Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16814Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林長壽(Chang-Shou Lin) | |
| dc.contributor.author | Kuan-Yu Lin | en |
| dc.contributor.author | 林冠宇 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:47:00Z | - |
| dc.date.copyright | 2014-07-16 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-06-11 | |
| dc.identifier.citation | Xavier Cabre, Xavier Ros-Oton, and Joaquim Serra. Sharp isoperimetric inequalities via the abp method. arXiv preprint arXiv:1304.1724, 2013.
Xavier Cabre and Xavier Ros-Oton. Sobolev and isoperimetric inequalities with monomial weights. Journal of Differential Equations, 255(11):4312–4336, 2013. Pierre-Louis Lions and Filomena Pacella. Isoperimetric inequalities for convex cones. Proceedings of the American Mathematical Society, pages 477–485, 1990. R Gardner. The brunn-minkowski inequality. Bulletin of the American Mathematical Society, 39(3):355–405, 2002. Georg Wulff. Zur frage der geschwindigkeit des wachstums und der auflosung der kristallflachen. Z. kristallogr, 34(5/6):449–530, 1901. Jean E Taylor. Existence and structure of solutions to a class of nonelliptic variational problems. In Symposia Mathematica, volume 14, pages 499–508, 1974. Jean E Taylor. Unique structure of solutions to a class of nonelliptic variational problems. In Proc. Symp. pure Math, volume 27, pages 419–427, 1975. Giorgio Talenti. A weighted version of a rearrangement inequality. Annali dell’Universita di Ferrara, 43(1):121–133, 1997. Giorgio Talenti. Best constant in sobolev inequality. Annali di Matematica pura ed Applicata, 110(1):353–372, 1976. David Gilbarg and Neil S Trudinger. Elliptic partial differential equations of second order, volume 224. springer, 2001. Giovanni Bellettini, Guy Bouchitte, and Ilaria Fragala. Bv functions with respect to a measure and relaxation of metric integral functionals. Journal of convex analysis, 6(2): 349–366, 1999. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16814 | - |
| dc.description.abstract | 在這篇論文中,我們探討加權之等周不等式。對於所有固定加權體積之可測集,
我們的目標是刻劃使加權周長最小的所有可能。對於所有具有特定” 凹特性” 之權 重,透過ABP 方法,所有此種” 等周集” 可被完整地刻劃。 特別地,將此定理運用至某些” 單項式權重”,我們可以證明具有此種權重之 Sobolev、Trudinger、以及Morrey 不等式。 | zh_TW |
| dc.description.abstract | In this thesis, we study isoperimetric problems with weights following [Cabre
et al., 2013]. Given a positive function $w$ on $mathbb{R}^n$ (called a weight), our goal is to characterize minimizers of the weighted perimeter $int_{partial E} w,mathrm{d}S$ among all measurable sets E with a fixed weighted volume $int_{E} w , mathrm{d}x$. The result applies to all homogeneous weights satisfying certain concavity conditions, and the proof is achieved by applying the ABP method to an appropriate linear Neumann problem. In particular, by applying this result to the monomial weight $|x_1|^{A_1} cdots |x_n|^{A_n}$ in $mathbb{R}^n$ , where $A_i geq 0$, we can establish the weighted Sobolev, Morrey, and Trudinger inequalities with such weights [Cabre and Ros-Oton, 2013]. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:47:00Z (GMT). No. of bitstreams: 1 ntu-103-R01221033-1.pdf: 249047 bytes, checksum: 81e768ecf5831949d313444c45e6f6b9 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 中文摘要i
Abstract ii Contents iii 1 Introduction: the setting and results 1 1.1 The non-weighted case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The weighted case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Applications 6 2.1 Sobolev Inequality with monomial weight . . . . . . . . . . . . . . . . . . 7 2.2 Trudinger Inequality with monomial weight . . . . . . . . . . . . . . . . 11 2.3 Morrey Inequality with monomial weight . . . . . . . . . . . . . . . . . . 12 3 The proof of Main Theorem 15 References 20 | |
| dc.language.iso | en | |
| dc.subject | Sobolev不等式 | zh_TW |
| dc.subject | 等周不等式 | zh_TW |
| dc.subject | ABP方法 | zh_TW |
| dc.subject | Neumann問題 | zh_TW |
| dc.subject | 單項式權重. | zh_TW |
| dc.subject | Sobolev inequality | en |
| dc.subject | monomial weight. | en |
| dc.subject | Isoperimetric inequality | en |
| dc.subject | ABP method | en |
| dc.subject | Neumann problem | en |
| dc.title | 加權等周不等式之ABP方法及其應用 | zh_TW |
| dc.title | Weighted Isoperimetric Inequalities via the ABP method and its Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳俊全(Chiun-Chuan Chen),張樹城(Shu-Cheng Chang) | |
| dc.subject.keyword | 等周不等式,ABP方法,Neumann問題,Sobolev不等式,單項式權重., | zh_TW |
| dc.subject.keyword | Isoperimetric inequality,ABP method,Neumann problem,Sobolev inequality,monomial weight., | en |
| dc.relation.page | 20 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-06-11 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| Appears in Collections: | 數學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-103-1.pdf Restricted Access | 243.21 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
