同的流量下其單位阻抗所能提供的微粒收集效率高低,全面性的測試旋風式分徑器的各構型參數,依過濾品質的觀點檢視Stairmand構型發現該構型於分徑器高度(H)與出口管長(S)的建議已是最佳化的設計,若能改變其他的構型規格如使入口更為狹長 (a/b由13/5調整至20/3.2)、盡可能增加錐狀底高的比例( hc/H由62/100調整至70/100)與減少錐狀底底部直徑(B由9 mm減至4 mm)、減少出口管直徑(De由13 mm調整至8 mm),將可使旋風式分徑器之過濾品質有效的提升;實驗的結果顯示若能有效調整構型參數於設定流量(30 L/min)下其分徑品質比起Stairmand構型將可提升5倍,不同流量下其差異不同,於較小流量下(15 L/min)其品質差異可達12倍。 第二階段,正壓式虛擬旋風分徑器效能提升研究: 本研究引用並調整市售空氣清淨機常用的效能指標「CADR」,探討不同入口流量、底部開口大小位置、不同錐狀底、不同背壓的改變對虛擬旋風分徑器效能影響,結果可知若能提升風扇所提供之風量可有效的提升CADR值。底部開口越小對大粒徑微粒而言其CADR值越高,但須注意阻塞的問題。底部開口位置不同其CADR值差異不大,唯底部開口置於中心將導致氣體無法由底部開口排出,反而變成吸入,且開口於最邊緣其副排出氣流有最佳之排出效率,因此開口置而離中心最遠的切邊處是最理想選擇。錐狀底越小將使CADR值越高。折疊式濾材與活性碳層所形成的背壓越大則分徑器的CADR值越低。使用離心風扇供氣後,會造成Qmajor減少亦會造成總流量減少,連帶影響微粒的收集效率,其複雜的關係需要進行更多的研究方能進一步的了解其影響。 第三階段,正壓式虛擬旋風式微粒排出特性研究: 虛擬旋風分徑器的微粒排出特性具有濃縮效果,因此在探討微粒排出的同時,亦可以同時將其視為一個微粒濃縮器,一個理想的微粒濃縮器應能控制微粒濃度、粒徑與分佈。在本實驗中證明,透過改變正壓式虛擬旋風分徑器之參數,的確對微粒濃度、粒徑與分佈造成影響。實驗結果顯示副排出氣流之微粒濃縮比會受入口氣流流量大小、底部開口大小、與錐狀底部直徑(B)的影響,入口流量越大其濃縮比越低,底部開口越大其濃縮比越低,錐狀底直徑(B)越小其濃縮比越高,底部開口位置雖對於微粒濃縮比影響不顯著,但對於較大粒徑微粒亦會有少量的影響。以排出微粒量而言,副排出氣流之微粒粒數排出比之大小受錐狀底部開口大小與開孔位置影響,底部開口越大其微粒粒數排出比越高,底部開口位置離中心越遠其微粒數排出比亦越高。副排出氣流所排出之微粒粒數比分佈曲線之分佈範圍(GSD),將因入口流量增大、底部開口變小與錐狀底變小而使GSD變小,其中改變底部開口大小對其GSD影響最為顯著。 | zh_TW |
| dc.description.abstract | In the wake of the March 1995 sarin attack in the Tokyo subway, as well as other recent terrorist incidents, governments and publics are viewing with the growing concern about the potential threat posed by chemical, biological, radiological, or nuclear (CBRN) weapons. The risk for terrorist events has led to the development of new approaches to sampling, testing, and controlling for both indoors and outdoors ambient air. A standard military armored vehicle is composed of a blower, a virtual cyclone, a pleated HEPA filter unit, and a charcoal pack. A positive pressure type virtual cyclone has been used for high aerosol loading and low loading influence. This study used three steps to improve the efficiency of the cycole.
The first step is to expert on Performance Improvement of the Stairmand Cyclone Design. This work adopts the cyclone quality factor as the performance index, and the cyclone designed by Stairmand is adopted as the basic configuration in the present study. With the cyclone body diameter (D) fixed, we vary the cyclone length (H), inlet height (a) and width (b), cyclone length without the cone (hb), cone height (hc), cone bottom diameter (B), and vortex finder length (S). The results show that each of these design parameter has a different impact on the cyclone performance. Based on the cyclone quality factor, it is found that the H and S of the Stairmand cyclone are already the optimal conformations. The cyclone performance could be further improved, if further changes could be made to the other conformations, for example, narrowing down the inlet (adjusting a/b from 13/5 to 20/3.2), reducing the cone bottom diameter (adjusting B from 9 mm to 4 mm) and decreasing the vortex finder diameter (adjusting De from 13 mm to 8 mm), The cyclone quality factor appears to be a function of the volumetric flow rate. Results demonstrate that while the air flow is at 15 L/min, the newly improved cyclone could perform 12 times better than the Stairmand type cyclone, according to the cyclone quality factor. The second step is to improve the Performance characterization of a positive pressure virtual cyclone working at high aerosol loading. This step work adopts the clean air delivery rate (CADR), which is commonly used in air-cleaning devices as an indicator to understand the cyclone loading effect of different parameters such as the inflow rate, the position of bottom hole, the cone shape, and the back pressure.The results demonstrate that while increasing the air flow, the CADR would be well improved. As the bottom hole becomes smaller, the CADR of big particles will increase. There is no obvious differences between hole positions. However, when the bottom hole locates in the center, the air flow will turn to draw air instead of discharged. Therefore, the best position of the bottom hole is the margin of the circle and a small cone will produce a better CADR. When the back pressure caused by pleated HEPA filter unit and charcoal pack is bigger, the CADR is lower. If we replace the high pressure inflow air with general centrifugal fan, the Qminor will decrease as well as the total flow, thereby lowering the collection efficiency. The third step is to expert study of the positive pressure virtual cyclones as particle concentrators. There are lots of studies evaluating the fisibility of positive pressure virtual cyclones used as a particle concentrator. However, only a few studies diccussed the characteristics of parameters of the positive pressure virtual cyclone. An ideal particle concentrator is capable of controlling the particle concentration rate, particle size and its distribution. In this study, the particle concentration rate was proved to be effected by the above factors and the minor flow was effected by inlet flow, hole diameter at the cyclone bottom and the bottom diameter. When inlet flow rate was higher or the hole diameter was bigger, the particle concentration rate was lower. On the contrary, as the bottom diameter (B) was smaller, the concentration rate was higher. The position of the hole had no significant effect on particle concentration rate except particle diameter at 3-6 m. The particle number fraction in the minor flow was increased with increasing hole diameter and the distance between the hole to the center of bottom. When the inlet flow rate was higher, the hole diameter and the cone diameter were smaller, the GSD (Grain Size Distribution Curve) was narrower. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:48:24Z (GMT). No. of bitstreams: 1 ntu-103-F90841015-1.pdf: 1830826 bytes, checksum: 02994c993838b9ba371ab80b0aba7476 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 摘要 I
Abstract III 目錄 VII 表目錄 IX 圖目錄 X 一、 前言 1 1.1研究背景 1 1.2研究目的 2 2.1旋風式分徑器品質提升研究 3 2.2正壓式虛擬旋風分徑器效能提升研究 7 2.3正壓式虛擬旋風式濃縮器特性研究 9 二、 材料與方法 11 3.1實驗系統建立與測試 11 3.2旋風式分徑器品質提升研究 12 3.3虛擬旋風分徑器效能提升研究 12 3.4正壓式虛擬旋風式濃縮器特性研究 15 三、 結果與討論 16 4.1旋風式分徑器品質提升研究 16 4.1.1分徑器高度影響(H) 16 4.1.2錐狀體高度影響(hc) 17 4.1.3錐狀體底部直徑(B) 19 4.1.4不同入口面積(a*b) 20 4.1.5不同入口比例(a : b) 21 4.1.6出口管管徑(De) 22 4.1.7出口管伸入旋風室分徑器的長度(S) 23 4.1.8高品質分徑器(High quality type)與Stairmand式分徑器比較 24 4.2正壓式虛擬旋風分徑器效能提升研究 24 4.2.1流量對正壓式虛擬分徑器影響 24 4.2.2開孔直徑大小對正壓式虛擬分徑器影響 25 4.2.3開孔位置對正壓式虛擬分徑器影響 26 4.2.4錐狀體底部直徑改變對正壓式虛擬分徑器影響 27 4.2.5不同背壓 28 4.2.6使用動力風扇評估 29 4.3正壓式虛擬旋風式濃縮器特性研究 30 4.3.1錐狀底對正壓式虛擬分徑器濃縮特性的影響 30 4.3.2入口流量對正壓式虛擬分徑器濃縮特性影響 32 4.3.3底部開口大小對正壓式虛擬分徑器濃縮影響 32 4.3.4錐狀體底部開口位置改變對正壓式虛擬分徑器濃縮特性的影響 34 四、 結論 36 4.1旋風式分徑器品質提升研究 36 4.2正壓式虛擬旋風分徑器效能提升研究 37 4.3正壓式虛擬旋風式濃縮器特性研究 38 五、 參考文獻 40 | |
| dc.language.iso | zh-TW | |
| dc.subject | 虛擬旋風分徑器 | zh_TW |
| dc.subject | 微粒濃縮器 | zh_TW |
| dc.subject | CADR | zh_TW |
| dc.subject | 品質 | zh_TW |
| dc.subject | CADR | en |
| dc.subject | quality | en |
| dc.subject | virtual cyclone | en |
| dc.subject | concentrator | en |
| dc.title | 具高微粒負載特性之正壓式虛擬旋風分徑器效能提升研究 | zh_TW |
| dc.title | Performance characterization of a positive pressure virtual cyclone working at high aerosol loading | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 鄭福田,林文印,黃盛修,蕭大智 | |
| dc.subject.keyword | 虛擬旋風分徑器,品質,CADR,微粒濃縮器, | zh_TW |
| dc.subject.keyword | virtual cyclone,quality,CADR,concentrator, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-02-17 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 職業醫學與工業衛生研究所 | zh_TW |
| 顯示於系所單位: | 職業醫學與工業衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
