Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16684
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林和,周佳
dc.contributor.authorChiung-Yin Changen
dc.contributor.author張瓊尹zh_TW
dc.date.accessioned2021-06-07T23:43:34Z-
dc.date.copyright2014-07-29
dc.date.issued2014
dc.date.submitted2014-07-17
dc.identifier.citationArakawa, A., and W. H. Schubert, 1974: Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I. J. Atmos. Sci., 31, 674-701.
Arnold, N. P., Z. Kuang, and E. Tziperman, 2012: Enhanced MJO-like Variability at High SST. J. Climate, 26, 988-1001.
Back, L. E., and C. S. Bretherton, 2005: The Relationship between Wind Speed and Precipitation in the Pacific ITCZ. J. Climate, 18, 4317-4328.
——, and ——, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophy. Res. Lett., 33.
——, and ——, 2009: A Simple Model of Climatological Rainfall and Vertical Motion Patterns over the Tropical Oceans. J. Climate, 22, 6477-6497.
Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677-691.
Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between Water Vapor Path and Precipitation over the Tropical Oceans. J. Climate, 17, 1517-1528.
——, P. N. Blossey, and M. Khairoutdinov, 2005: An Energy-Balance Analysis of Deep Convective Self-Aggregation above Uniform SST. J. Atmos. Sci., 62, 4273-4292.
Chan, S. C., and S. Nigam, 2009: Residual Diagnosis of Diabatic Heating from ERA-40 and NCEP Reanalyses: Intercomparisons with TRMM. J. Climate, 22, 414-428.
Chou, C., and B.-T. Jong: Association of gross moist stability with shallow and deep convection. J. Climate, submitted.
——, and J. D. Neelin, 2004: Mechanisms of Global Warming Impacts on Regional Tropical Precipitation*. J. Climate, 17, 2688-2701.
——, T.-C. Wu, and P.-H. Tan, 2013: Changes in gross moist stability in the tropics under global warming. Climate Dyn., 41, 2481-2496.
——, J. D. Neelin, C.-A. Chen, and J.-Y. Tu, 2009: Evaluating the “Rich-Get-Richer” Mechanism in Tropical Precipitation Change under Global Warming. J. Climate, 22, 1982-2005.
——, C.-A. Chen, P.-H. Tan, and K. T. Chen, 2011: Mechanisms for Global Warming Impacts on Precipitation Frequency and Intensity. J. Climate, 25, 3291-3306.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597.
Emanuel, K. A., J. David Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 1111-1143.
England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Climate Change, 4, 222-227.
Fu, Q., and C. M. Johanson, 2005: Satellite-derived vertical dependence of tropical tropospheric temperature trends. Geophy. Res. Lett., 32, L10703.
Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447-462.
Hagos, S., and Coauthors, 2010: Estimates of Tropical Diabatic Heating Profiles: Commonalities and Uncertainties. J. Climate, 23, 542-558.
Hartmann, D. L., H. H. Hendon, and R. A. Houze, 1984: Some Implications of the Mesoscale Circulations in Tropical Cloud Clusters for Large-Scale Dynamics and Climate. J. Atmos. Sci., 41, 113-121.
Hilburn, K. A., and F. J. Wentz, 2008: Intercalibrated Passive Microwave Rain Products from the Unified Microwave Ocean Retrieval Algorithm (UMORA). J. Appl. Meteor. Climatol., 47, 778-794.
Holloway, C. E., and J. D. Neelin, 2007: The Convective Cold Top and Quasi Equilibrium. J. Atmos. Sci., 64, 1467-1487.
——, and ——, 2009: Moisture Vertical Structure, Column Water Vapor, and Tropical Deep Convection. J. Atmos. Sci., 66, 1665-1683.
Houze, R. A., 1997: Stratiform Precipitation in Regions of Convection: A Meteorological Paradox? Bull. Amer. Meteor. Soc., 78, 2179-2196.
——, 2003: From Hot Towers to TRMM: Joanne Simpson and Advances in Tropical Convection Research. Meteor. Monogr., 29, 37-37.
Johnson, N. C., and S.-P. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nature Geosci., 3, 842-845.
Johnson, R. H., 1984: Partitioning Tropical Heat and Moisture Budgets into Cumulus and Mesoscale Components: Implications for Cumulus Parameterization. Mon. Wea. Rev., 112, 1590–1601.
——, and X. Lin, 1997: Episodic Trade Wind Regimes over the Western Pacific Warm Pool. J. Atmos. Sci., 54, 2020-2034.
——, P. E. Ciesielski, and T. M. Rickenbach: A further look at Q1 and Q2 from TOGA COARE. AMS Monograph Tribute to Michio Yanai.
——, T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal Characteristics of Tropical Convection. J. Climate, 12, 2397-2418.
Kodama, Y.-M., M. Katsumata, S. Mori, S. Satoh, Y. Hirose, and H. Ueda, 2009: Climatology of Warm Rain and Associated Latent Heating Derived from TRMM PR Observations. J. Climate, 22, 4908-4929.
Kuo, H. L., 1965: On Formation and Intensification of Tropical Cyclones Through Latent Heat Release by Cumulus Convection. J. Atmos. Sci., 22, 40-63.
Ling, J., and C. Zhang, 2013: Diabatic Heating Profiles in Recent Global Reanalyses. J. Climate, 26, 3307-3325.
Liu, Z., D. Ostrenga, W. Teng, and S. Kempler, 2012: Tropical Rainfall Measuring Mission (TRMM) Precipitation Data and Services for Research and Applications. Bull. Amer. Meteor. Soc., 93, 1317-1325.
Ma, J., and S.-P. Xie, 2012: Regional Patterns of Sea Surface Temperature Change: A Source of Uncertainty in Future Projections of Precipitation and Atmospheric Circulation*. J. Climate, 26, 2482-2501.
Manabe, S., J. Smagorinsky, and R. F. Strickler, 1965: SIMULATED CLIMATOLOGY OF A GENERAL CIRCULATION MODEL WITH A HYDROLOGIC CYCLE1. Mon. Wea. Rev., 93, 769-798.
Mapes, B. E., and R. A. Houze, 1995: Diabatic Divergence Profiles in Western Pacific Mesoscale Convective Systems. J. Atmos. Sci., 52, 1807-1828.
Muller, C. J., 2013: Impact of Convective Organization on the Response of Tropical Precipitation Extremes to Warming. J. Climate, 26, 5028-5043.
——, P. A. O’Gorman, and L. E. Back, 2011: Intensification of Precipitation Extremes with Warming in a Cloud-Resolving Model. J. Climate, 24, 2784-2800.
Neelin, J. D., 2007: Moist dynamics of tropical convection zones in monsoons, teleconnections and global warming. The Global Circulation of the Atmosphere, T. Schneider, and A. H. Sobel, Eds., Princeton University Press, 400.
——, and I. M. Held, 1987: Modeling Tropical Convergence Based on the Moist Static Energy Budget. Mon. Wea. Rev., 115, 3-12.
——, and J.-Y. Yu, 1994: Modes of Tropical Variability under Convective Adjustment and the Madden–Julian Oscillation. Part I: Analytical Theory. J. Atmos. Sci., 51, 1876-1894.
Nigam, S., C. Chung, and E. DeWeaver, 2000: ENSO Diabatic Heating in ECMWF and NCEP–NCAR Reanalyses, and NCAR CCM3 Simulation. J. Climate, 13, 3152-3171.
Nitta, T., and S. Esbensen, 1974: Heat and Moisture Budget Analyses Using BOMEX Data. Mon. Wea. Rev., 102, 17-28.
O’Gorman, P. A., and T. Schneider, 2009: Scaling of Precipitation Extremes over a Wide Range of Climates Simulated with an Idealized GCM. J. Climate, 22, 5676-5685.
——, and ——, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Nat. Acad. Sci., 106, 14773-14777.
——, 2012: Sensitivity of tropical precipitation extremes to climate change. Nature Geosci., 5, 697-700.
Peters, M. E., and C. S. Bretherton, 2006: Structure of tropical variability from a vertical mode perspective. Theor. Comp. Fluid Dyn., 20, 501-524.
Pierrehumbert, R. T., H. Brogniez, and R. Roca, 2007: On the Relative Humidity of the Atmosphere. The Global Circulation of the Atmosphere, T. Schneider, and A. H. Sobel, Eds., Princeton University Press, 400.
Raymond, D. J., S. L. Sessions, A. H. Sobel, and Ž. Fuchs, 2009: The Mechanics of Gross Moist Stability. J. Adv. in Model. Earth Syst., 1, 9.
Riehl, H., and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica, 6, 503-538.
Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 3624-3648.
Romps, D. M., 2010: Response of Tropical Precipitation to Global Warming. J. Atmos. Sci., 68, 123-138.
Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 1015-1057.
Schumacher, C., and R. A. Houze, 2003: The TRMM Precipitation Radar's View of Shallow, Isolated Rain. J. Appl. Meteor., 42, 1519-1524.
——, ——, and I. Kraucunas, 2004: The Tropical Dynamical Response to Latent Heating Estimates Derived from the TRMM Precipitation Radar. J. Atmos. Sci., 61, 1341-1358.
——, M. H. Zhang, and P. E. Ciesielski, 2007: Heating Structures of the TRMM Field Campaigns. J. Atmos. Sci., 64, 2593-2610.
——, P. E. Ciesielski, and M. H. Zhang, 2008: Tropical Cloud Heating Profiles: Analysis from KWAJEX. Mon. Wea. Rev., 136, 4289-4300.
Short, D. A., and K. Nakamura, 2000: TRMM Radar Observations of Shallow Precipitation over the Tropical Oceans. J. Climate, 13, 4107-4124.
Siebesma, A. P., 1998: Shallow Cumulus Convection. Buoyant Convection in Geophysical Flows, E. J. Plate, E. E. Fedorovich, D. X. Viegas, and J. C. Wyngaard, Eds., Springer Netherlands, 441-486.
Sobel, A. H., 2007: Simple models of ensemble-averaged precipitation and surface wind, given the SST. The Global Circulation of the Atmosphere, T. Schneider, and A. H. Sobel, Eds., Princeton University Press, 400.
——, and J. D. Neelin, 2006: The boundary layer contribution to intertropical convergence zones in the quasi-equilibrium tropical circulation model framework. Theor. Comp. Fluid Dyn., 20, 323-350.
——, J. Nilsson, and L. M. Polvani, 2001: The Weak Temperature Gradient Approximation and Balanced Tropical Moisture Waves*. J. Atmos. Sci., 58, 3650-3665.
——, I. M. Held, and C. S. Bretherton, 2002: The ENSO Signal in Tropical Tropospheric Temperature. J. Climate, 15, 2702-2706.
Stachnik, J. P., C. Schumacher, and P. E. Ciesielski, 2013: Total Heating Characteristics of the ISCCP Tropical and Subtropical Cloud Regimes. J. Climate.
Su, H., and J. D. Neelin, 2002: Teleconnection Mechanisms for Tropical Pacific Descent Anomalies during El Nino*. J. Atmos. Sci., 59, 2694-2712.
——, and ——, 2003: The Scatter in Tropical Average Precipitation Anomalies*. J. Climate, 16, 3966-3977.
Sugiyama, M., H. Shiogama, and S. Emori, 2010: Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proc. Nat. Acad. Sci., 107, 571-575.
Takayabu, Y. N., S. Shige, W.-K. Tao, and N. Hirota, 2010: Shallow and Deep Latent Heating Modes over Tropical Oceans Observed with TRMM PR Spectral Latent Heating Data. J. Climate, 23, 2030-2046.
Tiedtke, M., W. A. Heckley, and J. Slingo, 1988: Tropical forecasting at ECMWF: The influence of physical parametrization on the mean structure of forecasts and analyses. Quart. J. Roy. Meteor. Soc., 114, 639-664.
Tobin, I., S. Bony, and R. Roca, 2012: Observational Evidence for Relationships between the Degree of Aggregation of Deep Convection, Water Vapor, Surface Fluxes, and Radiation. J. Climate, 25, 6885-6904.
Trenberth, K. E., 1999: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Weather and Climate Extremes, Springer, 327-339.
Wing, A. A., and K. A. Emanuel, 2014: Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. J. Adv. in Model. Earth Syst., 6, 59-74.
Wu, Z., 2003: A Shallow CISK, Deep Equilibrium Mechanism for the Interaction between Large-Scale Convection and Large-Scale Circulations in the Tropics. J. Atmos. Sci., 60, 377-392.
Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global Warming Pattern Formation: Sea Surface Temperature and Rainfall*. J. Climate, 23, 966-986.
Yanai, M., and T. Tomita, 1998: Seasonal and Interannual Variability of Atmospheric Heat Sources and Moisture Sinks as Determined from NCEP–NCAR Reanalysis. J. Climate, 11, 463-482.
——, S. Esbensen, and J.-H. Chu, 1973: Determination of Bulk Properties of Tropical Cloud Clusters from Large-Scale Heat and Moisture Budgets. J. Atmos. Sci., 30, 611-627.
——, J. H. Chu, T. E. Starx, and T. Nitta, 1976: Response of Deep and Shallow Tropical Maritime Cumuli to Large-scale Processes. J. Atmos. Sci., 33, 976-991.
Yu, J.-Y., and J. D. Neelin, 1994: Modes of Tropical Variability under Convective Adjustment and the Madden–Julian Oscillation. Part II: Numerical Results. J. Atmos. Sci., 51, 1895-1914.
——, C. Chou, and J. D. Neelin, 1998: Estimating the Gross Moist Stability of the Tropical Atmosphere*. J. Atmos. Sci., 55, 1354-1372.
Yulaeva, E., and J. M. Wallace, 1994: The Signature of ENSO in Global Temperature and Precipitation Fields Derived from the Microwave Sounding Unit. J. Climate, 7, 1719-1736.
Zhang, C., and S. M. Hagos, 2009: Bi-modal Structure and Variability of Large-Scale Diabatic Heating in the Tropics. J. Atmos. Sci., 66, 3621-3640.
——, M. McGauley, and N. A. Bond, 2004: Shallow Meridional Circulation in the Tropical Eastern Pacific*. J. Climate, 17, 133-139.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16684-
dc.description.abstractVertical structures associated with tropical convection are of vital importance to tropical climate and weather phenomena, especially the convective feedbacks to large-scale environment as manifested by them. In this thesis, we explore their relationship with precipitation intensity. We first propose a simple diagnostic framework to assess these profiles in ERA-Interim, in order to remedy previous studies’ deficiencies. By considering these profiles with multiple perspectives, we discuss the prominent characteristics of deep and shallow convection, as well as the corresponding variations in large-scale flows. We then shift our focus to their roles in the intensity changes of precipitation extremes. We find that under interannual tropical tropospheric warming, extreme rainfall strengthens due to enhanced moisture convergence and reduced gross moist stability. Analyzing the vertical structures of moist static energy and vertical motion, we argue that both a decrease of deep convective energy transport via enhanced low-level moisture and increase of shallow convection partitioning can account for these changes.en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:43:34Z (GMT). No. of bitstreams: 1
ntu-103-R01229005-1.pdf: 2282901 bytes, checksum: 1af092f783f97d7e8c10a49f56255220 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents摘要 ii
Abstract iii
Acknowledgements iv
Contents v
List of Figures vii
List of Tables x
1 Introduction 1
2 Data 6
2.1 Reanalysis dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Field campaign datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Satellite datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Vertical Structures Associated with Tropical Convection 9
3.1 A unified assessment on tropical deep and shallow convection . . . . . . . . 9
3.2 The dependence of convective vertical structures on rain rate . . . . . . . . . 11
3.2.1 Heat source and moisture sink . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Temperature, moisture, and vertical motion . . . . . . . . . . . . . . . . . 15
3.3 Observational evidences from field campaigns . . . . . . . . . . . . . . . . . . . . 18
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4 Convective Feedbacks for Precipitation Extremes in Warming Tropics 22
4.1 Intensity of precipitation extremes and tropical tropospheric temperature: interannual relationship from observations . . . . . . . . . . . . . 22
4.2 Analysis of moisture and moist static energy budgets . . . . . . . . . . . . . . . 26
4.2.1 Moisture budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Moist static energy budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Impacts of vertical structures on gross moist stability 30
4.3.1 Regime I: M'<0 contributed by 〈-Ω ‾∂p h'〉<0 . . . . . . . . . . . 30
4.3.2 Regime II: M'<0 contributed by 〈-Ω'∂p h ‾ 〉<0 . . . . . . . . . . 32
4.3.3 Regime III: M'>0 contributed by 〈-Ω ‾∂p h'〉>0 . . . . . . . . . . 34
4.3.4 Regime IV: M'>0 contributed by 〈-Ω'∂p h ‾ 〉>0 . . . . . . . . . . 34
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5 Conclusions and Future Directions 37
A Appendix A 39
A.1 Heat source and moisture sink: calculation and concept . . . . . . . . . . . . . 39
A.2 Comparison between three reanalysis datasets . . . . . . . . . . . . . . . . . . . . . 40
B Appendix B 41
B.1 Calculation of precipitation extremes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
B.2 Surface fluxes and cloud-radiative feedbacks . . . . . . . . . . . . . . . . . . . . . 42
Bibliography 44
dc.language.isoen
dc.subject極端降雨zh_TW
dc.subject熱帶對流zh_TW
dc.subject垂直結構zh_TW
dc.subject對流回饋過程zh_TW
dc.subject降雨強度zh_TW
dc.subjectconvective feedbacken
dc.subjectvertical structureen
dc.subjecttropical convectionen
dc.subjectprecipitation intensityen
dc.subjectprecipitation extremeen
dc.title熱帶對流的垂直結構與降雨強度zh_TW
dc.titleVertical Structures Associated with Tropical Convection and Precipitation Intensityen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳維婷,黃彥婷
dc.subject.keyword熱帶對流,垂直結構,對流回饋過程,降雨強度,極端降雨,zh_TW
dc.subject.keywordtropical convection,vertical structure,convective feedback,precipitation intensity,precipitation extreme,en
dc.relation.page76
dc.rights.note未授權
dc.date.accepted2014-07-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
2.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved