請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16861完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 金傳春 | |
| dc.contributor.author | Chang-Chun Lee | en |
| dc.contributor.author | 李昌駿 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:48:11Z | - |
| dc.date.copyright | 2014-10-20 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-03-03 | |
| dc.identifier.citation | Aamir, U.B., Naeem, K., Ahmed, Z., Obert, C.A., Franks, J., Krauss, S., Seiler, P., Webster, R.G., 2009. Zoonotic potential of highly pathogenic avian H7N3 influenza viruses from Pakistan. Virology 390, 212-220.
Aamir, U.B., Wernery, U., Ilyushina, N., Webster, R.G., 2007. Characterization of avian H9N2 influenza viruses from United Arab Emirates 2000 to 2003. Virology 361, 45-55. Abbas, M.A., Spackman, E., Swayne, D.E., Ahmed, Z., Sarmento, L., Siddique, N., Naeem, K., Hameed, A., Rehmani, S., 2010. Sequence and phylogenetic analysis of H7N3 avian influenza viruses isolated from poultry in Pakistan 1995-2004. Virology journal 7, 137. Al-Azemi, A., Bahl, J., Al-Zenki, S., Al-Shayji, Y., Al-Amad, S., Chen, H., Guan, Y., Peiris, J.S., Smith, G.J., 2008. Avian influenza A virus (H5N1) outbreaks, Kuwait, 2007. Emerging infectious diseases 14, 958-961. Albo, C., Valencia, A., Portela, A., 1995. Identification of an RNA binding region within the N-terminal third of the influenza A virus nucleoprotein. Journal of virology 69, 3799-3806. Alexander, D.J., 2000. A review of avian influenza in different bird species. Veterinary microbiology 74, 3-13. Alexander, D.J., 2003. Report on avian influenza in the Eastern Hemisphere during 1997-2002. Avian diseases 47, 792-797. Alexander, D.J., 2007. Summary of avian influenza activity in Europe, Asia, Africa, and Australasia, 2002-2006. Avian diseases 51, 161-166. Arikawa, J., Yamane, N., Odagiri, T., Ishida, N., 1979. Serological evidence of H1 influenza virus infection among Japanese hogs. Acta virologica 23, 508-511. Bahgat, M.M., Kutkat, M.A., Nasraa, M.H., Mostafa, A., Webby, R., Bahgat, I.M., Ali, M.A., 2009. Characterization of an avian influenza virus H5N1 Egyptian isolate. Journal of virological methods 159, 244-250. Balish, A.L., Davis, C.T., Saad, M.D., El-Sayed, N., Esmat, H., Tjaden, J.A., Earhart, K.C., Ahmed, L.E., Abd El-Halem, M., Ali, A.H., Nassif, S.A., El-Ebiary, E.A., Taha, M., Aly, M.M., Arafa, A., O'Neill, E., Xiyan, X., Cox, N.J., Donis, R.O., Klimov, A.I., 2010. Antigenic and genetic diversity of highly pathogenic avian influenza A (H5N1) viruses isolated in Egypt. Avian diseases 54, 329-334. Banks, J., Speidel, E.C., McCauley, J.W., Alexander, D.J., 2000. Phylogenetic analysis of H7 haemagglutinin subtype influenza A viruses. Archives of virology 145, 1047-1058. Banks, J., Speidel, E.S., Moore, E., Plowright, L., Piccirillo, A., Capua, I., Cordioli, P., Fioretti, A., Alexander, D.J., 2001. Changes in the haemagglutinin and the neuraminidase genes prior to the emergence of highly pathogenic H7N1 avian influenza viruses in Italy. Archives of virology 146, 963-973. Bao, Y., Bolotov, P., Dernovoy, D., Kiryutin, B., Zaslavsky, L., Tatusova, T., Ostell, J., Lipman, D., 2008. The influenza virus resource at the National Center for Biotechnology Information. Journal of virology 82, 596-601. BAPHIQ, 2012. Japan, USA and Taiwan joint conference on avian influenza prevention and control, in: BAPHIQ (Ed.), Japan, USA and Taiwan joint conference on avian influenza prevention and control, Taiwan. Baudin, F., Bach, C., Cusack, S., Ruigrok, R.W., 1994. Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent. The EMBO journal 13, 3158-3165. Baum, L.G., Paulson, J.C., 1990. Sialyloligosaccharides of the respiratory epithelium in the selection of human influenza virus receptor specificity. Acta histochemica. Supplementband 40, 35-38. Bean, W.J., Kawaoka, Y., Wood, J.M., Pearson, J.E., Webster, R.G., 1985. Characterization of virulent and avirulent A/chicken/Pennsylvania/83 influenza A viruses: potential role of defective interfering RNAs in nature. Journal of virology 54, 151-160. Bean, W.J., Schell, M., Katz, J., Kawaoka, Y., Naeve, C., Gorman, O., Webster, R.G., 1992. Evolution of the H3 influenza virus hemagglutinin from human and nonhuman hosts. Journal of virology 66, 1129-1138. Bean, W.J., Threlkeld, S.C., Webster, R.G., 1989. Biologic potential of amantadine-resistant influenza A virus in an avian model. The Journal of infectious diseases 159, 1050-1056. Beard, C.W., 1970. Demonstration of type-specific influenza antibody in mammalian and avian sera by immunodiffusion. Bulletin of the World Health Organization 42, 779-785. Blaas, D., Patzelt, E., Kuechler, E., 1982. Identification of the cap binding protein of influenza virus. Nucleic acids research 10, 4803-4812. Boltz, D.A., Douangngeun, B., Phommachanh, P., Sinthasak, S., Mondry, R., Obert, C., Seiler, P., Keating, R., Suzuki, Y., Hiramatsu, H., Govorkova, E.A., Webster, R.G., 2010. Emergence of H5N1 avian influenza viruses with reduced sensitivity to neuraminidase inhibitors and novel reassortants in Lao People's Democratic Republic. The Journal of general virology 91, 949-959. Boltz, D.A., Douangngeun, B., Sinthasak, S., Phommachanh, P., Rolston, S., Chen, H., Guan, Y., Peiris, J.S., Smith, J.G., Webster, R.G., 2006. H5N1 influenza viruses in Lao People's Democratic Republic. Emerging infectious diseases 12, 1593-1595. Bottcher, E., Matrosovich, T., Beyerle, M., Klenk, H.D., Garten, W., Matrosovich, M., 2006. Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. Journal of virology 80, 9896-9898. Bui, M., Wills, E.G., Helenius, A., Whittaker, G.R., 2000. Role of the influenza virus M1 protein in nuclear export of viral ribonucleoproteins. Journal of virology 74, 1781-1786. Bullido, R., Gomez-Puertas, P., Albo, C., Portela, A., 2000. Several protein regions contribute to determine the nuclear and cytoplasmic localization of the influenza A virus nucleoprotein. The Journal of general virology 81, 135-142. Bush, R.M., Bender, C.A., Subbarao, K., Cox, N.J., Fitch, W.M., 1999a. Predicting the evolution of human influenza A. Science 286, 1921-1925. Bush, R.M., Fitch, W.M., Bender, C.A., Cox, N.J., 1999b. Positive selection on the H3 hemagglutinin gene of human influenza virus A. Molecular biology and evolution 16, 1457-1465. Butt, K.M., Smith, G.J., Chen, H., Zhang, L.J., Leung, Y.H., Xu, K.M., Lim, W., Webster, R.G., Yuen, K.Y., Peiris, J.S., Guan, Y., 2005. Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. Journal of clinical microbiology 43, 5760-5767. Cameron, K.R., Gregory, V., Banks, J., Brown, I.H., Alexander, D.J., Hay, A.J., Lin, Y.P., 2000. H9N2 subtype influenza A viruses in poultry in pakistan are closely related to the H9N2 viruses responsible for human infection in Hong Kong. Virology 278, 36-41. Campitelli, L., Donatelli, I., Foni, E., Castrucci, M.R., Fabiani, C., Kawaoka, Y., Krauss, S., Webster, R.G., 1997. Continued evolution of H1N1 and H3N2 influenza viruses in pigs in Italy. Virology 232, 310-318. Capua, I., Marangon, S., 2007. The use of vaccination to combat multiple introductions of Notifiable Avian Influenza viruses of the H5 and H7 subtypes between 2000 and 2006 in Italy. Vaccine 25, 4987-4995. Capua, I., Marangon, S., Cancellotti, F.M., 2003. The 1999-2000 avian influenza (H7N1) epidemic in Italy. Veterinary research communications 27 Suppl 1, 123-127. Capua, I., Marangon, S., Selli, L., Alexander, D., Swayne, D., Pozza, M.D., Parenti, E., Cancellotti, F.M., 1999. Outbreaks of highly pathogenic avian influenza (H5N2) in Italy during October 1997 to January 1998. Avian Pathol. 28, 6. Capua, I., Mutinelli, F., Pozza, M.D., Donatelli, I., Puzelli, S., Cancellotti, F.M., 2002. The 1999-2000 avian influenza (H7N1) epidemic in Italy: veterinary and human health implications. Acta tropica 83, 7-11. Castrucci, M.R., Donatelli, I., Sidoli, L., Barigazzi, G., Kawaoka, Y., Webster, R.G., 1993. Genetic reassortment between avian and human influenza A viruses in Italian pigs. Virology 193, 503-506. Castrucci, M.R., Kawaoka, Y., 1993. Biologic importance of neuraminidase stalk length in influenza A virus. Journal of virology 67, 759-764. Caton, A.J., Brownlee, G.G., Yewdell, J.W., Gerhard, W., 1982. The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell 31, 417-427. Centers for Disease, C., Prevention, 1997. Isolation of avian influenza A(H5N1) viruses from humans--Hong Kong, May-December 1997. MMWR. Morbidity and mortality weekly report 46, 1204-1207. Chambers, T.M., Yamnikova, S., Kawaoka, Y., Lvov, D.K., Webster, R.G., 1989. Antigenic and molecular characterization of subtype H13 hemagglutinin of influenza virus. Virology 172, 180-188. Chen, B.J., Leser, G.P., Jackson, D., Lamb, R.A., 2008. The influenza virus M2 protein cytoplasmic tail interacts with the M1 protein and influences virus assembly at the site of virus budding. Journal of virology 82, 10059-10070. Chen, H., Bu, Z., 2009. Development and application of avian influenza vaccines in China. Current topics in microbiology and immunology 333, 153-162. Chen, H., Smith, G.J., Zhang, S.Y., Qin, K., Wang, J., Li, K.S., Webster, R.G., Peiris, J.S., Guan, Y., 2005. Avian flu: H5N1 virus outbreak in migratory waterfowl. Nature 436, 191-192. Chen, R., Holmes, E.C., 2009. Frequent inter-species transmission and geographic subdivision in avian influenza viruses from wild birds. Virology 383, 156-161. Chen, W., Calvo, P.A., Malide, D., Gibbs, J., Schubert, U., Bacik, I., Basta, S., O'Neill, R., Schickli, J., Palese, P., Henklein, P., Bennink, J.R., Yewdell, J.W., 2001. A novel influenza A virus mitochondrial protein that induces cell death. Nature medicine 7, 1306-1312. Chen, Y., Zhang, J., Qiao, C., Yang, H., Zhang, Y., Xin, X., Chen, H., 2013. Co-circulation of pandemic 2009 H1N1, classical swine H1N1 and avian-like swine H1N1 influenza viruses in pigs in China. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases 13, 331-338. Cheng, M.C., Soda, K., Lee, M.S., Lee, S.H., Sakoda, Y., Kida, H., Wang, C.H., 2010. Isolation and characterization of potentially pathogenic H5N2 influenza virus from a chicken in Taiwan in 2008. Avian diseases 54, 885-893. Cheung, C.L., Vijaykrishna, D., Smith, G.J., Fan, X.H., Zhang, J.X., Bahl, J., Duan, L., Huang, K., Tai, H., Wang, J., Poon, L.L., Peiris, J.S., Chen, H., Guan, Y., 2007. Establishment of influenza A virus (H6N1) in minor poultry species in southern China. Journal of virology 81, 10402-10412. Chin, P.S., Hoffmann, E., Webby, R., Webster, R.G., Guan, Y., Peiris, M., Shortridge, K.F., 2002. Molecular evolution of H6 influenza viruses from poultry in Southeastern China: prevalence of H6N1 influenza viruses possessing seven A/Hong Kong/156/97 (H5N1)-like genes in poultry. Journal of virology 76, 507-516. Choi, Y.K., Goyal, S.M., Farnham, M.W., Joo, H.S., 2002. Phylogenetic analysis of H1N2 isolates of influenza A virus from pigs in the United States. Virus research 87, 173-179. Chu, C.M., Dawson, I.M., Elford, W.J., 1949. Filamentous forms associated with newly isolated influenza virus. Lancet 1, 602. Chutinimitkul, S., van Riel, D., Munster, V.J., van den Brand, J.M., Rimmelzwaan, G.F., Kuiken, T., Osterhaus, A.D., Fouchier, R.A., de Wit, E., 2010. In vitro assessment of attachment pattern and replication efficiency of H5N1 influenza A viruses with altered receptor specificity. Journal of virology 84, 6825-6833. Claas, E.C., de Jong, J.C., van Beek, R., Rimmelzwaan, G.F., Osterhaus, A.D., 1998a. Human influenza virus A/HongKong/156/97 (H5N1) infection. Vaccine 16, 977-978. Claas, E.C., Osterhaus, A.D., van Beek, R., De Jong, J.C., Rimmelzwaan, G.F., Senne, D.A., Krauss, S., Shortridge, K.F., Webster, R.G., 1998b. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351, 472-477. Couceiro, J.N., Paulson, J.C., Baum, L.G., 1993. Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. Virus research 29, 155-165. Cox, N.J., Subbarao, K., 2000. Global epidemiology of influenza: past and present. Annual review of medicine 51, 407-421. Cros, J.F., Garcia-Sastre, A., Palese, P., 2005. An unconventional NLS is critical for the nuclear import of the influenza A virus nucleoprotein and ribonucleoprotein. Traffic 6, 205-213. Darriba, D., Taboada, G.L., Doallo, R., Posada, D., 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature methods 9, 772. Deshpande, K.L., Fried, V.A., Ando, M., Webster, R.G., 1987. Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence. Proceedings of the National Academy of Sciences of the United States of America 84, 36-40. Dias, A., Bouvier, D., Crepin, T., McCarthy, A.A., Hart, D.J., Baudin, F., Cusack, S., Ruigrok, R.W., 2009. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 458, 914-918. Donatelli, I., Campitelli, L., Di Trani, L., Puzelli, S., Selli, L., Fioretti, A., Alexander, D.J., Tollis, M., Krauss, S., Webster, R.G., 2001. Characterization of H5N2 influenza viruses from Italian poultry. The Journal of general virology 82, 623-630. Drummond, A., Ho, S., Rawlence, N., Rambaut, A., 2007. A rough guide to BEAST 1.4 - beast-mcmc. Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular biology and evolution 29, 1969-1973. Ducatez, M.F., Olinger, C.M., Owoade, A.A., De Landtsheer, S., Ammerlaan, W., Niesters, H.G., Osterhaus, A.D., Fouchier, R.A., Muller, C.P., 2006. Avian flu: multiple introductions of H5N1 in Nigeria. Nature 442, 37. Easterday, B.C., 1969. Discussion on antigenic relationships of animal and human influenza viruses. Bulletin of the World Health Organization 41, 486-487. Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research 32, 1792-1797. Ekiert, D.C., Friesen, R.H., Bhabha, G., Kwaks, T., Jongeneelen, M., Yu, W., Ophorst, C., Cox, F., Korse, H.J., Brandenburg, B., Vogels, R., Brakenhoff, J.P., Kompier, R., Koldijk, M.H., Cornelissen, L.A., Poon, L.L., Peiris, M., Koudstaal, W., Wilson, I.A., Goudsmit, J., 2011. A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 333, 843-850. Elton, D., Medcalf, L., Bishop, K., Harrison, D., Digard, P., 1999. Identification of amino acid residues of influenza virus nucleoprotein essential for RNA binding. Journal of virology 73, 7357-7367. Fang, R., Min Jou, W., Huylebroeck, D., Devos, R., Fiers, W., 1981. Complete structure of A/duck/Ukraine/63 influenza hemagglutinin gene: animal virus as progenitor of human H3 Hong Kong 1968 influenza hemagglutinin. Cell 25, 315-323. Fouchier, R.A., Munster, V., Wallensten, A., Bestebroer, T.M., Herfst, S., Smith, D., Rimmelzwaan, G.F., Olsen, B., Osterhaus, A.D., 2005. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. Journal of virology 79, 2814-2822. Fouchier, R.A., Schneeberger, P.M., Rozendaal, F.W., Broekman, J.M., Kemink, S.A., Munster, V., Kuiken, T., Rimmelzwaan, G.F., Schutten, M., Van Doornum, G.J., Koch, G., Bosman, A., Koopmans, M., Osterhaus, A.D., 2004. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proceedings of the National Academy of Sciences of the United States of America 101, 1356-1361. Gambaryan, A., Tuzikov, A., Pazynina, G., Bovin, N., Balish, A., Klimov, A., 2006. Evolution of the receptor binding phenotype of influenza A (H5) viruses. Virology 344, 432-438. Gamblin, S.J., Skehel, J.J., 2010. Influenza hemagglutinin and neuraminidase membrane glycoproteins. The Journal of biological chemistry 285, 28403-28409. Gao, R., Cao, B., Hu, Y., Feng, Z., Wang, D., Hu, W., Chen, J., Jie, Z., Qiu, H., Xu, K., Xu, X., Lu, H., Zhu, W., Gao, Z., Xiang, N., Shen, Y., He, Z., Gu, Y., Zhang, Z., Yang, Y., Zhao, X., Zhou, L., Li, X., Zou, S., Zhang, Y., Li, X., Yang, L., Guo, J., Dong, J., Li, Q., Dong, L., Zhu, Y., Bai, T., Wang, S., Hao, P., Yang, W., Zhang, Y., Han, J., Yu, H., Li, D., Gao, G.F., Wu, G., Wang, Y., Yuan, Z., Shu, Y., 2013. Human Infection with a Novel Avian-Origin Influenza A (H7N9) Virus. The New England journal of medicine. Garcia, M., Crawford, J.M., Latimer, J.W., Rivera-Cruz, E., Perdue, M.L., 1996. Heterogeneity in the haemagglutinin gene and emergence of the highly pathogenic phenotype among recent H5N2 avian influenza viruses from Mexico. The Journal of general virology 77 ( Pt 7), 1493-1504. Geiss, G.K., Salvatore, M., Tumpey, T.M., Carter, V.S., Wang, X., Basler, C.F., Taubenberger, J.K., Bumgarner, R.E., Palese, P., Katze, M.G., Garcia-Sastre, A., 2002. Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proceedings of the National Academy of Sciences of the United States of America 99, 10736-10741. Geraci, J.R., St Aubin, D.J., Barker, I.K., Webster, R.G., Hinshaw, V.S., Bean, W.J., Ruhnke, H.L., Prescott, J.H., Early, G., Baker, A.S., Madoff, S., Schooley, R.T., 1982. Mass mortality of harbor seals: pneumonia associated with influenza A virus. Science 215, 1129-1131. GISAID, 2008. The Global Initiative on Sharing All Influenza Data (GISAID). GISRS, 2013. Influenza laboratory surveillance information. Gonzalez, S., Ortin, J., 1999a. Characterization of influenza virus PB1 protein binding to viral RNA: two separate regions of the protein contribute to the interaction domain. Journal of virology 73, 631-637. Gonzalez, S., Ortin, J., 1999b. Distinct regions of influenza virus PB1 polymerase subunit recognize vRNA and cRNA templates. The EMBO journal 18, 3767-3775. Gorman, O.T., Bean, W.J., Kawaoka, Y., Donatelli, I., Guo, Y.J., Webster, R.G., 1991. Evolution of influenza A virus nucleoprotein genes: implications for the origins of H1N1 human and classical swine viruses. Journal of virology 65, 3704-3714. Gorman, O.T., Bean, W.J., Kawaoka, Y., Webster, R.G., 1990a. Evolution of the nucleoprotein gene of influenza A virus. Journal of virology 64, 1487-1497. Gorman, O.T., Donis, R.O., Kawaoka, Y., Webster, R.G., 1990b. Evolution of influenza A virus PB2 genes: implications for evolution of the ribonucleoprotein complex and origin of human influenza A virus. Journal of virology 64, 4893-4902. Gotoh, B., Ogasawara, T., Toyoda, T., Inocencio, N.M., Hamaguchi, M., Nagai, Y., 1990. An endoprotease homologous to the blood clotting factor X as a determinant of viral tropism in chick embryo. The EMBO journal 9, 4189-4195. Gottschalk, A., 1958. The influenza virus neuraminidase. Nature 181, 377-378. Gregory, V., Lim, W., Cameron, K., Bennett, M., Marozin, S., Klimov, A., Hall, H., Cox, N., Hay, A., Lin, Y.P., 2001. Infection of a child in Hong Kong by an influenza A H3N2 virus closely related to viruses circulating in European pigs. The Journal of general virology 82, 1397-1406. Guan, Y., Shortridge, K.F., Krauss, S., Chin, P.S., Dyrting, K.C., Ellis, T.M., Webster, R.G., Peiris, M., 2000. H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southeastern China. Journal of virology 74, 9372-9380. Guan, Y., Shortridge, K.F., Krauss, S., Li, P.H., Kawaoka, Y., Webster, R.G., 1996. Emergence of avian H1N1 influenza viruses in pigs in China. Journal of virology 70, 8041-8046. Guan, Y., Shortridge, K.F., Krauss, S., Webster, R.G., 1999. Molecular characterization of H9N2 influenza viruses: were they the donors of the 'internal' genes of H5N1 viruses in Hong Kong? Proceedings of the National Academy of Sciences of the United States of America 96, 9363-9367. Gubareva, L.V., Kaiser, L., Matrosovich, M.N., Soo-Hoo, Y., Hayden, F.G., 2001. Selection of influenza virus mutants in experimentally infected volunteers treated with oseltamivir. The Journal of infectious diseases 183, 523-531. Guindon, S., Gascuel, O., 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic biology 52, 696-704. Guo, Y.J., Krauss, S., Senne, D.A., Mo, I.P., Lo, K.S., Xiong, X.P., Norwood, M., Shortridge, K.F., Webster, R.G., Guan, Y., 2000. Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia. Virology 267, 279-288. Hafez, M.H., Arafa, A., Abdelwhab, E.M., Selim, A., Khoulosy, S.G., Hassan, M.K., Aly, M.M., 2010. Avian influenza H5N1 virus infections in vaccinated commercial and backyard poultry in Egypt. Poultry science 89, 1609-1613. Hall, T., 2013. BioEdit. Hanson, B.A., Stallknecht, D.E., Swayne, D.E., Lewis, L.A., Senne, D.A., 2003. Avian influenza viruses in Minnesota ducks during 1998-2000. Avian diseases 47, 867-871. Harkness, W., Schild, G.C., Lamont, P.H., Brand, C.M., 1972. Studies on relationships between human and porcine influenza. 1. Serological evidence of infection in swine in Great Britain with an influenza A virus antigenically like human Hong Kong-68 virus. Bulletin of the World Health Organization 46, 709-719. Harnach, R., Hubik, R., Chivatal, O., 1950. [Isolation of influenza virus in Czechoslovakia]. Casopis ceskoslovenskych veterinaru 5, 289. Harrison, S.C., 2008. Viral membrane fusion. Nature structural & molecular biology 15, 690-698. Health Protection, A., Health Protection, S., National Public Health Service for, W., teams, H.P.A.N.I.S.i.i., 2009. Epidemiology of new influenza A (H1N1) virus infection, United Kingdom, April-June 2009. Euro surveillance : bulletin europeen sur les maladies transmissibles = European communicable disease bulletin 14. Hinshaw, V.S., Bean, W.J., Geraci, J., Fiorelli, P., Early, G., Webster, R.G., 1986. Characterization of two influenza A viruses from a pilot whale. Journal of virology 58, 655-656. Hinshaw, V.S., Bean, W.J., Jr., Webster, R.G., Easterday, B.C., 1978. The prevalence of influenza viruses in swine and the antigenic and genetic relatedness of influenza viruses from man and swine. Virology 84, 51-62. Hinshaw, V.S., Webster, R.G., 1982. The natural history of influenza A viruses, in: Beare, A.S. (Ed.), Basic and Applied Influenza Research. CRC Press, pp. 79-104. Hinshaw, V.S., Webster, R.G., Turner, B., 1980. The perpetuation of orthomyxoviruses and paramyxoviruses in Canadian waterfowl. Canadian journal of microbiology 26, 622-629. Hinshaw, V.S., Wood, J.M., Webster, R.G., Deibel, R., Turner, B., 1985. Circulation of influenza viruses and paramyxoviruses in waterfowl originating from two different areas of North America. Bulletin of the World Health Organization 63, 711-719. Hirst, G.K., 1942. Adsorption of Influenza Hemagglutinins and Virus by Red Blood Cells. The Journal of experimental medicine 76, 195-209. Hirst, M., Astell, C.R., Griffith, M., Coughlin, S.M., Moksa, M., Zeng, T., Smailus, D.E., Holt, R.A., Jones, S., Marra, M.A., Petric, M., Krajden, M., Lawrence, D., Mak, A., Chow, R., Skowronski, D.M., Tweed, S.A., Goh, S., Brunham, R.C., Robinson, J., Bowes, V., Sojonky, K., Byrne, S.K., Li, Y., Kobasa, D., Booth, T., Paetzel, M., 2004. Novel avian influenza H7N3 strain outbreak, British Columbia. Emerging infectious diseases 10, 2192-2195. Hoffmann, E., Stech, J., Guan, Y., Webster, R.G., Perez, D.R., 2001. Universal primer set for the full-length amplification of all influenza A viruses. Archives of virology 146, 2275-2289. Hoffmann, E., Stech, J., Leneva, I., Krauss, S., Scholtissek, C., Chin, P.S., Peiris, M., Shortridge, K.F., Webster, R.G., 2000. Characterization of the influenza A virus gene pool in avian species in southern China: was H6N1 a derivative or a precursor of H5N1? Journal of virology 74, 6309-6315. Homme, P.J., Easterday, B.C., 1970a. Avian influenza virus infections. I. Characteristics of influenza A-turkey-Wisconsin-1966 virus. Avian diseases 14, 66-74. Homme, P.J., Easterday, B.C., 1970b. Avian influenza virus infections. IV. Response of pheasants, ducks, and geese to influenza A-turkey-Wisconsin-1966 virus. Avian diseases 14, 285-290. Hoper, D., Hoffmann, B., Beer, M., 2011. A comprehensive deep sequencing strategy for full-length genomes of influenza A. PloS one 6, e19075. Horimoto, T., Kawaoka, Y., 1994. Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. Journal of virology 68, 3120-3128. Horimoto, T., Kawaoka, Y., 1997. Biologic effects of introducing additional basic amino acid residues into the hemagglutinin cleavage site of a virulent avian influenza virus. Virus research 50, 35-40. Horimoto, T., Rivera, E., Pearson, J., Senne, D., Krauss, S., Kawaoka, Y., Webster, R.G., 1995. Origin and molecular changes associated with emergence of a highly pathogenic H5N2 influenza virus in Mexico. Virology 213, 223-230. Hsu, M.T., Parvin, J.D., Gupta, S., Krystal, M., Palese, P., 1987. Genomic RNAs of influenza viruses are held in a circular conformation in virions and in infected cells by a terminal panhandle. Proceedings of the National Academy of Sciences of the United States of America 84, 8140-8144. Iqbal, M., Yaqub, T., Reddy, K., McCauley, J.W., 2009. Novel genotypes of H9N2 influenza A viruses isolated from poultry in Pakistan containing NS genes similar to highly pathogenic H7N3 and H5N1 viruses. PloS one 4, e5788. Iwatsuki-Horimoto, K., Horimoto, T., Noda, T., Kiso, M., Maeda, J., Watanabe, S., Muramoto, Y., Fujii, K., Kawaoka, Y., 2006. The cytoplasmic tail of the influenza A virus M2 protein plays a role in viral assembly. Journal of virology 80, 5233-5240. Jagger, B.W., Wise, H.M., Kash, J.C., Walters, K.A., Wills, N.M., Xiao, Y.L., Dunfee, R.L., Schwartzman, L.M., Ozinsky, A., Bell, G.L., Dalton, R.M., Lo, A., Efstathiou, S., Atkins, J.F., Firth, A.E., Taubenberger, J.K., Digard, P., 2012. An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science 337, 199-204. Kageyama, T., Fujisaki, S., Takashita, E., Xu, H., Yamada, S., Uchida, Y., Neumann, G., Saito, T., Kawaoka, Y., Tashiro, M., 2013. Genetic analysis of novel avian A(H7N9) influenza viruses isolated from patients in China, February to April 2013. Euro surveillance : bulletin europeen sur les maladies transmissibles = European communicable disease bulletin 18. Kapczynski, D.R., Pantin-Jackwood, M., Guzman, S.G., Ricardez, Y., Spackman, E., Bertran, K., Suarez, D.L., Swayne, D.E., 2013. Characterization of the 2012 highly pathogenic avian influenza H7N3 virus isolated from poultry in an outbreak in Mexico: pathobiology and vaccine protection. Journal of virology 87, 9086-9096. Kaplan, M.M., Payne, A.M., 1959. Serological survey in animals for type A influenza in relation to the 1957 pandemic. Bulletin of the World Health Organization 20, 465-488. Karasin, A.I., Brown, I.H., Carman, S., Olsen, C.W., 2000a. Isolation and characterization of H4N6 avian influenza viruses from pigs with pneumonia in Canada. Journal of virology 74, 9322-9327. Karasin, A.I., Landgraf, J., Swenson, S., Erickson, G., Goyal, S., Woodruff, M., Scherba, G., Anderson, G., Olsen, C.W., 2002. Genetic characterization of H1N2 influenza A viruses isolated from pigs throughout the United States. Journal of clinical microbiology 40, 1073-1079. Karasin, A.I., Olsen, C.W., Anderson, G.A., 2000b. Genetic characterization of an H1N2 influenza virus isolated from a pig in Indiana. Journal of clinical microbiology 38, 2453-2456. Karasin, A.I., Olsen, C.W., Brown, I.H., Carman, S., Stalker, M., Josephson, G., 2000c. H4N6 influenza virus isolated from pigs in Ontario. The Canadian veterinary journal. La revue veterinaire canadienne 41, 938-939. Kaverin, N.V., Gambaryan, A.S., Bovin, N.V., Rudneva, I.A., Shilov, A.A., Khodova, O.M., Varich, N.L., Sinitsin, B.V., Makarova, N.V., Kropotkina, E.A., 1998. Postreassortment changes in influenza A virus hemagglutinin restoring HA-NA functional match. Virology 244, 315-321. Kawaoka, Y., 1991. Structural features influencing hemagglutinin cleavability in a human influenza A virus. Journal of virology 65, 1195-1201. Kawaoka, Y., Chambers, T.M., Sladen, W.L., Webster, R.G., 1988. Is the gene pool of influenza viruses in shorebirds and gulls different from that in wild ducks? Virology 163, 247-250. Kawaoka, Y., Krauss, S., Webster, R.G., 1989. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. Journal of virology 63, 4603-4608. Kawaoka, Y., Naeve, C.W., Webster, R.G., 1984. Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin? Virology 139, 303-316. Kawaoka, Y., Webster, R.G., 1989. Interplay between carbohydrate in the stalk and the length of the connecting peptide determines the cleavability of influenza virus hemagglutinin. Journal of virology 63, 3296-3300. Kawaoka, Y., Yamnikova, S., Chambers, T.M., Lvov, D.K., Webster, R.G., 1990. Molecular characterization of a new hemagglutinin, subtype H14, of influenza A virus. Virology 179, 759-767. Klenk, H.D., Garten, W., 1994. Host cell proteases controlling virus pathogenicity. Trends in microbiology 2, 39-43. Klenk, H.D., Rott, R., 1973. Formation of influenza virus proteins. Journal of virology 11, 823-831. Klenk, H.D., Rott, R., 1988. The molecular biology of influenza virus pathogenicity. Advances in virus research 34, 247-281. Klimov, A.I., Rocha, E., Hayden, F.G., Shult, P.A., Roumillat, L.F., Cox, N.J., 1995. Prolonged shedding of amantadine-resistant influenzae A viruses by immunodeficient patients: detection by polymerase chain reaction-restriction analysis. The Journal of infectious diseases 172, 1352-1355. Klumpp, K., Ruigrok, R.W., Baudin, F., 1997. Roles of the influenza virus polymerase and nucleoprotein in forming a functional RNP structure. The EMBO journal 16, 1248-1257. Koel, B.F., Burke, D.F., Bestebroer, T.M., van der Vliet, S., Zondag, G.C., Vervaet, G., Skepner, E., Lewis, N.S., Spronken, M.I., Russell, C.A., Eropkin, M.Y., Hurt, A.C., Barr, I.G., de Jong, J.C., Rimmelzwaan, G.F., Osterhaus, A.D., Fouchier, R.A., Smith, D.J., 2013. Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. Science 342, 976-979. Koen, J., 1919. A practical method for field diagnosis of swine diseases. American Journal of Veterinary Medicine 14, 468-470. Krammer, F., Palese, P., 2013. Influenza virus hemagglutinin stalk-based antibodies and vaccines. Current opinion in virology 3, 521-530. Krammer, F., Pica, N., Hai, R., Margine, I., Palese, P., 2013. Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. Journal of virology 87, 6542-6550. Krauss, S., Walker, D., Pryor, S.P., Niles, L., Chenghong, L., Hinshaw, V.S., Webster, R.G., 2004. Influenza A viruses of migrating wild aquatic birds in North America. Vector borne and zoonotic diseases 4, 177-189. Krug, R.M., Yuan, W., Noah, D.L., Latham, A.G., 2003. Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 pr | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16861 | - |
| dc.description.abstract | 2003年底台灣養雞場爆發「低」致病性禽流感H5N2疫情,全島撲殺超過30萬隻雞。然2008年再度爆發雞的禽流感H5N2疫情。研究顯示此波病毒已演化成「高」致病性之潛能;但此病毒來源、流行幅度仍未知。不幸在2012年爆發一連串雞的禽流感疫情,政府首度對外宣布其致病原已演變為「高」致病性禽流感H5N2病毒。因此,科學上極關注的課題是:不同年代的台灣雞H5N2病毒之間的關係為何?是否來自台灣的鴨H5N2病毒?又其與鄰國及美洲的H5N2病毒之關係為何?更重要的是台灣長年流行的雞H6N1病毒在台灣雞H5N2病毒扮演何種角色?有鑒於此,本研究目的有四:(一)探討台灣雞流感H5N2病毒之源起、引入、演化及生態衝擊;(二)台灣雞與鴨H5N2病毒的流行病學特徵及其與1994年墨西哥H5N2病毒之演化關係;(三)檢視台灣雞和鴨的流感H5N2病毒之分子標記,評估其公共衛生的潛在風險;及(四)基於上述研究成果,提供防治建議。
研究設計上,禽流感偵測分兩階段,第一階段在2012年12月之前(2005年10月至2006年10月及2008年8月至2012年11月);第二階段自2012年12月(官方宣布「高」致病性禽流感後的當年冬季)至2013年7月進行強化偵測。研究地主擇選北部一大活禽市場,每月取雞、鴨糞便及雞血,分別進行病毒與血清偵測。實驗上,糞便檢體以特殊無菌雞胚蛋培養病毒後,萃取核酸,進行分子檢測(reverse transcriptase-polymerase chain reaction, RT-PCR)、八段基因定序及使用最大似然法(Maximum-likelihood method, ML)與貝式統計馬可夫鏈-蒙特卡羅法[Bayesian Markov Chain Monte Carlo (BMCMC)]分別分析病毒親緣關係及病毒核酸演化速率。血清偵測第一階段是用禽流感病毒之酵素連結免疫吸附法(enzyme-linked immunosorbent assay, ELISA),檢測雞血清中是否有抗流感病毒NP蛋白的抗體。第二階段以血球凝集抑制試驗[hemagglutination inhibition (HI) test]檢測雞血清抗流感病毒NP蛋白(+)的抗體對五禽流感病毒[TW853/12 (H3N8)、TW1030/12 (H6N8)、TW2267/12 (H6N1)、TW2593/12 (H5N2)、HK-NT155/08 (H9N2)]的抗體力價。 偵測結果,第一階段鴨與雞糞的禽流感病毒總分離率各為2.6%(124/4,798)與0.3%(9/3,363);且各有五亞型(H1、H3、H4、H5、H12)與一亞型(H6)。而第二階段強化偵測結果中,鴨與雞糞的禽流感病毒總分離率已提高而各為5.1%(132/2,58)與0.8%(67/8,659);另各有五亞型(H3、H4、H5、H6及H7)與三亞型(H3、H5及H6)。但此兩階段均未分離得H9N2病毒。 禽流感病毒八段基因的核酸親源樹分析結果,發現所有16株雞的H5N2病毒有兩來源:(1)表面基因:兩群均源於2003年流行於台灣雞的低致病性禽流感H5N2病毒株,而非來自台灣家鴨的禽流感H5病毒,且可溯源自製備1994年墨西哥禽流感H5N2之疫苗株;此兩表面基因的演化速率相當低,甚發現2003年台灣雞H5N2病毒株和1994-96年墨西哥H5N2病毒株兩者的表面基因之核酸總累積變異度相對於共同始祖是等同;(2)六段內部基因:全來自台灣禽流感H6N1病毒而呈基因重組現象;且除PB1之外的五段基因也和表面基因有兩群,即來自2012及2013年B群的雞H5N2病毒之內部基因和台灣2004-05年的H6N1病毒親緣相近,而2012-13年A群的雞H5N2病毒卻和台灣2012-13年的H6N1病毒親緣相近;再檢視其HA蛋白的切割位,發現鹼性胺基酸數從3演變成4個,又從4演變成3個的反覆逆轉現象,且近年台灣H5N2病毒株HA蛋白切割位的鹼性胺基酸有三類型(REKR, RKKR, RRKR),甚而同次流行中出現多元化。種種跡象顯示此雞H5N2病毒至少兩次引入而分別在養雞場出現重組,有違病毒學及自然演化的常理。 血清偵測發現活禽市場雞對2003年H5N2禽流感病毒有中至低度的HI抗體 血清盛行率。有趣的是台灣過去從未偵測到禽流感H9N2病毒,卻在雞血有8成以上的抗體陽性率,有些甚達高力價(1280)。綜言之,台灣雞可能有用禽流感疫苗。 檢視雞H5N2及鴨H5病毒對人的風險[病毒致病能力、病毒傳播及辨認哺乳類受體(α2,6 鍵結之醣類)的病毒接合位(receptor binding site)及抗病毒藥神經胺酸酶抑制劑(neuraminidase inhibitor, NAI)的相關胺基酸],發現這些病毒對NAI均有感受性;且幾乎全保有源自禽的分子標記,但出現一些特殊位點的胺基酸可能對鼠有致病力,如在雞H5N2病毒有八位點變異,各為PB2-L89V、PB2-G309D、PB2-T339K、PB2-R477G、PB2-I495V、M1-N30D、M1-T215A及NS1-I106M;在鴨H5病毒除此八位點變異之外,另有三位點變異(PB2-A676T、NS1-P42S及NS1-L103F)與NS1蛋白C端出現ESEV。 台灣政府雖嚴禁禽類施打禽流感疫苗,但本研究發現台灣雞打禽流感疫苗已為不爭的事實。在去年五月出現H6N1禽流感病毒感染人肺炎病例之際,發現此病毒與2013年2月台灣雞H6N1病毒8段基因中已有4段基因(NS1, NP, PB1, HA)的核酸序列相同度達97.6- 99.5%。因此本研究建議:(1)嚴格依法取締動物用禽流感疫苗;(2)必須在高風險區強化禽流感病毒偵測,並探索禽流感H9N2病毒是否已大量進入台灣禽場;(3)禽畜產業相關人員及家庭成員應參與年度禽流感血清學調查;(4)家禽載具宜徹底消毒與路線管理,防禽流感H5N2病毒擴散至其他縣市。在未來研究方面:(1)須持續監測禽流感H6N1及H5N2病毒,尤其是目前H6N1病毒感染人的相關機制還未明朗前,更需注意H6N1病毒或H5N2從H6N1病毒得感染人相關的決定因子;(2)研發醣晶片,以快速大規模篩選出具接合哺乳類受器能力的禽流感病毒,期達及早預警疫情之效;(3)探查台灣雞流感H5N2-Ck/TW1680/13病毒株為何能在降低病毒毒力的醣化作用位出現下卻仍可造成高致病性的分子機轉。最重要的是推動整合禽流感病毒跨領域研究,以科學探究積極面對禽流感病毒對公共衛生的挑戰。 | zh_TW |
| dc.description.abstract | English Abstract
The outbreaks of avian influenza (AI) caused by low pathogenic AI (LPAI) H5N2 in chickens occurred island-wide in Taiwan in 2003 and reoccurred in 2008 attributed to the H5N2 virus with elevated potential of high pathogenicity (HP). However, the origin, prevalence and distribution of these H5N2 viruses were unclear. In 2012, government firstly announced that HPAI H5N2 viruses resulted in several severe AI outbreaks. Therefore, the scientific issues were: What were the relationships among the H5N2 viruses emerged from different years? Were they derived from Taiwan duck H5N2 viruses? What were their relationships with the H5N2 viruses from the neighboring countries and North America? Most importantly, what were the roles of Taiwan enzootic chicken H6N1 viruses playing in the genesis and evolution of Taiwan chicken H5N2 viruses? Therefore, this study involved the four specific aims: (1) to investigate the genesis, introduction, evolution, and impacts of Taiwan chicken H5N2 viruses; (2) to elucidate the epidemiological characteristics of Taiwan chicken/duck H5N2 viruses and their evolutionary relationships with the 1994 Mexican-like H5N2 viruses; (3) to evaluate the molecular markers of Taiwan chicken and duck H5N2 viruses with clinical and public health importance; and (4) to address recommendations for future prevention/control. AI surveillance involved two stages (I and II) was conducted mainly at a large-scale live-bird market (LBM) in northern Taiwan. The stage I was before Dec. 2012 (Oct. 2005 to Oct. 2006, and Aug. 2008 to Nov. 2012). An enhanced surveillance was implemented in stage II from Dec. 2012 (the first winter after Government officially announced the HPAI H5N2 outbreaks) to Jul. 2013. Monthly chickens’/ducks’ fecal samples and chickens’ bloods were collected for virological and serological surveillance, respectively. AI viruses (AIVs) were isolated from chicken embryonated eggs, and then identified for their subtypes after RNA extraction, reverse transcriptase-polymerase chain reaction (RT-PCR). After alignment of full-length viral sequencing, phylogenetic analyses and evolutionary rates of each virus gene segment were conducted using Maximum-likelihood phylogenies and Bayesian Markov Chain Monte Carlo (MCMC), respectively. For serological surveillance, anti-influenza-NP antibody was firstly screened in chickens’ blood specimens by enzyme-linked immunosorbent assay (ELISA). During the stage II, the seropositive ones were then tested their serotiters for 5 AIVs [TW/12 H3N8, TW/12 H6N8, TW/12 H6N1, TW/12 H5N2, and also HK/08 (H9N2)]. Results of virological surveillance revealed that the isolation rates of AIVs were higher in ducks than those in chickens in both stages [stage I: 2.6% (124/4,798) vs. 0.3% (9/3,363) p < 0.001; stage II: 5.1% (132/2,580) vs. 0.8% (67/8,659), p < 0.001]. Furthermore, subtypes of AIVs isolated from ducks (stage I: H1, H3, H4, H5, H12), stage II: H3, H4, H5, H6, H7) were more diversified than those from chickens (stage I: H6 only, stage II: H3, H5, H6). However, no H9N2 viruses were isolated. The phylogenetic analyses of the 8 viral gene segments of all the isolated 16 chicken H5N2 viruses showed two sources. (1) Surface Genes: Both of the two groups of HA/NA were all closely related with the 2003 LPAI chicken H5N2 viruses that can be traced back to the 1994-Mexican H5N2-like vaccine strain, but away from the domestic duck H5N2 viruses. The evolutionary rates of HA/NA were extremely low, and the accumulated genetic substitutions of the 2003 Taiwan H5N2-like viruses and those of the 1994-96 Mexican-like H5N2 strains to their the most recent common ancestor (MRCA) were almost equal. (b) Internal Genes: All the internal genes of Taiwan chicken H5N2 viruses were derived from Taiwan enzootic chicken H6N1 viruses, different from the sources of their HA/NA, resulted in novel reassortants, unlike the six internal genes of the 1994-Mexican- like H5N2 viruses. Similarly, the five internal (except PB1) genes of the Taiwan chicken H5N2 viruses involved two groups. Group A viruses were clustered with the 2012-13 Taiwan H6N1 viruses whereas group B viruses were clustered with the 2004-05 Taiwan H6N1 viruses. Moreover, the increasing number of the basic amino acids at the connecting peptide of HA from 3 to 4 and repeatedly back to 3 plus the three patterns (REKR, RKKR, RRKR) identified from the recent chicken H5N2 viruses, even two patterns detected in the same sampling, support the unusual diversity of these chicken H5N2 viruses. All together reveal that Taiwan chicken H5N2 viruses had multiple introductions, at least twice in the field, violated against virological and evolutionary behaviors. Serological surveillance verified the presence of low to middle level of anti-Ck/TW2593/12(H5N2) antibody in chickens. Unexpectedly, more than 80% sero-positive rate of H9N2 was detected for the first time and occasionally with very high HI serotiter (1280), although no H9N2 virus has been isolated in Taiwan. It is very likely vaccination was implemented in chickens in Taiwan. To evaluate possible risk of the Taiwan chicken H5N2 and duck H5 viruses to human, viral amino acid (a.a.) associated with pathogenicity, aerosol transmissibility, receptor binding site recognizing mammalian receptors (α2,6 linkage sialosides), and resistance to anti-viral drug [neuraminidase inhibitor (NAI)] were examined. The results revealed that all these AIVs almost were susceptible to NAI and kept the molecular markers belonged to avian type viruses. However, several molecular markers might be related to increasing pathogenicity in mice (chicken H5N2 viruses had 8 substitutions: PB2-L89V, PB2-G309D, PB2-T339K, PB2-R477G, PB2-I495V, M1-N30D, M1-T215A and NS1-I106M; duck H5 viruses had the same 8 substitutions plus additional PB2-A676T, NS1-P42S, NS1-L103F substitutions and ESEV pattern in NS1 C-terminus). This study provides evidence supporting the vaccination of AIV in chickens in Taiwan, even though it is legally prohibited. As increasing AI subtypes infecting humans are identified recently, particularly the world’s human H6N1 pneumonia case in May of 2013 in Taiwan (with nucleotide sequence identities of NS1, NP, PB1, HA to the 2013 Taiwan chicken H6N1 viruses isolated in February from this study ranging 97.6-99.5%), this study recommends three prevention measures: (1) strictly taking legal action on illegal usage of AI vaccine in poultry, (2) enhancing surveillance of AIVs in high risk areas, and investigating whether H9N2 viruses entering Taiwan poultry in a large-scale, (3) comprehensively disinfecting vehicles/cages, evaluation, and traffic route control can prevent further spreading. In future research directions, it is necessary to implement continuous surveillance of AIVs and monitor changes in molecular markers of H5N2 and H6N1 viruses and their other determinants to infect humans. Furthermore, developing a glycan-array applicable to rapidly large-scale screening the AIVs recognizing mammalian receptor can provide early warming and prevent possibly inter-species transmission as well. The mechanism involved in the elevating pathogenicity of A/Ck/TW1680/13(H5N2) strain even under the presence of the potential glycosylation site is worthwhile investigating. Most importantly, integrating inter-disciplinary research on AIVs will better equip us to face future public health challenges. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:48:11Z (GMT). No. of bitstreams: 1 ntu-103-D99849007-1.pdf: 3234301 bytes, checksum: f8b7e021b305870d9b2cf001de0746a8 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝 (Acknowledgement) iii
中文摘要 iv English Abstract vii Contents xi List of figures xiv List of tables xv Chapter 1 Introduction 1 Chapter 2 Literature Review on the Genesis, Evolution, and Pathogenesis of Avian H5N2 Influenza viruses 3 2.1. Influenza A Viruses in General 3 2.1.1 Genome and proteins of influenza A virus 4 2.1.2 Surface proteins: HA, NA and M2 4 2.1.3 Ribonucleoprotein (RNP) complex (3P and NP) 8 2.1.4 M1 protein 9 2.1.5 NS1 and NS2 (NEP) protein 9 2.1.6 Other proteins: PB1-F2, PB1-N40, and PA-X 10 2.2 Ecology of influenza viruses 12 2.2.1 Primary Hosts (Natural reservoirs) 13 2.2.2 Aberrant Hosts 18 2.3 Human Influenza 29 2.3.1 Evolution of Human Seasonal Influenza Viruses 29 2.3.2 Pandemic Influenza and Seasonal Influenza 30 2.3.3 2009 Pandemic Influenza H1N1 30 2.3.4 Mechanisms of Subtype Replacement in Human Influenza Viruses 31 2.3.5 Sporadic Human Infections with Avian Influenza Viruses 33 2.4 Pathogenicity associated determinants of influenza A viruses 35 2.5 Historically Major emerging HPAI outbreaks 37 2.5.1 Enzootic Asian HPAI H5N1 outbreaks 38 2.5.2 Pakistan HPAI H7N3 outbreaks 38 2.5.3 Italian HPAI H5N2 and H7N1 outbreaks 39 2.5.4 Mexican HPAI H5N2 outbreaks 40 Chapter 3 Objectives, Specific Aims, and Hypotheses 42 3.1 Objectives 42 3.2 Specific Aims 42 3.3 Proposed Hypotheses 43 Chapter 4 Materials and Methods 45 4.1 Study Design 45 4.2 Surveillance and Field Specimen Collections 45 4.2.1 Field Specimen Collections 45 4.2.2 Sample Transportation and Processing 48 4.3 Laboratory Examinations 48 4.3.1 Isolation and Subtyping of Avian Influenza Viruses (AIVs) 48 4.3.2 RNA extraction, RT-PCR, cDNA purification, and sequencing representative viruses 49 4.3.3 Sequence Comparisons 51 4.4 Epidemiological Data Analyses 52 4.4.1 Temporal and Spatial Analyses 52 4.5 Molecular Epidemiological Data Analyses 52 4.5.1 Phylogenetic analyses 52 4.5.2 Evolutionary Rate Analyses. 53 4.6 Serological Data Analyses 54 Chapter 5 Results 57 5.1 Prevalence and geographical distribution of H5 and H6 avian influenza viruses in Taiwan 57 5.1.1 The Surveillance Stage I before the winter season of 2011-2012 57 5.1.2 The Surveillance Stage II after the winter season of 2011-2012 58 5.2 Temporal and spatial distributions of avian H5 and H6 influenza viruses 59 5.3 Molecular characterization of connecting peptide of duck and chicken H5 viruses 63 5.4 Phylogenetic analyses 66 5.4.1 Surface genes (HA and NA gene) and their evolutionary rates 66 5.4.2 Internal genes 72 5.5 Serologic surveillance of AIVs in chicken serum samples 76 5.6 Molecular characterization of amino acid residues of duck and chicken H5N2 viruses with public health concerns 79 5.6.1 PB2 protein 79 5.6.2 PB1-F2 protein 80 5.6.3 HA protein 81 5.6.4 NA protein 83 5.6.5 NP protein 84 5.6.6 M1 protein 85 5.6.7 M2 protein 85 5.6.8 NS1 protein 86 5.7 Nucleotide sequence identity between human H6N1 strain and chicken H6N1 stains 88 Chapter 6 Discussion 94 6.1 The genesis, diversification and possibly endemicity of the chicken H5N2 viruses in Taiwan 95 6.1.1 The genesis of the chicken H5N2 viruses in Taiwan 95 6.1.2 The diversification and probably endemicity of the chicken H5N2 viruses in Taiwan 98 6.2 The interactions between Taiwan chicken H5N2 and H6N1 viruses 100 6.3 The duck H5N2 and H6N1 viruses in Taiwan 101 6.4 The implications of public health 102 6.4.1 Molecular markers associated with anti-viral drugs 102 6.4.2 Molecular markers associated with inter-species transmission to human 103 6.4.3 Molecular markers associated with pathogenicity 104 6.4.4 Vaccination in poultry- good or bad control measure? 105 6.5 Public health recommendations 107 6.6 Limitations in this study 109 6.7 Future Directions 110 References 113 | |
| dc.language.iso | en | |
| dc.subject | 禽流感病毒監測 | zh_TW |
| dc.subject | 台灣 | zh_TW |
| dc.subject | 人畜共通傳染病 | zh_TW |
| dc.subject | 公共衛生 | zh_TW |
| dc.subject | 禽流感疫苗 | zh_TW |
| dc.subject | 防疫策略 | zh_TW |
| dc.subject | 分子流行病學 | zh_TW |
| dc.subject | 病毒演化 | zh_TW |
| dc.subject | H9N2 | zh_TW |
| dc.subject | H6N1 | zh_TW |
| dc.subject | H5N2 | zh_TW |
| dc.subject | H6N1 | en |
| dc.subject | Public health | en |
| dc.subject | zoonotic diseases | en |
| dc.subject | molecular epidemiology | en |
| dc.subject | H5N2 | en |
| dc.subject | H9N2 | en |
| dc.subject | avian influenza surveillance | en |
| dc.subject | virus evolution | en |
| dc.subject | vaccinology | en |
| dc.subject | Taiwan | en |
| dc.subject | disease control strategy | en |
| dc.title | 台灣禽類流感病毒H5N2的源生、演化及其與禽流感病毒H6N1之關係:公共衛生啟示 | zh_TW |
| dc.title | The Genesis and Evolution of Avian Influenza H5N2 Viruses and Their Relationship with H6N1 Viruses in Taiwan: Implications for Public Health | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 管軼 | |
| dc.contributor.oralexamcommittee | 翁啟惠,何美鄉,蔡向榮,黃憲達,劉信孚 | |
| dc.subject.keyword | 公共衛生,人畜共通傳染病,分子流行病學,禽流感病毒監測,H5N2,H6N1,H9N2,病毒演化,台灣,禽流感疫苗,防疫策略, | zh_TW |
| dc.subject.keyword | Public health,zoonotic diseases,molecular epidemiology,H5N2,H6N1,H9N2,avian influenza surveillance,virus evolution,vaccinology,Taiwan,disease control strategy, | en |
| dc.relation.page | 145 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-03-03 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 3.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
