Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 病理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16795
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳漢忠(Han-Chung Wu)
dc.contributor.authorChiung-Yi Chiuen
dc.contributor.author邱瓊儀zh_TW
dc.date.accessioned2021-06-07T23:46:14Z-
dc.date.copyright2014-10-09
dc.date.issued2014
dc.date.submitted2014-06-19
dc.identifier.citationAdamcic, U., Skowronski, K., Peters, C., Morrison, J., and Coomber, B.L. (2012). The effect of bevacizumab on human malignant melanoma cells with functional VEGF/VEGFR2 autocrine and intracrine signaling loops. Neoplasia 14, 612-623.
Albuquerque, R.J., Hayashi, T., Cho, W.G., Kleinman, M.E., Dridi, S., Takeda, A., Baffi, J.Z., Yamada, K., Kaneko, H., Green, M.G., et al. (2009). Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nature medicine 15, 1023-1030.
Allen, T.M., and Cullis, P.R. (2004). Drug delivery systems: entering the mainstream. Science 303, 1818-1822.
Bagri, A., Berry, L., Gunter, B., Singh, M., Kasman, I., Damico, L.A., Xiang, H., Schmidt, M., Fuh, G., Hollister, B., et al. (2010). Effects of anti-VEGF treatment duration on tumor growth, tumor regrowth, and treatment efficacy. Clinical cancer research : an official journal of the American Association for Cancer Research 16, 3887-3900.
Bellamy, W.T. (2001). Expression of vascular endothelial growth factor and its receptors in multiple myeloma and other hematopoietic malignancies. Seminars in oncology 28, 551-559.
Bellamy, W.T., Richter, L., Sirjani, D., Roxas, C., Glinsmann-Gibson, B., Frutiger, Y., Grogan, T.M., and List, A.F. (2001). Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 97, 1427-1434.
Bergers, G., and Hanahan, D. (2008). Modes of resistance to anti-angiogenic therapy. Nature reviews Cancer 8, 592-603.
Bosslet, K., Straub, R., Blumrich, M., Czech, J., Gerken, M., Sperker, B., Kroemer, H.K., Gesson, J.P., Koch, M., and Monneret, C. (1998). Elucidation of the mechanism enabling tumor selective prodrug monotherapy. Cancer research 58, 1195-1201.
Brigger, I., Dubernet, C., and Couvreur, P. (2002). Nanoparticles in cancer therapy and diagnosis. Advanced drug delivery reviews 54, 631-651.
Browder, T., Butterfield, C.E., Kraling, B.M., Shi, B., Marshall, B., O'Reilly, M.S., and Folkman, J. (2000). Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer research 60, 1878-1886.
Bruns, A.F., Yuldasheva, N., Latham, A.M., Bao, L., Pellet-Many, C., Frankel, P., Stephen, S.L., Howell, G.J., Wheatcroft, S.B., Kearney, M.T., et al. (2012). A heat-shock protein axis regulates VEGFR2 proteolysis, blood vessel development and repair. PloS one 7, e48539.
Burrows, F.J., and Thorpe, P.E. (1994). Vascular targeting--a new approach to the therapy of solid tumors. Pharmacology & therapeutics 64, 155-174.
Carmeliet, P., and Jain, R.K. (2011). Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nature reviews Drug discovery 10, 417-427.
Chames, P., and Baty, D. (2009). Bispecific antibodies for cancer therapy. Current opinion in drug discovery & development 12, 276-283.
Chen, H., Treweeke, A.T., West, D.C., Till, K.J., Cawley, J.C., Zuzel, M., and Toh, C.H. (2000). In vitro and in vivo production of vascular endothelial growth factor by chronic lymphocytic leukemia cells. Blood 96, 3181-3187.
Chung, A.S., Lee, J., and Ferrara, N. (2010). Targeting the tumour vasculature: insights from physiological angiogenesis. Nature reviews Cancer 10, 505-514.
Davis, D.W., Takamori, R., Raut, C.P., Xiong, H.Q., Herbst, R.S., Stadler, W.M., Heymach, J.V., Demetri, G.D., Rashid, A., Shen, Y., et al. (2005). Pharmacodynamic analysis of target inhibition and endothelial cell death in tumors treated with the vascular endothelial growth factor receptor antagonists SU5416 or SU6668. Clinical cancer research : an official journal of the American Association for Cancer Research 11, 678-689.
Denekamp, J. (1999). The tumour microcirculation as a target in cancer therapy: a clearer perspective. European journal of clinical investigation 29, 733-736.
Dias, S., Hattori, K., Heissig, B., Zhu, Z., Wu, Y., Witte, L., Hicklin, D.J., Tateno, M., Bohlen, P., Moore, M.A., et al. (2001). Inhibition of both paracrine and autocrine VEGF/
VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proceedings of the National Academy of Sciences of the United States of America 98, 10857-10862.
Dias, S., Hattori, K., Zhu, Z., Heissig, B., Choy, M., Lane, W., Wu, Y., Chadburn, A., Hyjek, E., Gill, M., et al. (2000). Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. The Journal of clinical investigation 106, 511-521.
DiJoseph, J.F., Armellino, D.C., Boghaert, E.R., Khandke, K., Dougher, M.M., Sridharan, L., Kunz, A., Hamann, P.R., Gorovits, B., Udata, C., et al. (2004). Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood 103, 1807-1814.
Dvorak, H.F. (2002). Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 20, 4368-4380.
Ebos, J.M., and Kerbel, R.S. (2011). Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nature reviews Clinical oncology 8, 210-221.
Ebos, J.M., Lee, C.R., and Kerbel, R.S. (2009). Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy. Clinical cancer research : an official journal of the American Association for Cancer Research 15, 5020-5025.
Ferrara, N. (2004). Vascular endothelial growth factor: basic science and clinical progress. Endocrine reviews 25, 581-611.
Ferrara, N. (2010). Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Molecular biology of the cell 21, 687-690.
Ferrara, N., and Kerbel, R.S. (2005). Angiogenesis as a therapeutic target. Nature 438, 967-974.
Ferrara, N., Hillan, K.J., Gerber, H.P., and Novotny, W. (2004). Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nature reviews Drug discovery 3, 391-400.
Franovic, A., Holterman, C.E., Payette, J., and Lee, S. (2009). Human cancers converge at the HIF-2alpha oncogenic axis. Proceedings of the National Academy of Sciences of the United States of America 106, 21306-21311.
Fusetti, L., Pruneri, G., Gobbi, A., Rabascio, C., Carboni, N., Peccatori, F., Martinelli, G., and Bertolini, F. (2000). Human myeloid and lymphoid malignancies in the non-obese diabetic/severe combined immunodeficiency mouse model: frequency of apoptotic cells in solid tumors and efficiency and speed of engraftment correlate with vascular endothelial growth factor production. Cancer research 60, 2527-2534.
Gasparini, G., Longo, R., Toi, M., and Ferrara, N. (2005). Angiogenic inhibitors: a new therapeutic strategy in oncology. Nature clinical practice Oncology 2, 562-577.
Gerber, H.P., Malik, A.K., Solar, G.P., Sherman, D., Liang, X.H., Meng, G., Hong, K., Marsters, J.C., and Ferrara, N. (2002). VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 417, 954-958.
Gerber, H.P., and Ferrara, N. (2003). The role of VEGF in normal and neoplastic hematopoiesis. Journal of molecular medicine 81, 20-31.
Geudens, I., and Gerhardt, H. (2011). Coordinating cell behaviour during blood vessel formation. Development 138, 4569-4583.
Gilbert, J.A., Adhikari, L.J., Lloyd, R.V., Halfdanarson, T.R., Muders, M.H., and Ames, M.M. (2013). Molecular markers for novel therapeutic strategies in pancreatic endocrine tumors. Pancreas 42, 411-421.
Gingras, D., Lamy, S., and Beliveau, R. (2000). Tyrosine phosphorylation of the vascular endothelial-growth-factor receptor-2 (VEGFR-2) is modulated by Rho proteins. The Biochemical journal 348 Pt 2, 273-280.
Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-674.
Hanrahan, V., Currie, M.J., Gunningham, S.P., Morrin, H.R., Scott, P.A., Robinson, B.A.,
and Fox, S.B. (2003). The angiogenic switch for vascular endothelial growth factor (VEGF)-A, VEGF-B, VEGF-C, and VEGF-D in the adenoma-carcinoma sequence during colorectal cancer progression. The Journal of pathology 200, 183-194.
Heldin, C.H., Rubin, K., Pietras, K., and Ostman, A. (2004). High interstitial fluid pressure - an obstacle in cancer therapy. Nature reviews Cancer 4, 806-813.
Hicklin, D.J., and Ellis, L.M. (2005). Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 23, 1011-1027.
Hunt, S. (2001). Technology evaluation: IMC-1C11, ImClone Systems. Current opinion in molecular therapeutics 3, 418-424.
Hurwitz, J.M., and Batzer, F.R. (2004). Posthumous sperm procurement: demand and concerns. Obstetrical & gynecological survey 59, 806-808.
Joseph, R.W., Parasramka, M., Eckel-Passow, J.E., Serie, D., Wu, K., Jiang, L., Kalari, K., Thompson, R.H., Huu Ho, T., Castle, E.P., et al. (2013). Inverse Association between Programmed Death Ligand 1 and Genes in the VEGF Pathway in Primary Clear Cell Renal Cell Carcinoma. Cancer immunology research 1, 378-385.
Junttila, T.T., Parsons, K., Olsson, C., Lu, Y., Xin, Y., Theriault, J., Crocker, L., Pabonan, O., Baginski, T., Meng, G., et al. (2010). Superior in vivo efficacy of afucosylated trastuzumab in the treatment of HER2-amplified breast cancer. Cancer research 70, 4481-4489.
Kerbel, R.S. (2008). Tumor angiogenesis. The New England journal of medicine 358, 2039-2049.
Kim, J.J., and Tannock, I.F. (2005). Repopulation of cancer cells during therapy: an important cause of treatment failure. Nature reviews Cancer 5, 516-525.
Klement, G., Baruchel, S., Rak, J., Man, S., Clark, K., Hicklin, D.J., Bohlen, P., and Kerbel, R.S. (2000). Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. The Journal of clinical investigation 105, R15-24.
Kozin, S.V., Boucher, Y., Hicklin, D.J., Bohlen, P., Jain, R.K., and Suit, H.D. (2001). Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer research 61, 39-44.
Lambrechts, D., Lenz, H.J., de Haas, S., Carmeliet, P., and Scherer, S.J. (2013). Markers of response for the antiangiogenic agent bevacizumab. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 31, 1219-1230.
Larrayoz, M., Pio, R., Pajares, M.J., Zudaire, I., Ajona, D., Casanovas, O., Montuenga, L.M., and Agorreta, J. (2014). Contrasting responses of non-small cell lung cancer to antiangiogenic therapies depend on histological subtype. EMBO molecular medicine 6, 539-550.
Lee, S., Chen, T.T., Barber, C.L., Jordan, M.C., Murdock, J., Desai, S., Ferrara, N., Nagy, A., Roos, K.P., and Iruela-Arispe, M.L. (2007). Autocrine VEGF signaling is required for vascular homeostasis. Cell 130, 691-703.
Lu, D., Shen, J., Vil, M.D., Zhang, H., Jimenez, X., Bohlen, P., Witte, L., and Zhu, Z. (2003). Tailoring in vitro selection for a picomolar affinity human antibody directed against vascular endothelial growth factor receptor 2 for enhanced neutralizing activity. The Journal of biological chemistry 278, 43496-43507.
Lu, K.V., Chang, J.P., Parachoniak, C.A., Pandika, M.M., Aghi, M.K., Meyronet, D., Isachenko, N., Fouse, S.D., Phillips, J.J., Cheresh, D.A., et al. (2012). VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer cell 22, 21-35.
Lutterbuese, R., Raum, T., Kischel, R., Hoffmann, P., Mangold, S., Rattel, B., Friedrich, M., Thomas, O., Lorenczewski, G., Rau, D., et al. (2010). T cell-engaging BiTE antibodies specific for EGFR potently eliminate KRAS- and BRAF-mutated colorectal cancer cells. Proceedings of the National Academy of Sciences of the United States of America 107, 12605-12610.
Masood, R., Cai, J., Zheng, T., Smith, D.L., Hinton, D.R., and Gill, P.S. (2001). Vascular endothelial growth factor (VEGF) is an autocrine growth factor for VEGF receptor-positive human tumors. Blood 98, 1904-1913.

Meyer, R.D., Dayanir, V., Majnoun, F., and Rahimi, N. (2002). The presence of a single tyrosine residue at the carboxyl domain of vascular endothelial growth factor receptor-2/FLK-1 regulates its autophosphorylation and activation of signaling molecules. The Journal of biological chemistry 277, 27081-27087.
Morikawa, S., Baluk, P., Kaidoh, T., Haskell, A., Jain, R.K., and McDonald, D.M. (2002). Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. The American journal of pathology 160, 985-1000.
Murata, R., Nishimura, Y., and Hiraoka, M. (1997). An antiangiogenic agent (TNP-470) inhibited reoxygenation during fractionated radiotherapy of murine mammary carcinoma. International journal of radiation oncology, biology, physics 37, 1107-1113.
Murdoch, C., Muthana, M., Coffelt, S.B., and Lewis, C.E. (2008). The role of myeloid cells in the promotion of tumour angiogenesis. Nature reviews Cancer 8, 618-631.
Neufeld, S., Planas-Paz, L., and Lammert, E. (2014). Blood and lymphatic vascular tube formation in mouse. Seminars in cell & developmental biology.
Orimo, A., Gupta, P.B., Sgroi, D.C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., Carey, V.J., Richardson, A.L., and Weinberg, R.A. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335-348.
Panowksi, S., Bhakta, S., Raab, H., Polakis, P., and Junutula, J.R. (2014). Site-specific antibody drug conjugates for cancer therapy. mAbs 6, 34-45.
Pavet, V., Portal, M.M., Moulin, J.C., Herbrecht, R., and Gronemeyer, H. (2011). Towards novel paradigms for cancer therapy. Oncogene 30, 1-20.
Paz, K., and Zhu, Z. (2005). Development of angiogenesis inhibitors to vascular endothelial growth factor receptor 2. Current status and future perspective. Frontiers in bioscience : a journal and virtual library 10, 1415-1439.
Pentheroudakis, G., Kotoula, V., Kouvatseas, G., Charalambous, E., Dionysopoulos, D., Zagouri, F., Koutras, A., Papazisis, K., Pectasides, D., Samantas, E., et al. (2014). Association of VEGF-A Splice Variant mRNA Expression With Outcome in Bevacizumab-Treated Patients With Metastatic Breast Cancer. Clinical breast cancer.
Perez, E.A., Suman, V.J., Davidson, N.E., Martino, S., Kaufman, P.A., Lingle, W.L., Flynn, P.J., Ingle, J.N., Visscher, D., and Jenkins, R.B. (2006). HER2 testing by local, central, and reference laboratories in specimens from the North Central Cancer Treatment Group N9831 intergroup adjuvant trial. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 24, 3032-3038.
Potente, M., Gerhardt, H., and Carmeliet, P. (2011). Basic and therapeutic aspects of angiogenesis. Cell 146, 873-887.
Radisavljevic, Z. (2013). AKT as locus of cancer multidrug resistance and fragility. Journal of cellular physiology 228, 671-674.
Reichert, J.M. (2014). Antibodies to watch in 2014: Mid-year update. mAbs 6.
Reuben, S.C., Gopalan, A., Petit, D.M., and Bishayee, A. (2012). Modulation of angiogenesis by dietary phytoconstituents in the prevention and intervention of breast cancer. Molecular nutrition & food research 56, 14-29.
Ribatti, D. (2006). Genetic and epigenetic mechanisms in the early development of the vascular system. Journal of anatomy 208, 139-152.
Robak, T. (2009). GA-101, a third-generation, humanized and glyco-engineered anti-CD20 mAb for the treatment of B-cell lymphoid malignancies. Current opinion in investigational drugs 10, 588-596.
Saharinen, P., Tammela, T., Karkkainen, M.J., and Alitalo, K. (2004). Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. Trends in immunology 25, 387-395.
Saraswati, S., Kumar, S., and Alhaider, A.A. (2013). alpha-santalol inhibits the angiogenesis and growth of human prostate tumor growth by targeting vascular endothelial growth factor receptor 2-mediated AKT/mTOR/P70S6K signaling pathway. Molecular cancer 12, 147.
Schaefer, G., Haber, L., Crocker, L.M., Shia, S., Shao, L., Dowbenko, D., Totpal, K.,
Wong, A., Lee, C.V., Stawicki, S., et al. (2011). A two-in-one antibody against HER3 and EGFR has superior inhibitory activity compared with monospecific antibodies. Cancer cell 20, 472-486.
Shipley, J.L., and Butera, J.N. (2009). Acute myelogenous leukemia. Experimental hematology 37, 649-658.
Smith, B.D., Smith, G.L., Carter, D., Sasaki, C.T., and Haffty, B.G. (2000). Prognostic significance of vascular endothelial growth factor protein levels in oral and oropharyngeal squamous cell carcinoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 18, 2046-2052.
Spratlin, J. (2011). Ramucirumab (IMC-1121B): Monoclonal antibody inhibition of vascular endothelial growth factor receptor-2. Current oncology reports 13, 97-102.
Strilic, B., Kucera, T., Eglinger, J., Hughes, M.R., McNagny, K.M., Tsukita, S., Dejana, E., Ferrara, N., and Lammert, E. (2009). The molecular basis of vascular lumen formation in the developing mouse aorta. Developmental cell 17, 505-515.
Szakacs, G., Paterson, J.K., Ludwig, J.A., Booth-Genthe, C., and Gottesman, M.M. (2006). Targeting multidrug resistance in cancer. Nature reviews Drug discovery 5, 219-234.
Takahashi, T., Yamaguchi, S., Chida, K., and Shibuya, M. (2001). A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. The EMBO journal 20, 2768-2778.
Tanaka, S., and Arii, S. (2012). Molecular targeted therapies in hepatocellular carcinoma. Seminars in oncology 39, 486-492.
Tayo, B.O., DiCioccio, R.A., Liang, Y., Trevisan, M., Cooper, R.S., Lele, S., Sucheston, L., Piver, S.M., and Odunsi, K. (2009). Complex segregation analysis of pedigrees from the Gilda Radner Familial Ovarian Cancer Registry reveals evidence for mendelian dominant inheritance. PloS one 4, e5939.
Tebbutt, N., Pedersen, M.W., and Johns, T.G. (2013). Targeting the ERBB family in
cancer: couples therapy. Nature reviews Cancer 13, 663-673.
Verma, S., Miles, D., Gianni, L., Krop, I.E., Welslau, M., Baselga, J., Pegram, M., Oh, D.Y., Dieras, V., Guardino, E., et al. (2012). Trastuzumab emtansine for HER2-positive advanced breast cancer. The New England journal of medicine 367, 1783-1791.
Welti, J., Loges, S., Dimmeler, S., and Carmeliet, P. (2013). Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. The Journal of clinical investigation 123, 3190-3200.
Wu, Y., Hooper, A.T., Zhong, Z., Witte, L., Bohlen, P., Rafii, S., and Hicklin, D.J. (2006). The vascular endothelial growth factor receptor (VEGFR-1) supports growth and survival of human breast carcinoma. International journal of cancer Journal international du cancer 119, 1519-1529.
Youssoufian, H., Hicklin, D.J., and Rowinsky, E.K. (2007). Review: monoclonal antibodies to the vascular endothelial growth factor receptor-2 in cancer therapy. Clinical cancer research : an official journal of the American Association for Cancer Research 13, 5544s-5548s.
Zagzag, D. (1995). Angiogenic growth factors in neural embryogenesis and neoplasia. The American journal of pathology 146, 293-309.
Zhang, J., Ye, J., Ma, D., Liu, N., Wu, H., Yu, S., Sun, X., Tse, W., and Ji, C. (2013). Cross-talk between leukemic and endothelial cells promotes angiogenesis by VEGF activation of the Notch/Dll4 pathway. Carcinogenesis 34, 667-677.
Zhang, L., Yu, D., Hicklin, D.J., Hannay, J.A., Ellis, L.M., and Pollock, R.E. (2002). Combined anti-fetal liver kinase 1 monoclonal antibody and continuous low-dose doxorubicin inhibits angiogenesis and growth of human soft tissue sarcoma xenografts by induction of endothelial cell apoptosis. Cancer research 62, 2034-2042.
Zhenchuk, A., Lotfi, K., Juliusson, G., and Albertioni, F. (2009). Mechanisms of anti-cancer action and pharmacology of clofarabine. Biochemical pharmacology 78, 1351-1359.
Zhu, Z., Hattori, K., Zhang, H., Jimenez, X., Ludwig, D.L., Dias, S., Kussie, P., Koo, H., Kim, H.J., Lu, D., et al. (2003). Inhibition of human leukemia in an animal model with human antibodies directed against vascular endothelial growth factor receptor 2. Correlation between antibody affinity and biological activity. Leukemia 17, 604-611.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16795-
dc.description.abstract腫瘤血管新生 (angiogenesis) 是癌症的主要特徵之一。根據以往研究顯示,血管內皮生長因子A(VEGF-A)及其受體(VEGFR-2)在腫瘤生長過程中扮演調節血管生成的重要因子,血管內皮細胞藉由 VEGF/VEGFR-2訊息傳遞路徑促進細胞之增生、存活力、遷移及轉移。因此抗血管新生策略在癌症治療中是具有前景的治療方式。為了開發抗體標靶治療,實驗室先前透過噬菌體顯現法 (phage display) 和親和力成熟技術 (affinity maturation),篩選出專一性結合VEGFR-2的人類抗體 (anti-VEGFR2-AF antibody)。本篇研究中,我們想測試anti-VEGFR2-AF抗體對於腫瘤血管新生及抑制腫瘤生長的能力,首先,我們透過即時聚合酶鏈鎖反應(real time-PCR) 觀察到在人臍靜脈內皮細胞(HUVEC)、前列腺癌細胞株(PC-3)和白血病細胞株 (HL-60)有VEGFR-2的表現,進一步利用流式細胞儀,確認anti-VEGFR2-AF antibody專一性結合到內皮細胞表面VEGFR-2比IMC- 1121B (ramucirumab) 結合力更強,IMC- 1121B是對抗VEGFR-2單株抗體,於2014年4月經由FDA通過用於胃癌晚期治療。隨後,我們發現anti-VEGFR2-AF 抗體可與VEGF-A競爭結合到內皮細胞的VEGFR-2,進而抑制VEGFR-2磷酸化和VEGFR-2 下游訊號因子Akt / MAPK / FAK 的活化。此外,anti-VEGFR2-AF抗體不只能夠引發補體依賴性細胞毒性(complement dependent cytotoxicity)和抗體依賴性細胞毒性作用(antibody-dependent cell-mediated cytotoxicity),我們發現,IMC- 1121B及 anti-VEGFR2-AF 抗體同時處理內皮細胞會導致內皮細胞中VEGFR-2蛋白降解。進一步表明,anti-VEGFR2-AF抗體明顯抑制攝護腺癌細胞 (PC-3) 的遷移,侵襲,集落形成和增生能力。在人類前列腺癌細胞異種移植的免疫缺陷型小鼠中,我們發現anti-VEGFR2-AF抗體不論單一治療或者結合化療藥物 (Docetaxel),治療後明顯抑制腫瘤的生長和腫瘤血管新生,其抑制能力更甚於IMC-1121B。另一方面,在人類急性前骨髓性白血病癌細胞異種移植的免疫缺陷型小鼠中,anti-VEGFR2-AF抗體比IMC- 1121B有更顯著性的治療效果,不僅延長存活率,甚至降低癌細胞浸潤卵巢及淋巴。綜合以上之結果, anti-VEGFR2-AF抗體透過直接標靶VEGFR-2表達的腫瘤細胞進而抑制腫瘤血管新生進及延遲腫瘤生長,未來,anti-VEGFR2-AF抗體在腫瘤治療中是具有極大的潛力。zh_TW
dc.description.abstractAngiogenesis is one of the key hallmarks of cancer. Vascular endothelial growth factor A (VEGF-A) and its receptor (VEGFR-2) play the major roles to modulate angiogenesis, which is essential for solid tumor progression. Therefore, anti-angiogenesis treatment has been a promising new form of cancer therapy. To develop antibody-based targeted therapy for cancer, we have previously performed phage display and affinity maturation techniques to generate a fully human antibody against VEGFR-2, anti-VEGFR2-AF antibody. In this study, we have investigated the potential of anti-VEGFR2-AF antibody in anti-angiogenesis and tumor suppression in vitro and in vivo. First, we observed that VEGFR-2 is expressed not only in human umbilical vein endothelial cells (HUVECs), but it is also found in prostate cancer cell lines (PC-3) and leukemia cell lines (HL-60), as shown by quantitative RT-PCR. Using flow cytometry, anti-VEGFR2-AF antibody bound to HUVECs was stronger than IMC-1121B (ramucirumab), which is an anti-VEGFR2 antibody. On April 21, 2014, the U. S. Food and Drug Administration approved ramucirumab for use as a single agent for the treatment of patients with advanced or metastatic gastric cancer. Subsequently, we showed that anti-VEGFR2-AF antibody inhibited VEGF-A-induced phosphorylation of VEGFR-2 and suppressed activation of Akt/MAPK/FAK signal transduction cascades in HUVECs. We also demonstrated that anti-VEGFR2-AF antibody was able to trigger complement dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC) in vitro. In addition, we found that treatment of HUVECs with IMC-1121B and anti-VEGFR2-AF simultaneously would cause VEGFR-2 protein degradation in HUVECs. Compared to IMC-1121B, anti-VEGFR2-AF exhibited superior ability to inhibit VEGF-A-induced migration, invasion, colony formation and viability of PC-3 cells. In prostate cancer (PC-3) xenograft mouse models, treatment with anti-VEGFR2-AF antibody both monotherapy and combination with docetaxel resulted in significantly higher reduction in tumor growth and tumor angiogenesis than treatment with IMC-1121B. Moreover, anti-VEGFR2-AF antibody possessed more significant efficacy than IMC-1121B in prolonging survival and decreasing myeloma cells infiltration of ovaries and lymph nodes in the treatment of NSG mice bearing human leukemia (HL-60). Taken together, our findings strongly suggest that anti-VEGFR2-AF human antibody may have clinical potential for cancer therapy by exerting anti-angiogenesis or by directly targeting VEGFR-2-expressing tumor cells.en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:46:14Z (GMT). No. of bitstreams: 1
ntu-103-R01444004-1.pdf: 14094156 bytes, checksum: e06a0228f829e40adeabc60361ae6484 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 i
中文摘要 iii
Abstract v
Contents vii
Content of figures and tables x
List of abbreviations xii
Introduction 1
1.1 Epidemiology, pathogenesis and hallmark of cancer 1
1.2 Cancer therapy and the obstacle of cancer treatment 2
1.3 Vasculogenesis, angiogenesis and tumor angiogenesis 4
1.4 VEGF/VEGFR-2 pathway in tumor angiogenesis 6
1.5 Tumor vascular targeting therapy 9
1.6 VEGF/VEGFR-2 pathway as a target for cancer therapy 11
1.6-1 Clinical trials for anti-angiogenesis 11
1.6-2 Resistance to anti-angiogenic therapies 12
1.7 Anti-VEGFR2 drug in clinical trial 13
Specific aim 18
Material and method 19
2.1 Cell lines and culture condition 19
2.2 Establishment of stable clone 19
2.3 Characterization of full-length human IgG by Western blot analysis 20
2.4 Antibody production and purification 21
2.5 Cell viability assay 22
2.6 Cell invasion assay 23
2.7 Scratch wound healing assay 24
2.8 Colony formation assay 24
2.9 Tube formation assay for angiogenesis 25
2.10 Flow cytometry analysis 26
2.11 Lentivirus-mediated short hairpin RNA (shRNA) knockdown 26
2.12 Protein extraction and Western blot analysis 27
2.13 RNA extraction, cDNA synthesis, polymerase chain reaction (PCR), and quantitative reverse transcription polymerase chain reaction (qRT-PCR) 29
2.14 Isolation of human peripheral blood mononuclear cells (PBMCs) from whole blood…………………………………………………………………………………30
2.15 Antibody-dependent cell mediated cytotoxicity (ADCC) assay 30
2.16 Complement-dependent cytotoxicity (CDC) assay 32
2.17 Study of VEGFR-2-targeted therapy in mice models 33
2.18 Immunofluorescence assay of frozen tissue section 35
2.19 Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) 36
2.20 Hematoxylin and Eosin (H&E) staining 36
2.21 Statistical analysis 37
Result 38
3.1 Elevation of VEGFR-2 expression in human cell lines 38
3.2 VEGFR-2 plays an important role for prostate cancer (PC-3) cells 39
3.3 The binding specificity of anti-VEGFR2-AF antibody 40
3.4 Anti-VEGFR2-AF antibody inhibited VEGFR-2 and downstream signal cascade activation in HUVECs 42
3.5 Dual antibody combinations that decrease surface receptor expression and signaling 43
3.6 Anti-VEGFR2-AF abrogates VEGF-A-induced HUVEC capillary-like structure formation and viability in vitro 45
3.7 Anti-VEGFR2-AF antibody mediates antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-mediated cytotoxicity (CDC) 46
3.8 Anti-VEGFR2-AF suppresses VEGF-A-induced function potential of prostate cancer cells (PC-3) in vitro 47
3.9 Therapeutic efficacy of anti-VEGFR2-AF antibody in human prostate cancer xenografts 48
3.10 Reduction of tumor microvessel density and increased apoptotic cells in PC-3 xenograft mice treated with anti-VEGFR2-AF human antibody 49
3.11 Combination of anti-VEGFR2-AF plus docetaxel inhibited the growth of PC-3 prostate cancer xenograft mice 50
3.12 Inhibition of VEGFR-2 prolongs survival of HL-60 leukemia xenograft mice with Anti-VEGFR2 antibody 52
Discussion 56
Reference 98
Appendix 109
dc.language.isoen
dc.subject腫瘤血管新生zh_TW
dc.subject標靶治療zh_TW
dc.subject治療性抗體zh_TW
dc.subjectVEGFR-2 (KDR)zh_TW
dc.subjecttherapeutic antibodyen
dc.subjecttargeted therapyen
dc.subjectangiogenesisen
dc.subjectVEGFR-2 (KDR)en
dc.title以小鼠模式研發對抗VEGFR2之人類抗體於癌症治療之研究zh_TW
dc.titleDevelopment of Anti-VEGFR2 Human Antibody for Cancer Therapy in Mouse Modelsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee呂仁(Joyce Jean Lu),李文山(Wen-Shan Li),蕭培文(Pei-Wen Hsiao)
dc.subject.keyword腫瘤血管新生,VEGFR-2 (KDR),治療性抗體,標靶治療,zh_TW
dc.subject.keywordangiogenesis,VEGFR-2 (KDR),therapeutic antibody,targeted therapy,en
dc.relation.page109
dc.rights.note未授權
dc.date.accepted2014-06-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept病理學研究所zh_TW
顯示於系所單位:病理學科所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
13.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved