Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16858
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王暉
dc.contributor.authorPo-Han Chiangen
dc.contributor.author姜博瀚zh_TW
dc.date.accessioned2021-06-07T23:48:06Z-
dc.date.copyright2014-07-22
dc.date.issued2014
dc.date.submitted2014-03-13
dc.identifier.citation[1] T. Nagatsuma, A. Hirata, Y. Sato, R. Yamaguchi, H. Takahashi, T. Kosugi, M. Tokumitsu, H. Sugahara, T. Furuta, and H. Ito, Sub-terahertz wireless communications technologies, Proceedings of the International workshop on Terahertz Technology 2005.
[2] Federal Communication Commission, Technical Report Section 15.253, 15.255, 15.257, Oct. 2007. [Online].
[3] “Allocations and service rules for the 71-76 GHz, 81-86 GHz and 92-95 GHz bands,” pdf, Federal Communication Commission, Tech. Rep. FCC 03-248, Nov. 2003. [Online].
[4] “Multigigabit wireless technology at 70 GHz, 80 GHz and 90 GHz,” RF Design, May 2006.
[5] K. Ishigaki, M. Shiraishi, S. Suzuki, M. Asada, N. Nishiyama, and S. Arai, “Direct intensity modulation and wireless data transmission characteristics of terahertz-oscillating resonant tunnelling diodes,” Electron. Lett., vol. 48, no.10, pp. 582-583, May 2012.
[6] H.-Y. Chang, H. Wang, M. Yu, and Y. Shu, “A 77-GHz MMIC power amplifier for automotive radar applications,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 4, pp. 143–145, Apr. 2003.
[7] W. J. Chang, J. W. Lim, H. K. Ahn, H. Kim, and H. K. Yu, “60 GHz amplifeir MMICs and module for 69 GHz WPAN syatem,” in Proc. IEEE Radio Wireless Symp., Jan. 2007, pp. 377–380.
[8] K.-L. Ngo-Wah, J. Goel, Y.-C. Chou, R. Grundbacher, R. Lai, G. Nassour, E. Divish, G. Schreyer, K. Whitney, and A. Oki, “A V-band eight-way combined solid-state power amplifier with 12.8 watt output power,” in IEEE MTT-S Int. Dig., Jun. 2005, pp. 1371–1374.
[9] U. R. Pfeiffer and D. Goren, “A 20 dBm fully-integrated 60 GHz SiGe power amplifier with automatic level control,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1455–1463, Jul. 2007..
[10] V.-H. Do, V. Subramanian, W. Keusgen, and G. Boeck, “Design and optimization of a high efficiency 60 GHz SiGe-HBT power amplifier,” Radio-Frequency Integr. Technol., pp. 150–153, Dec. 2007.
[11] U. R. Pfeiffer, D. Goren, B. A. Floyd, and S. K. Reynolds, “SiGe transformer matched power amplifier for operation at millimeter-wave frequencies,” in Proc. ESSCIRC, Grenoble, France, Sep. 2005, pp. 141–144.
[12] B. Welch and U. R. Pfeiffer, “A 17 dBm 64 GHz voltage controlled oscillator with power amplifier in a 0.13-um SiGe BiCMOS technology,” in RFIC Symp. Dig., Jun. 2006, pp. 41–44.
[13] A. Komijani and A. Hajimiri, “A wideband 77 GHz, 17.5 dBm power amplifier in silicon,” in Proc. Custom Integr. Circuits Conf., Sep. 2005, pp. 561–564.
[14] U. R. Pfeiffer and D. Goren, “A 23-dBm 60-GHz distributed active transformer in a silicon process technology,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 857–865, May 2007.
[15] D. Chowdhury, P. Reyanert, and A. M. Niknejad, “A 60 GHz 1-Volt +12.3 dBm transformer-coupled wideband PA in 90 nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2008, pp. 590–591.
[16] J.-L. Kuo, Z.-M. Tsai, K.-Y. Lin, and H. Wang, “A 50 to 70 GHz power amplifier using 90 nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 1, pp. 45–47, Jan. 2009.
[17] Y.N. Jen, et al, “Design and analysis of a 55-71GHz compact and broadband distributed active transformer power amplifier in 90nm CMOS process,” IEEE Trans. Microwave Theory and Techniques., vol. 57, no. 7, pp.1637-1646, July 2009.
[18] D. Sandstrom, M. Varonen, M. Karkkainen, K. Halonen, “W-band CMOS PA achieving +10dBm saturated output power and 7.5dB NF,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. papers, pp. 486-487, Feb. 2009.
[19] K. J. Tsai, J. L. Kuo and H. Wang, “A W-band power amplifier in 65 nm CMOS with 27 GHz bandwidth and 14.8 dBm saturated output power”, Proc. of IEEE RFIC Symp., June 2012, pp. 69-72.
[20] Y. Kwon, D. Pavlidis, T. L. Brock, D. C. Streit, “A D-band monolithic fundamental oscillator using InP-based HEMT’s,” IEEE Trans. Microwave Theory and Tech., vol. 41, no. 12, pp. 2336-2344, Dec. 1993.
[21] K. W. Kobayashi, A. K. Oki, L. T. Tran, J. C. Cowles, A. Gutierrez-Aitken, F. Yamada, T. R. Block, and D. C. Streit, “A 108-GHz InP-HBT monolithic push–push VCO with low phase noise and wide tuning bandwidth,” IEEE J. Solid-State Circuits, vol. 34, no. 9, pp. 1225 – 1232, Sep. 1999.
[22] Y. Baeyens, C. Dorschky, N. Weimann, Q. Lee, R. Kopf, G. Georgiou, J.-P. Mattia, R. Hamm, and Y.-K. Chen, “Compact InP-based HBT VCOs with a wide tuning range at W- and D-band,” IEEE Trans. Microwave Theory and Tech., vol. 48, no. 12, pp. 2403-2408, Dec. 2000.
[23] Y. Baeyens and Y. K. Chen, “A monolithic integrated 150 GHz SiGe HBT push-push VCO with simultaneous V-band outputs,” in 2003 IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, Jun. 2003, pp. 877-880.
[24] M. Steinhauer, H. Irion, M. Schott, M. Thiel, H.-O. Ruoss, and W. Heinrich, “SiGe-based circuits for sensor applications beyond 100GHz,” in 2004 IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2004, pp. 223-226.
[25] D. Huang et al., “324GHz CMOS frequency generator using linear superposition technique,” ISSCC Dig. Tech. Papers, pp. 476–477, Feb. 2008.
[26] O. Momeni, and E. Afshari, “High power terahertz and millimeter-wave oscillator design: a Systematic approach,” IEEE J. Solid-State Circuits, vol. 46, no. 3, pp. 583–297, Mar. 2011.
[27] K. Sengupta, and A. Hajimiri, “Distributed active radiation for THz signal generation,” ISSCC Dig. Tech. Papers, pp. 288–289, Feb. 2011.
[28] H.Y. Chang, H. Wang, “A 98/196 GHz low phase noise voltage controlled oscillator with a mode selector using a 90 nm CMOS process,” IEEE Microw. and Wireless Compon. Lett., vol.19, no.3, Mar. 2009.
[29] E. Seok, C. Cao, D. Shim, D. J. Arenas, D. B. Tanner, C.-M. Hung, and K. K. O, “A 410 GHz CMOS push-push oscillator with an on-chip patch antenna,” in Proc. Int. Solid-State Circuit Conf., San Francisco, CA, Feb. 2008, pp. 472–473.
[30] C. Cao and K. K. O, “192 GHz push-push VCO in 0.13 mm CMOS,” Electron. Lett., vol. 42, pp. 208–210, Feb. 2006.
[31] C. Cao and K. K. O, “A 140-GHz fundamental mode voltage-controlled oscillator in 90-nm CMOS technology,” IEEE Microw.Wireless Compon. Lett., vol. 16, no. 1, pp. 555–557, Jan. 2006.
[32] Yahya M. Tousi, Omeed Momeni, Ehsan Afshari, “A 283-to-296GHz VCO with 0.76mW peak output power in 65nm CMOS,” ISSCC Dig. Tech. Papers, pp. 258–260, Feb. 2012.
[33] Ruonan Han, Ehsan Afshari, “A 260GHz broadband source with 1.1mW continuous-wave radiated power and EIRP of 15.7dBm in 65nm CMOS “ISSCC Dig. Tech. Papers, pp. 138–139, Feb. 2013.
[34] S. Narendra, D. Antoniadis, and V. De, “Impact of using adaptive body bias to compensate die-to-die Vt variation on within-die Vt variation,” in Low Power Electronics and Design Symp., June. 1999, pp. 229-232.
[35] J. Kang, D. Yu, Y. Yang, and B. Kim, “Highly linear 0.18-μm CMOS power amplifier with deep-n-well structure,” IEEE Journal of Solid-State Circuits, vol. 41, no. 5, pp. 1073-1080 May., 2006.
[36] C.-P. Chang, J.-H. Chen, Y.-H. Wang, “A fully integrated 5 GHz low-voltage LNA using forward body bias technology.” IEEE Microwave and Wireless Components Lett., vol. 19, no.3, pp. 176-178, Mar. 2009.
[37] D. Wu, R. Huang, W. Wong, Y. Wang; “A 0.4-V low noise amplifier using forward body bias technology for 5 GHz application.” IEEE Microwave and Wireless Components Lett., vol. 17, no.7, pp. 543-545, July. 2007.
[38] M.-C. Yeh, Z.-M. Tsai, R.-C. Liu, K.-Y. Lin, Y.-T. Chang, H. Wang, “Design and analysis for a miniature CMOS SPDT switch using body-floating technique to improve power performance,” IEEE Trans. Microwave Theory Tech., vol.54, no. 1, pp. 31-39, Jan. 2006.
[39] J. Jin, C. Nguyen, “Ultra-compact high-linearity high-power fully integrated DC–20-GHz 0.18-μm CMOS T/R switch,” IEEE Trans. Microwave Theory Tech., vol.55, no. 1, pp. 30-36, Jan. 2007.
[40] J.-L. Kuo, Z.-M. Tsai, and H. Wang, “A 19.1-dBm fully-integrated 24 GHz power amplifier using 0.18-μm CMOS technology,” in Proceeding of the European Microwave Conference, pp. 558-561, Oct. 2008.
[41] J.-L. Kuo, and H. Wang, “A 24 GHz CMOS power amplifier using reversed body bias technique to improve linearity and power added efficiency,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2012.
[42] G. Gonzales, Microwave Transistor Amplifiers – Analysis and Design, 2nd Edition, Prentice Hall, ch. 4.
[43] Behzad Razavi, RF Microelectronis, 2nd, Pearson.
[44] Y. L. Tang, “A triple-push oscillator approach”, Master Thesis, National Taiwan University, June 2000.
[45] H. Veenstra et al., “A 35.2-37.6GHz LC VCO in a 70/100GHz fT/fmax SiGe Technology,” ISSCC Dig. Tech. Papers, pp. 291-292, Feb., 2004.
[46] S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd, John Wiley and Sons, 2001.
[47] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGRAW-Hill.
[48] 陳炳佑,三五族電晶體模型與Ka 頻段放大器設計,國立台灣大學碩士論文,2002年。
[49] G. Dambrine, et al., “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory Tech., vol. 36, pp. 1151-1159, July 1988.
[50] M. Adnan, E. Afshari, “A 247-to-263.5GHz VCO with 2.6mW Peak Output Power and 1.14% DC-to-RF Efficiency in 65nm Bulk CMOS” ISSCC Dig. Tech. Papers, Feb. 2014.
[51] Yuan-Hung Hsiao, Zuo-Min Tsai, Hsin-Chiang Liao, Jui-Chi Kao, and Huei Wang, “Millimeter-wave CMOS power amplifiers with high output power and wideband performances,” IEEE Trans. Microwave Theory and Tech., vol. 61, no. 12, pp. 4520-4533, Dec. 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16858-
dc.description.abstract本論文可以分成兩個部分:功率放大器及壓控振盪器。
首先是使用台積電65奈米金氧半場效電晶體製作50至90 GHz的功率放大器。此放大器利用級間匹配網路並且串接五級共源極的架構達到覆蓋V-band和E-band的頻率,並且在輸出端並聯四顆電晶體得到大功率的輸出。此功率放大器的增益為30.6 dB且3-dB頻寬為53至84 GHz、最大輸出功率為10.8 dBm及增益壓縮1dB時的輸出功率為7.2 dBm
第二部分,使用台積電65奈米金氧半場效電晶體設計出220GHz壓控振盪器。此壓控振盪器之架構為調控基體的偏壓以改變電晶體之寄生電容值,達到調控壓控振盪器的振盪範圍。偏壓為1.2 V時,此電路之量測結果為:可調頻率範圍從206 至 220GHz、輸出訊號功率為-1.6 dBm及直流功耗為43.2 mW。晶片面積為 0.25 mm 0.25 mm、直流轉換效率為 1.6%及單位面積功率為 11.1 mW/mm2。此壓控振盪器是以金氧半場效電晶體製作中效率及單位面積功率最大者。
zh_TW
dc.description.abstractThis thesis is divided into two parts, one is a power amplifier and the other one is a voltage control oscillator (VCO).
At the first, a 50 to 90 GHz power amplifier is realized in TSMC 65-nm CMOS process. The power amplifier utilizes the inter-stage matching network and the five-stage common source to cover full V-band and E-band frequency. In order to get high output power, the output port of the power amplifier combines four transistors. The PA exhibits a small signal gain from 53 to 84 GHz (3-dB bandwidth of 31 GHz), and 10.8 dBm Psat, and 7.2 dBm P1dB with a dc power of 123 mW with the drain voltage of 1.2 V.
Secondly, a 220 GHz VCO is realized in TSMC 65 nm CMOS technology. The VCO utilizes the body bias to control the parasitic capacitor of the transistors, and the VCO achieves high output power and wide tuning range simultaneously. Under supply voltage 1.2 V, the tuning range of the VCO is 206 to 220 GHz; the output power is -1.6 dBm; the dc power is 43.2 mW; and the chip size is 0.062 mm2. Compared with the published works, this VCO exhibits the highest dc to RF conversion efficiency and power area density using CMOS technologies.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:48:06Z (GMT). No. of bitstreams: 1
ntu-103-R00942086-1.pdf: 4385827 bytes, checksum: aefc7d47a99515b981319d358d04eba0 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES xi
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Literature Survey 3
1.2.1 V-band and E-band Power Amplifier 3
1.2.2 G-Band VCO 5
1.3 Contributions 7
1.4 Thesis Organization 8
Chapter 2 Design of a V-band and E-band power amplifier in TSMC 65-nm CMOS Process 9
2.1 Broadband Amplifier Design 9
2.1.1 Compensated Matching Networ 9
2.2 Circuit Desigs 10
2.3 Chip Layout and Simulation Results 15
2.4 Stability Consideration 18
2.5 Experimental Results 22
2.6 Discussion 31
2.7 Summary 33
Chapter 3 220 GHz Body Bias Control Oscillator with High Output Power and Wide Tuning Rang 35
3.1 LC VCO Basics 35
3.1.1 Analysis of Oscillators 35
3.1.2 LC VCO Model 38
3.1.3 Cross-Coupled LC VCO 40
3.1.4 Push-Push VCO 43
3.2 220GHz Body Bias Control Oscillator using 65nm CMOS process 44
3.2.1 The Variable Capacitor of the Varactor-Free Oscillator 44
3.2.2 The Parasitic Capacitor of Transistors 45
3.2.3 Extract Parasitic Capacitor of Transistors 51
3.2.4 The Inductor of of the Varactor-Free Oscillator 58
3.2.5 Circuits Design 59
3.3 Experiment Results 64
3.4 Discussion 70
3.5 Summary 70
Chapter 4 Summary 73
References 74
dc.language.isoen
dc.subject場效電晶體zh_TW
dc.subject毫米波zh_TW
dc.subject壓控振盪器zh_TW
dc.subject功率放大器zh_TW
dc.subjectmillimeter-waveen
dc.subjectVCOen
dc.subjectpower amplifieren
dc.subjectCMOSen
dc.title毫米波寬頻放大器及基板壓控振盪器之研究zh_TW
dc.titleResearch of Millimeter Wave Wideband Amplifier and Body Bias Control Oscillatoren
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡作敏,陳怡然,林坤佑,蔡政翰
dc.subject.keyword毫米波,場效電晶體,功率放大器,壓控振盪器,zh_TW
dc.subject.keywordmillimeter-wave,CMOS,power amplifier,VCO,en
dc.relation.page79
dc.rights.note未授權
dc.date.accepted2014-03-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved