請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16709完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李銘仁(Ming-Jen Lee) | |
| dc.contributor.author | Ya-Wen Chiang | en |
| dc.contributor.author | 江雅雯 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:44:09Z | - |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-13 | |
| dc.identifier.citation | 1. Von Recklinghausen F. Uber die Multiplen Fibrome der Haut und Ihre Beziehung zu Multiplen Neuromen. Berlin: August Hirschwald; 1882.
2. Friedman JM., Epidemiology of neurofibromatosis type 1.Am J Med Genet 1999; 89: 1–6. 3. Moore BD, Denckla MB. Neurofibromatosis. In: Yeates KO, Ris MD, Taylor HG, editors. Textbook of pediatric neuropsychology: research, theory, and practice, Ed. 1 New York, NY: Guilford Press; 2000. pp. 149–170. 4. Riccardi VM, Lewis RA. Penetrance of von Recklinghausen neurofibromatosis: a distinction between predecessors and descendants. Am J Hum Genet 1988; 42:284–289. 5. Neurofibromatosis. Conference statement. National Institutes of Health Consensus Development Conference. Arch Neurol 1988; 45:575–578. 6. Nicholas A. Koontz, Andrea L. Wiens, Atul Agarwal, Cynthia M. Hingtgen, Robert E. Emerson, Kristine M. Mosier. Schwannomatosis: The Overlooked Neurofibromatosis. AJR Am J Roentgenol. 2013 Jun;200(6). 7. Tonsgard JH. Clinical manifestations and management of neurofibromatosis type 1. Semin Pediatr Neurol 2006; 13:2–7. 8. DeBella,K., Szudek, J., & Friedman, J. M. Use of National Institutes of Health criteria for diagnosis of neurofibromatosis 1 in children. Pediatrics 2000; 105(3), 608–614. 9. Korf BR. Plexiform neurofibromas. Am J Med Genet 1999;89:31–37. 10. Riccardi VM, Womack JE, Jacks T. Neurofibromatosis and related tumors. Natural occurrence and animal models. Am J Pathol 1994; 145:994–1000. 11.Crawford AH, Schorry EK. Neurofibromatosis in children: the role of the orthopaedist. J Am Acad Orthop Surg 1999; 7:217–230. 12. Gilbert A, Brockman R. Congenital pseudarthrosis of the tibia. Long-term followup of 29 cases treated by microvascular bone transfer. Clin Orthop Relat Res 1995; 314:37–44. 13. Friedman, J.M., Birch, PH. Type Ιneurofibromatosis: a descriptive analysis of the disorder in 1,728 patients. Am J Med Genet 1997; 70: 138-143. 14. Alwan, S., Tredwell, S. J., & Friedman, J. M. Is osseous dysplasia a primary feature of neurofibromatosis 1 (NF1)? Clinical Genetics 2005; 67, 378–390. 15. Kuorilehto T1, Poyhonen M, Bloigu R, Heikkinen J, Vaananen K, Peltonen J. Decreased bone mineral density and content in neurofibromatosis type 1: lowest local values are located in the load-carrying parts of the body. Osteoporos Int. 2005 Aug;16(8):928-36. Epub 2004 Nov 16. 16. Huson, S.M., Harper, P.S., and Compston, D.A.Von Recklinghausen neurofibromatosis. A clinical and population study in south-east Wales. Brain 1988;111( Pt 6), 1355-1381. 17. Listernick R1, Charrow J, Tomita T, Goldman S. Carboplatin therapy for optic pathway tumors in children with neurofibromatosis type-1. J Neurooncol. 1999;45(2):185-90. 18. Korf, B.R. Plexiformneurofibromas. Am. J. Med. Genet 1999; 89,31-37. 19. Ilgren EB, Kinnier-Wilson LM, Stiller CA.Gliomas in neurofibromatosis: a series of 89 cases with evidence for enhanced malignancy in associated cerebellar astrocytomas.Pathol Annu. 1985;20 Pt 1:331-58. 20. Tang SC, Lee MJ, Jeng JS, Yip PK. Novel mutation of neurofibromatosis type 1 in a patient with cerebral vasculopathy and fatal ischemic stroke. J Neurol Sci 2006; 243:53–55. 21. Friedman JM1, Arbiser J, Epstein JA, Gutmann DH, Huot SJ, Lin AE, McManus B, Korf BR.Cardiovascular disease in neurofibromatosis 1: report of the NF1 Cardiovascular Task Force.Genet Med. 2002 May-Jun;4(3):105-11. 22. Levy AD1, Patel N, Dow N, Abbott RM, Miettinen M, Sobin LH.From the archives of the AFIP: abdominal neoplasms in patients with neurofibromatosis type 1: radiologic-pathologic correlation.Radiographics. 2005 Mar-Apr;25(2):455-80. 23. Walker L1, Thompson D, Easton D, Ponder B, Ponder M, Frayling I, Baralle D.A prospective study of neurofibromatosis type 1 cancer incidence in the UK.Br J Cancer. 2006 Jul 17;95(2):233-8. Epub 2006 Jun 20. 24. Ducatman BS, Scheithauer BW, Piepgras DG,et al.Malignant peripheral nerve sheath tumors. A clinicopathologic study of 120 cases. Cancer 1986; 57:2006–2021. 25. Matsui I, Tanimura M, Kobayashi N,et al.Neurofibromatosis type 1 and childhood cancer. Cancer 1993; 72:2746–2754. 26. Sorensen SA, Mulvihill JJ, Nielsen A. Long-term follow-up of von Recklinghausen neurofibromatosis. Survival and malignant neoplasms. N Engl J Med 1986; 314:1010–1015. 27. Schorry EK, Crawford AH, Egelhoff JC,et al.Thoracic tumors in children with neurofibromatosis-1. Am J Med Genet 1997; 74:533–537. 28. Belzeaux R, Lancon C. Neurofibromatosis type 1: psychiatric disorders and quality of life impairment. Presse Med 2006; 35:277–280. 29. Barton, B., & North, K. Social skills of children with neurofibromatosis type 1. Developmental Medicine & Child Neurology 2004; 46, 553–563. 30. Hyman SL1, Shores A, North KN.The nature and frequency of cognitive deficits in children with neurofibromatosis type 1.Neurology 2005 Oct 11;65(7):1037-44. 31. Lee,M.J., Dennis A, Stephenson. Recent developments in neurofibromatosis type 1.Current Opinion in neurology 2007; 20:135-141. 32. Wallace MR, Andersen LB, Fountain JW, et al. A chromosome jump crosses a translocation breakpoint in the von Recklinghausen neurofibromatosis region. Genes Chromosomes Cancer 1990; 2:271–277. 33. Viskochil D, Buchberg AM, Xu G, et al. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 1990; 62:187–192. 34. Wimmer K, Yao S, Claes K,et al.Spectrum of single- and multiexon NF1 copy number changes in a cohort of 1,100 unselected NF1 patients. Genes Chromosomes Cancer 2006; 45:265–276. 35. Han SS, Cooper DN, Upadhyaya MN. Evaluation of denaturing high performance liquid chromatography (DHPLC) for the mutational analysis of the neurofibromatosis type 1 (NF1) gene. Hum Genet 2001; 109:487–497. 36.Nishi T, Lee PS, Oka K,et al.Differential expression of two types of the neurofibromatosis type 1 (NF1) gene transcripts related to neuronal differentiation. Oncogene 1991; 6:1555–1559. 37.Suzuki Y, Suzuki H, Kayama T,et al.Brain tumors predominantly express the neurofibromatosis type 1 gene transcripts containing the 63 base insert in the region coding for GTPase activating protein-related domain. Biochem Biophys Res Commun 1991; 181:955–961. 38. Malhotra R, Ratner N. Localization of neurofibromin to keratinocytes and melanocytes in developing rat and human skin. J Invest Dermatol 1994; 102:812–818 39. Xu GF, O’Connell P, Viskochil D,et al.The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 1990; 62:599–608. 40. Cichowski, K., Jacks T. NF1 tumor suppressor gene function: narrowing the GAP. Cell 2001; 104: 593-604 41.Yue Wang, G. D. Nicol, D. Wade Clapp, Cynthia M. Hingtgen, Sensory Neurons FromNf1Haploinsufficient Mice Exhibit Increased Excitability, J Neurophysiol 2005; 94:3670-3676. 42.J.-H. Duan, Yue Wang, D. Duarte, M.R. Vasko, G.D. Nicol, C.M. Hingtgen, Ras signaling pathways mediate NGF-induced enhancement of excitability of small-diameter capsaicin-sensitive sensory neurons from wildtype but not Nf1+/−mice, Neuroscience Letters 2011; 49670–74. 43.Y. WANG, J.-H. DUAN, C. M. HINGTGEN, AND G. D. NICOL, Augmented Sodium Currents Contribute to the Enhanced Excitability of Small Diameter Capsaicin-Sensitive Sensory Neurons Isolated From Nf1+/-Mice, J Neurophysiol 2010; 103: 2085–2094. 44. Kiernan MC, Burke D, Andersen KV, Bostock H., Multiple measures of axonal excitability: a new approach in clinical testing, Muscle Nerve. 2000 Mar;23(3):399-409. 45. Kiernan MC, Ling CSY. Chp 15. Nerve excitability: a clinical translation. Aminoff's Electrodiagnosis in Clinical Neurology. 6th Ed. Elsevier 2012; p345-365. 46.Plante-Bordeneuve V, Said G. Familial amyloid polyneuropathy. Lancet Neurol. 2011 Dec;10(12):1086-97 47.Z'Graggen WJ, Lin CS, Howard RS, Beale RJ, Bostock H. Nerve excitability changes in critical illness polyneuropathy. Brain. 2006 Sep;129(Pt 9):2461-70. Epub 2006 Aug 10. 48. Karl Ng. Nerve Excitability Studies in the Present Era. ACNR • VOLUME 7 NUMBER 5 • NOVEMBER/DECEMBER 2007 49. H. Bostock, K. Cikurel, D. Burke: Threshold tracking techniques in the study of human peripheral nerve. Muscle & Nerve 1998; 21 : 137-158 50. Bostock H, Baker M, Grafe P, Reid G. Changes in excitability and accommodation of human motor axons following brief periods of ischaemia. J Physiol (Lond) 1991;441:513–535. 51. Kiernan MC, Mogyoros I, Burke D. Differences in the recovery of excitability in sensory and motor axons of human median nerve. Brain 1996;119:1099–1105. 52. Mogyoros I, Kiernan MC, Burke D. Strength–duration properties of human peripheral nerve. Brain 1996;119:439–447. 53. Meulstee J, Darbas A, van Doorn PA, van Briemen L, van der Meche’ FGA. Decreased electrical excitability of peripheral nerves in demyelinating polyneuropathies. J Neurol Neurosurg Psychiatry 1997;62:398–400. 54.Baker, M., Bostock, H., Grafe, P., Martius, P. Function and distribution of three types of rectifying channel in rat spinal root myelinated axons. J. Physiol 1987; 383, 45–67 55. Pape HC. Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol 1996;58:299–327. 56. Bostock H. Mechanisms of accommodation and adaptation in myelinated axons. In: Waxman SG, Stys PK, Kocsis JD, editors. The axon. Oxford: Oxford University Press; 1995. p 311–327. 57. Eisen A, Paty D, Hoirch M. Altered supernormality in multiple sclerosis peripheral nerve. Muscle Nerve 1982;5:411–414. 58. Gilliatt RW, Willison RG. The refractory and supernormal periods of the human median nerve. J Neurol Neurosurg Psychiatry 1963;26:136–147. 59.R E Ferner, R A C Hughes, S M Hall, M Upadhyaya, M R Johnson. Neurofibromatous neuropathy in neurofibromatosis 1 (NF1). J Med Genet 2004;41:837–841. doi: 10.1136/jmg.2004.021683. 60. Alain Drouet, Pierre Wolkenstein, Jean-Pascal Lefaucheur, Ste’phane Pinson, Patrick Combemale, Romain K. Gherardi, Pierre Brugie`res, Jeffrey Salama, Pascal Ehre, Philippe Decq, and Alain Cre’ange. Neurofibromatosis 1-associated neuropathies: a reappraisal. Brain 2004; 127, 1993–2009. 61. Hodgkin, A. L.; Huxley, A. F. 'A quantitative description of membrane current and its application to conduction and excitation in nerve'. The Journal of physiology 1952; 117 (4): 500–544. 62. Barnett MW, Larkman PM. 'The action potential'. Pract Neurol 2007 June; 7 (3): 192–7. 63. Ashley, et al. 'Determination of the Chronaxie and Rheobase of Denervated Limb Muscles in Conscious Rabbits'. Artificial Organs 2005 March; Volume 29 Issue 3 Page 212. 64. Boinagrov, D., et al..'Strength-duration relationship for extracellular neural stimulation: Numerical and analytical models'. Journal of Neurophysiology 2010; 194, 2236–2248. 65. Weiss, G. Sur la possibilite’ de rendre comparables entre eux les appareils servant l’excitation e’ lectrique. Arch. Ital. Biol 1901; 35, 413–446. 66. Kiernan MC, Bostock H. Effects of membrane polarization and ischaemia on the excitability properties of human motor axons. Brain 2000;123:2542-2551. 67. Schwarz JR, Reid G, Bostock H. Action potentials and membrane currents in the human node of Ranvier. Pflugers Arch 1995;430:382-392. 68. Goldin AL. Diversity of mammalian voltage-gated sodium channels. Ann N Y Acad Sci 1999;868:38-50. 69.Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, Kallen RG, Mandel G, Meisler MH, Netter YB, Noda M, Tamkun MM, Waxman SG, Wood JN, Catterall WA. Nomenclature of voltage-gated sodium channels. Neuron 2000;28:365-368. 70. Caldwell JH, Shaller KL, Lasher RS, Peles E, Levinson SR. Sodium channel Na(v)1.6 is localized at nodes of Ranvier, dendrites, and synapses. Proc Natl Acad Sci USA 2000;97:5616-5620. 71. Bostock H, Rothwell JC. Latent addition in motor and sensory fibres of human peripheral nerve. J Physiol (Lond) 1997;498:277-294. 72. Vogel W, Schwarz JR. Voltage-clamp studies on axons: macroscopic and single-channel currents. In: Waxman SG, Stys PK, Kocsis JD, editors. The axon, Oxford: Oxford University Press, 1995. pp. 257-280. 73. Ritchie JM. Physiology of axons. In: Waxman SG, Stys PK, Kocsis JD, editors. The axon, Oxford: Oxford University Press, 1995. pp. 68-96. 74. David Burkea, Matthew C. Kiernana,b, Hugh Bostock. Excitability of human axons. Clinical Neurophysiology 2001;112 :1575-1585. 75. Baker MD. Axonal flip-flops and oscillators. Trends Neurosci 2000;23:514-519. 76. Arun V. Krishnan, Cindy S.-Y. Lin, Susanna B. Park, Matthew C. Kiernan.Axonal ion channels from bench to bedside: A translational neuroscience perspective Progress in Neurobiology 2009; 89: 288–313. 77. Bostock, H. The strength–duration relationship for excitation of myelinated nerve: computed dependence on membrane parameters. J. Physiol 1983; 341, 59–74. 78. Bostock, H., Rothwell, J.C. Latent addition in motor and sensory fibres of human peripheral nerve. J. Physiol 1997; 498, 277–294. 79. Kiernan,M.C., Burke, D., Andersen, K.V., Bostock, H. Multiple measures of axonal excitability: a new approach in clinical testing. Muscle Nerve 2000; 23, 399–409. 80. Hodgkin, A.L., Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol 1952; 117,500–544. 81. Poliak & E. Peles. 'The local differentiation of myelinated axons at nodes of Ranvier'. Nature Reviews Neuroscience 2006; 12 (4): 968–80. 82.Simons M, Trotter J. 'Wrapping it up: the cell biology of myelination'. Curr. Opin. Neurobiol 2007 October; 17 (5): 533–40. 83. Lillie RS . 'Factors affecting transmission and recovery in passive iron nerve model'. J. Gen. Physiol 1925; 7 (4): 473–507. 84. M C Kiernan, I K Hart, H Bostock. Excitability properties of motor axons in patients with spontaneous motor unit activity. J Neurol Neurosurg Psychiatry 2001;70:56–64. 85. Park, S.B., Goldstein, D., Lin, C.S-Y., Krishnan, A.V., Friedlander, M.L., Kiernan, M.C. Acute abnormalities of sensory nerve function associated with oxaliplatin-induced neurotoxicity. J. Clin. Oncol 2009; 27, 1243–1249. 86.Kiernan, M.C., Krishnan, A.V. The pathophysiology of oxaliplatin-induced neurotoxicity. Curr. Med. Chem 2006; 13, 2901–2907. 87. Kitano, Y., Kuwabara, S., Misawa, S., Ogawara, K., Kanai, K., Kikkawa, Y., Yagui, K.,Hattori, T.,. The acute effects of glycemic control on axonal excitability in human diabetics. Ann. Neurol 2004;56, 462–467. 88.Krishnan, A.V., Kiernan, M.C. Altered nerve excitability properties in established diabetic neuropathy. Brain 2005; 128, 1178–1187. 89. Kiernan, M.C., Lin, C.S., Andersen, K.V., Murray, N.M., Bostock, H. Clinical evaluation of excitability measures in sensory nerve.Muscle Nerve 2001;24, 883–892. 90. Bostock, H., Grafe, P. Activity-dependent excitability changes in normal and demyelinated rat spinal root axons. J. Physiol 1985; 365, 239–257. 91. Vagg, R., Mogyoros, I., Kiernan, M.C., Burke, D. Activity-dependent hyperpolarization of human motor axons produced by natural activity. J. Physiol 1998;507,919–925. 92. Kiernan, M.C., Lin, C.S.-Y., Burke, D. Differences in activity-dependent hyperpolarization in human sensory and motor axons. J. Physiol 2004; 558, 341–349. 93. Bostock, H., Bergmans, J. Post-tetanic excitability changes and ectopic discharges in a human motor axon. Brain 1994; 117, 913–928. 94. Le LQ, Parada LF 'Tumor microenvironment and neurofibromatosis type I: connecting the GAPs'. Oncogene 2007 Jul 12; 26(32): 4609–4616. 95. Van Asseldonk, J.-T.H., Franssen, H., Van den Berg-Vos, R.M., Wokke, J.H.J., Van den Berg, L.H. Multifocal motor neuropathy. Lancet Neurol 2005; 4, 309–319. 96. Kiernan,M.C., Guglielmi, J.M., Kaji, R., Murray, N.M., Bostock, H. Evidence for axonal membrane hyperpolarization in multifocal motor neuropathy with conduction block. Brain.2002a; 125, 664–675. 97. Cappelen-Smith, C., Kuwabara, S., Lin, C.S., Burke, D. Abnormalities of axonal excitability are not generalized in early multifocal motor neuropathy. Muscle Nerve. 2002; 26, 769–776. 98. K. E. HODGDON, C. M. HINGTGENa, G. D. NICOLa.DORSAL ROOT GANGLIA ISOLATED FROM Nf1 +/- MICE EXHIBIT INCREASED LEVELS OF mRNA EXPRESSION OF VOLTAGEDEPENDENT SODIUM CHANNELS.Neuroscience 2012; 206 237–244. 99. R E Ferner, R A C Hughes, S M Hall, M Upadhyaya, M R Johnson. Neurofibromatous neuropathy in neurofibromatosis 1 (NF1). J Med Genet 2004;41:837–841. doi: 10.1136/jmg.2004.021683 100. LYNNE A. FIEBER. Voltage-Gated Ion Currents of Schwann Cells in Cell Culture Models of Human Neurofibromatosis. JOURNAL OF EXPERIMENTAL ZOOLOGY 2003; 300A:76–83. 101. Sobko A, Peretz A, Attali B. Constitutive activation of delayed-rectifier potassium channels by a src family tyrosine kinase in Schwann cells. EMBO J. 1998 Aug 17;17(16):4723-34. 102. Peretz A, Sobko A, Attali B. Tyrosine kinases modulate K+ channel gating in mouse Schwann cells. J Physiol. 1999 Sep 1;519 Pt 2:373-84. 103. Nisenbaum ES, Xu ZC, Wilson CJ. Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons. J Neurophysiol. 1994 Mar;71(3):1174-89. 104. K. E. HODGDON, C. M. HINGTGEN, AND G. D. NICOL. DORSAL ROOT GANGLIA ISOLATED FROM Nf1 +/- MICE EXHIBIT INCREASED LEVELS OF mRNA EXPRESSION OF VOLTAGEDEPENDENT SODIUM CHANNELS. Neuroscience 206 (2012) 237–244. 105. J.-H. DUAN, K. E. HODGDON, C. M. HINGTGEN. G. D. NICOL. N-TYPE CALCIUM CURRENT, CAV2.2, IS ENHANCED IN SMALL-DIAMETER SENSORY NEURONS ISOLATED FROM NF1+/- MICE.Neuroscience 270 (2014) 192–202. 106. L.A. Fieber. Ionic Currents in Normal and Neurofibromatosis Type 1-Affected Human Schwann Cells: Induction of Tumor Cell K Current in Normal Schwann Cells by CyclicAMP.Journal of Neuroscience Research (1998). 54:495–506. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16709 | - |
| dc.description.abstract | 神經系統疾病神經纖維瘤第一型 (neurofibromatosis type1,NF1)的發生率約1/3000-4000為常見單一基因的體染色體顯性遺傳疾病。其外顯率100%,是一種進行性、持續性、變異性相當高的遺傳疾病。NF1約有1.3-2.3%神經病變症狀,且常有疼痛問題主訴。傳統的神經傳導檢查及肌電圖,對於膜電位的改變及神經的興奮性而言,無法提供相關的資訊。因此本實驗在於利用新的神經興奮傳導檢查儀器,來比較NF1與一般人臨床上神經膜電位的改變,及神經的興奮性變化,相關之研究。
神經興奮傳導檢查結果可分出(1) 刺激-反應曲線、(2) 強度 - 持續時間、(3) 閾值電緊張 、(4) 電流 - 電壓曲線 (5) 恢復週期。 在這項研究中,我們共收集神經纖維瘤第一型患者75人,正常對照組共計70 人。每位受試者評估5個項目,部位為正中神經,尺神經的感覺及運動神經及脛骨神經之運動神經。 我們發現在刺激-反應曲線和強度 - 持續時間實驗結果中,NF1與健康正常人相比正中神經之運動及感覺軸索及尺神經感覺神經軸索在(1)Stimulus for 50% max response所需電流量偏高,(2) Rheobase實驗結果中偏高。代表NF1病人的動作電位需要更大的刺激。可能推測的原因是NF1,有些神經束密度不同;又許旺細胞腫瘤的異常增生,導致髓鞘減少或是在某些區域髓鞘消失。 因此可能對paranode的快速鉀離子通道造成影響。 在閾值電緊張實驗結果中,尺神經之感覺神經在過極化方面有許多顯著差異,包含TEh(overshoot)偏低等。可能表示在此區域慢速K+增加,這個結果可能是因為Na+/K+ pump失去功能,造成傳導被抑制 。 在電流 - 電壓曲線實驗結果中,NF1與健康正常人的比較,正中神經之運動神經、尺神經之運動神經、脛骨神經之運動神經Hyperpolarization I/V slope皆向上偏,為外向整流(outward rectification) 的電流出現。NF1許旺細胞瘤的增生引起鉀通道被阻斷,導致NF1過極化現象比一般人明顯。 在恢復週期實驗結果中,NF1病人感覺神經Latency時間較短,是由時NF1產物neurofibromin易造成感覺神經元敏感,在神經傳導上可能導致發射間隔時間變少,可能讓神經纖維瘤第一型病人較容易感受到疼痛的感覺。 Refractoriness at 2.5ms尺神經之運動神經及正中神經之感覺神經閾值的改變百分比偏少,意謂著再產生動作電位的閾值較低。NF1在相對不反應期所需的刺激閾值較低,表示鈉離子通道的復活較一般人快。 神經纖維瘤第一型之神經病變的神經興奮性改變,仍未被仔細研究過,故經由神經興奮傳導檢查所得到的結果,提供給我們更多的訊息,在遺傳諮詢方面,可用來解釋為何神經纖維瘤第一型病患易感到疼痛麻刺感的有力證明,並期能提供未來臨床上的參考。 | zh_TW |
| dc.description.abstract | Neurofibromatosis type 1 (NF1) is a common autosomal dominant disorder, affecting approximately one in every 4000 individuals. Although the penetrance rate for NF1 is 100%, the clinical features are highly variable among families as well as intra-family. It has been estimated that 1.3~2.3% of NF1 patients has neuropathic symptoms, and neuropathic pain is one of the common complaints. Traditional nerve conduction test and electromyography which is usually unremarkable in NF1 patients, cannot provide information such as changes in membrane potentials and nerve excitability. This study employed the newly developed nerve excitability test (NET) to compare the parameters of nerve membrane potential and axonal excitability between NF1 and healthy individuals.
In this study, we have recruited 75 NF1 patients and 70 healthy individuals as normal controls. Every subject is evaluated in 5 individual nerves: median motor and sensory nerve, ulnar motor and sensory nerve, and tibial motor nerve. The results of the NET can be divided into 5 main categories: (1) SR, stimulation-response curve; (2) Strength-duration curve; (3) Threshold electrotonus; (4) Current-voltage curve; and (5) Recovery cycle. In the stimulation-response curve test, NF1 subjects had higher rheobase and higher current in stimulus for 50% max response in the motor axons of median nerve and the sensory one in both median and ulnar nerves. The reason might be due to different density of the nerve fascicles and dysmyelation of some nerve areas in NF1 patients, which could cause inactivation of the fast K+ channels at the paranodal region. In the threshold electrotonus test, NF1 subjects had lower TEh (overshoot) in the sensory axons of the ulnar nerve. This indicates an increase in slow K+ current and keep the axonal membrane in a hyperpolarization state which possibly reasults from the dysfunction of the Na+/K+ pump in the conduction block region. In the current-voltage curve test, the NF1 subjects had significantly higher Hyperpolarization I/V slope in the motor axons of the median, ulnar and tibial nerves compared to that of the controls. This might due to the increase of the outward rectification of the K+ current causing a slow polarizating effect. Proliferation of schwannoma cells in NF1 will cause increasing of K+ outward current and result in a more obvious hyperpolarization than healthy subjects. In the Recovery cycle test, compared to controls, the latency of the sensory axons in NF1 patients is conspicuously short rendering the high frequency of neuropathic pain in NF1 patients. The refractoriness at 2.5ms showed a significant low threshold in the motor axons of the ulnar and sensory ones in the median nerves of the NF1 subjects, indicating that the threshold to generate a new action potential is reduced. Concerning the threshold in RRP (relative refractory periods), NF1 patients had a significant low threshold comparing to that of controls suggesting the reactivation of the nodal Na+ channel is faster in NF1 patients than in healthy subjects. The nerve excitability change in NF1 neuropathy has not yet being well studied. The results from our study provide more information about the changes of the electrophysiological parameters in NF1 which will facilitate our understanding of the neuropathic pain in NF1. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:44:09Z (GMT). No. of bitstreams: 1 ntu-103-P00448006-1.pdf: 2902530 bytes, checksum: b5e3e8787ee1396e672a38e789f23339 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 總目 錄
頁次 口試委員會審定書……………………………………………………………… i 誌謝………………………………………………………………………………. ii 中文摘要………………………………………………………………………… iii 英文摘要…………………………………………………………………………. v 目 錄…………………………………………………………………………………I 表目錄………………………………………………………………………………III 圖目錄……………………………………………………………………………….V 第一章、導論 1.1神經纖維瘤疾病簡………………………………………………………………1 1.2神經纖維瘤臨床表現……………………………………………………………3 1.3本論文研究重點…………………………………………………………………6 1.4電生理概論……………………………………………………………………....8 1.5閾值跟蹤方法…………………………………………………………………...12 第二章、研究方法 2.1測試者選擇………………………………………………………………………19 2.2實驗設計…………………………………………………………………………19 2.3實驗儀器及器材…………………………………………………………………20 2.4實驗步驟………………………………………………………………………... 21 2.5資料之蒐集處理評估及統計分析方法………………………………………... 23 第三章、結果 3.1神經纖維瘤第一型與對照組正中神經、尺神經及脛骨神經之運動神經的 神經興奮性檢查結較…………………………………………………………….…26 3.2神經纖維瘤第一型與對照組正中神經及尺神經之感覺神經的 神經興奮性檢查結果比較………………………………………………………….32 第四章、討論……………………………………………………………………….37 第五章、參考文獻…………………………………………………………………..43 表 目 錄 頁次 表 1、 神經纖維瘤的各項臨床表徵………………………………………………55 表2、神經興奮性檢查分類人數統整…………...…………………………………56 表3、神經纖維瘤第一型共計75人臨床症狀統計.................................................57 表4、ID Pain中文版………………………………………………………………..58 表5A、ID Pain分析-神經纖維瘤第一型除了頭痛和偏頭痛外有疼痛經驗者…..59 表5B、ID Pain疼痛項目分析………………………………………………………59 表6A正中神經之運動神經刺激反應參數…………………………………………60 表6B尺神經之運動神經刺激反應參數……………………………………………60 表6C脛骨神經之運動神經刺激反應參數…………………………………………60 表7A正中神經之運動神經的閾值電緊張參數……………………………………61 表7B尺神經之運動神經的閾值電緊張參數………………………………………62 表7C脛骨神經之運動神經的閾值電緊張參數…………………………………....63 表8A正中神經之運動神經的電流 - 電壓曲線參數…………..……………….…64 表8B尺神經之運動神經的電流 - 電壓曲線參數…………..………………….…64 表8C脛骨神經之運動神經的電流 - 電壓曲線參數……………………….……..64 表9A正中神經之運動神經的恢復週期參數……………………………………....65 表9B尺神經之運動神經的恢復週期參數…………………………………………65 表9C脛骨神經之運動神經的恢復週期參數………………………………………66 表10A正中神經之感覺神經刺激反應參數………………………………………..67 表10B尺神經之感覺神經刺激反應參數…………………………………………..67 表11A正中神經之感覺神經的閾值電緊張參數……………………………….….68 表11B尺神經之感覺神經的閾值電緊張參數……………………………………..69 表12A正中神經之感覺神經的電流 - 電壓曲線參數…………………………….70 表12B尺神經之感覺神經的電流 - 電壓曲線參數……………………………….70 表13A正中神經之感覺神經的恢復週期參數……………………………………..71 表13B尺神經之感覺神經的恢復週期參數………………………………………..71 表14 Hyperpol. I/V slope…………………………………………………………….72 圖 目 錄 頁次 圖1、動作電位……………………………………………………………………....73 圖2、軸突的離子分布………………………………………………………………74 圖3、神經性肌強直及肌肉萎縮實驗結果…………………………………………75 圖4、Chemotherapy-induced neurotoxicity………………………………………....76 圖5、 Diabetic neuropathy……………………………………….………………….77 圖6、神經興奮性檢查過程記錄…………………………………………………....78 圖7、刺激-反應曲線…………………………………………………………………79 圖8、強度 - 持續時間曲線……………………………………………..…………..80 圖9、閾值電緊張…………………………………………………………………….81 圖10、電流 - 電壓曲線……………………………………………………………..82 圖11、恢復週期………………………………………………………………….…..83 圖12、實驗儀器……………………………………………………………………...84 圖13、實驗衛材……………………………………………………………….….….85 圖14、檢查環境……………………………………………………………….……..86 圖15A、正中神經之運動神經……………………………………………………….87 圖15B、正中神經之感覺神經………………………………………………………87 圖16A、尺神經之運動神經………………………………………………………….88 圖16B、尺之感覺神經………………………………………………………………88 圖17、脛骨神經之運動神經………………………………………………………..89 圖18、找出正極貼片最合適位置…………………………………………………..90 圖19A、正中神經之運動神經的刺激-反應曲線比較……………………………..91 圖19B、尺神經之運動神經的刺激-反應曲線比較………………………………..99 圖19C、脛骨神經神經之運動神經的刺激-反應曲線比較…………………….….92 圖20A、正中神經之運動神經的強度 - 持續時間曲線比較……………….…….93 圖20B、尺神經之運動神經的強度 - 持續時間曲線比較………………….…….94 圖20C、脛骨神經神經之運動神經的強度 - 持續時間曲線比較…….………….95 圖21A、正中神經之運動神經的閾值電緊張比較…………………………….…..96 圖21B、尺神經之運動神經的閾值電緊張比較…………………………………...96 圖21C、脛骨神經之運動神經的閾值電緊張比較………………………….…….97 圖22A、正中神經之運動神經的電流 - 電壓曲線比較………………………….98 圖22B、尺神經之運動神經的電流 - 電壓曲線比較…………………………….98 圖22C、脛骨神經之運動神經的電流 - 電壓曲線比較…………………………99 圖23A、正中神經之運動神經的恢復週期曲線比較…………………………….100 圖23B、尺神經之運動神經的恢復週期曲線比較……………………………….100 圖23C、脛骨神經之運動神經的恢復週期曲線比較…………………………...101 圖24A、正中神經之感覺神經的刺激-反應曲線比較…………………………..102 圖24B、尺神經之感覺神經的刺激-反應曲線比較……………………………..102 圖25A、正中神經之感覺神經的強度 - 持續時間曲線比較…………………..103 圖25B、尺神經之感覺神經的強度 - 持續時間曲線比較………………….….104 圖26A、正中神經之感覺神經的閾值電緊張比較……………………………..105 圖26B、尺神經之感覺神經的閾值電緊張比較………………………………..105 圖27A、正中神經之感覺神經的電流 - 電壓曲線比較……………………….106 圖27B、尺神經之感覺神經的電流 - 電壓曲線比較………………………….106 圖28A、正中神經之感覺神經的恢復週期曲線比較…………………………..107 圖28B、尺神經之感覺神經的恢復週期曲線比較……………………………..107 圖29 、Multifocal motor neuropathy………………………………………….…108 圖30、運動及感覺軸突興奮比較……………………………………………….109 | |
| dc.language.iso | zh-TW | |
| dc.subject | 神經纖維瘤第一型 | zh_TW |
| dc.subject | 閾值追蹤 | zh_TW |
| dc.subject | 鉀離子 | zh_TW |
| dc.subject | 鈉離子 | zh_TW |
| dc.subject | 神經興奮傳導檢查 | zh_TW |
| dc.subject | 臨床表現型 | zh_TW |
| dc.subject | nerve excitability test | en |
| dc.subject | threshold tracking | en |
| dc.subject | K+ channel | en |
| dc.subject | NF1 | en |
| dc.subject | phenotype | en |
| dc.subject | Na+ channel | en |
| dc.title | 神經纖維瘤第一型神經激活表現變化之探討 | zh_TW |
| dc.title | Manifestations of axonal excitability in patients with neurofibromatosis type 1 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 宋家瑩(Jia-Ying Sung),陳志成(Chih-Cheng Chen) | |
| dc.subject.keyword | 神經纖維瘤第一型,臨床表現型,神經興奮傳導檢查,鈉離子,鉀離子,閾值追蹤, | zh_TW |
| dc.subject.keyword | NF1,phenotype,nerve excitability test,Na+ channel,K+ channel,threshold tracking, | en |
| dc.relation.page | 109 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-07-14 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
