Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16655
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor楊宗傑(TSUNG-CHIEH YANG)
dc.contributor.authorFu-Chuan Tsaien
dc.contributor.author蔡富全zh_TW
dc.date.accessioned2021-06-07T23:42:55Z-
dc.date.copyright2020-08-26
dc.date.issued2020
dc.date.submitted2020-08-14
dc.identifier.citation[1] G.A. Zarb, J. Hobkirk, S. Eckert, R. Jacob, Prosthodontic Treatment for Edentulous Patients: Complete Dentures and Implant-Supported Prostheses, 13 ed., Elsevier Health Sciences2013.
[2] M.D. Murray, B.W. Darvell, The evolution of the complete denture base. Theories of complete denture retention—a review. Part 1, Austral Dent J 38(3) (1993) 216-219.
[3] M.I. MacEntee, J.N. Walton, The economics of complete dentures and implant-related services: a framework for analysis and preliminary outcomes, J Prosthet Dent 79(1) (1998) 24-30.
[4] H. Bilhan, O. Erdogan, S. Ergin, M. Celik, G. Ates, O. Geckili, Complication rates and patient satisfaction with removable dentures, J Adv Prosthodont 4(2) (2012) 109-115.
[5] D.A. Atwood, Final report of the workshop on clinical requirements of ideal denture base materials, J Prosthet Dent 20(2) (1968) 101-105.
[6] G. Anderson, J. Schulte, T. Arnold, Dimensional stability of injection and conventional processing of denture base acrylic resin, J Prosthet Dent 60(3) (1988) 394.
[7] J.B. Woelfel, G.C. Paffenbarger, W.T. Sweeney, Dimensional changes occurring in dentures during processing, J Am Dent Assoc 61(4) (1960) 413-430.
[8] T. Takamata, J.C. Setcos, Resin denture bases: review of accuracy and methods of polymerization, Int J Prosthodont 2(6) (1989).
[9] M.D. Turd, B.R. Lang, D.E. Wilcox, J.C. Meiers, Direct measurement of dimensional accuracy with three denture-processing techniques, Int J Prosthodont 5(4) (1992).
[10] M. Kawara, O. Komiyama, S. Kimoto, N. Kobayashi, K. Kobayashi, K. Nemoto, Distortion Behavior of Heat-activated Acrylic Denture-base Resin in Conventional and Long, Low-temperature Processing Methods, J Dent Res 77(6) (1998) 1446-1453.
[11] A.D. Ayman, The residual monomer content and mechanical properties of CAD\CAM resins used in the fabrication of complete dentures as compared to heat cured resins, Electron Physician 9(7) (2017) 4766-4772.
[12] Y. Maeda, M. Minoura, S. Tsutsumi, M. Okada, T. Nokubi, A CAD/CAM system for removable denture. Part I: Fabrication of complete dentures, Int J Prosthodont 7(1) (1994).
[13] N. Kawahata, H. Ono, Y. Nishi, T. Hamano, E. Nagaoka, Trial of duplication procedure for complete dentures by CAD/CAM, J Oral Rehabil 24(7) (1997) 540-548.
[14] F. Duret, J.D. Preston, CAD/CAM imaging in dentistry, Curr Opin Dent 1(2) (1991) 150-154.
[15] Z. Huang, L. Zhang, J. Zhu, X. Zhang, Clinical marginal and internal fit of metal ceramic crowns fabricated with a selective laser melting technology, J Prosthet Dent 113(6) (2015) 623-7.
[16] K. Quante, K. Ludwig, M. Kern, Marginal and internal fit of metal-ceramic crowns fabricated with a new laser melting technology, Dent Mater 24(10) (2008) 1311-5.
[17] C.W. Hull, Apparatus for production of three-dimensional objects by stereolithography, Google Patents, 1996.
[18] J. Wu, X. Wang, X. Zhao, C. Zhang, B. Gao, A study on the fabrication method of removable partial denture framework by computer‐aided design and rapid prototyping, Rapid Prototyping Journal (2012).
[19] M.T. Kattadiyil, Z. Mursic, H. AlRumaih, C.J. Goodacre, Intraoral scanning of hard and soft tissues for partial removable dental prosthesis fabrication, The Journal of prosthetic dentistry 112(3) (2014) 444-448.
[20] N. Alharbi, R.B. Osman, D. Wismeijer, Factors Influencing the Dimensional Accuracy of 3D-Printed Full-Coverage Dental Restorations Using Stereolithography Technology, The International journal of prosthodontics 29(5) (2016) 503-510.
[21] M. Kattadiyil, C. Goodacre, N. Baba, CAD/CAM complete dentures: a review of two commercial fabrication systems, J Calif Dent Assoc 41(6) (2013) 407-416.
[22] M.S. Bilgin, A. Erdem, O.S. Aglarci, E. Dilber, Fabricating Complete Dentures with CAD/CAM and RP Technologies, J Prosthodont 7(24) (2015) 576-579.
[23] M.S. Bilgin, E.N. Baytaroğlu, A. Erdem, E. Dilber, A review of computer-aided design/computer-aided manufacture techniques for removable denture fabrication, Eur J Dent 10(2) (2016) 286-291.
[24] Y. Sun, P. Lu, Y. Wang, Study on CAD RP for removable complete denture, Comput Methods Programs Biomed 93(3) (2009) 266-72.
[25] H. Chen, H. Wang, P. Lv, Y. Wang, Y. Sun, Quantitative evaluation of tissue surface adaption of CAD-designed and 3D printed wax pattern of maxillary complete denture, Biomed Res Int 2015 (2015).
[26] M. Inokoshi, M. Kanazawa, S. Minakuchi, Evaluation of a complete denture trial method applying rapid prototyping, Dent Mater J 31(1) (2012) 40-46.
[27] T.F. Alghazzawi, Advancements in CAD/CAM technology: Options for practical implementation, J Prosthodont Res 60(2) (2016) 72-84.
[28] C.J. Goodacre, A. Garbacea, W.P. Naylor, T. Daher, C.B. Marchack, J. Lowry, CAD/CAM fabricated complete dentures: concepts and clinical methods of obtaining required morphological data, J Prosthet Dent 107(1) (2012) 34-46.
[29] W. Han, Y. Li, Y. Zhang, Y. lv, Y. Zhang, P. Hu, H. Liu, Z. Ma, Y. Shen, Design and fabrication of complete dentures using CAD/CAM technology, Medicine 96(1) (2017) e5435.
[30] A.S. Bidra, T.D. Taylor, J.R. Agar, Computer-aided technology for fabricating complete dentures: Systematic review of historical background, current status, and future perspectives, J Prosthet Dent 109(6) (2013) 361-366.
[31] S. Yamamoto, M. Kanazawa, D. Hirayama, T. Nakamura, T. Arakida, S. Minakuchi, In vitro evaluation of basal shapes and offset values of artificial teeth for CAD/CAM complete dentures, Comput Biol Med 68 (2016) 84-89.
[32] N.Z. Baba, Materials and processes for CAD/CAM complete denture fabrication, Current Oral Health Reports 3(3) (2016) 203-208.
[33] P.-A. Steinmassl, F. Klaunzer, O. Steinmassl, H. Dumfahrt, I. Grunert, Evaluation of Currently Available CAD/CAM Denture Systems, Int J Prosthodont 30(2) (2017).
[34] T. Wimmer, K. Gallus, M. Eichberger, B. Stawarczyk, Complete denture fabrication supported by CAD/CAM, J Prosthet Dent 115(5) (2016) 541-6.
[35] M.T. Kattadiyil, A. AlHelal, An update on computer-engineered complete dentures: A systematic review on clinical outcomes, J Prosthet Dent 117(4) (2017) 478-485.
[36] M.T. Kattadiyil, R. Jekki, C.J. Goodacre, N.Z. Baba, Comparison of treatment outcomes in digital and conventional complete removable dental prosthesis fabrications in a predoctoral setting, J Prosthet Dent 114(6) (2015) 818-25.
[37] F.S. Schwindling, T. Stober, A comparison of two digital techniques for the fabrication of complete removable dental prostheses: A pilot clinical study, J Prosthet Dent 116(5) (2016) 756-763.
[38] M.T. Kattadiyil, A. AlHelal, B.J. Goodacre, Clinical complications and quality assessments with computer-engineered complete dentures: A systematic review, J Prosthet Dent 117(6) (2017) 721-728.
[39] N. Alharbi, D. Wismeijer, R.B. Osman, Additive Manufacturing Techniques in Prosthodontics: Where Do We Currently Stand? A Critical Review, Int J Prosthodont 30(5) (2017) 474-484.
[40] N. Dalal, R. Ammoun, A.A. Abdulmajeed, G.R. Deeb, S. Bencharit, Intaglio Surface Dimension and Guide Tube Deviations of Implant Surgical Guides Influenced by Printing Layer Thickness and Angulation Setting, J Prosthodont 29(2) (2020) 161-165.
[41] A. Harrison, R. Huggett, A. Zissis, Measurements of dimensional accuracy using linear and scanning profile techniques, Int J Prosthodont 5(1) (1992).
[42] M.J. Kim, C.W. Kim, A comparative study on the dimensional change of the different denture bases, J Korean Acad Prosthodont 44(6) (2006) 712-721.
[43] A. Artopoulos, A.S. Juszczyk, J.M. Rodriguez, R.K. Clark, D.R. Radford, Three-dimensional processing deformation of three denture base materials, J Prosthet Dent 110(6) (2013) 481-7.
[44] B.J. Goodacre, C.J. Goodacre, N.Z. Baba, M.T. Kattadiyil, Comparison of denture base adaptation between CAD-CAM and conventional fabrication techniques, J Prosthet Dent 116(2) (2016) 249-56.
[45] M. Srinivasan, Y. Cantin, A. Mehl, H. Gjengedal, F. Müller, M. Schimmel, CAD/CAM milled removable complete dentures: an in vitro evaluation of trueness, Clin Oral Investig 21(6) (2016) 2007-2019.
[46] <The effect of build angle on the tissue surface adaptation of maxillary and mandibular complete denture bases manufactured by digital light processing.pdf>.
[47] Z. Bla, M. Neuman, Physical factors in retention of complete dentures, The Journal of prosthetic dentistry 25(3) (1971) 230-235.
[48] A.R. Ruffino, Improved occlusal equilibration of complete dentures by augmenting occlusal anatomy of acrylic resin denture teeth, Journal of Prosthetic Dentistry 52(2) (1984) 300-302.
[49] G.C. Anderson, J.K. Schulte, T.G. Arnold, Dimensional stability of injection and conventional processing of denture base acrylic resin, J Prosthet Dent 60(3) (1988) 394-8.
[50] D.H. Anthony, F.A. Peyton, Dimensional accuracy of various denture-base materials, J Prosthet Dent 12(1) (1962) 67-81.
[51] R.J. Goodkind, R.C. Schulte, Dimensional accuracy of pour acrylic resin and conventional processing of cold-curing acrylic resin bases, J Prosthet Dent 24(6) (1970) 662-668.
[52] T. Takamata, J.C. Setcos, Resin denture bases: review of accuracy and methods of polymerization, Int J Prosthodont 2(6) (1989) 555-62.
[53] B.J. Goodacre, C.J. Goodacre, N.Z. Baba, M.T. Kattadiyil, Comparison of denture tooth movement between CAD-CAM and conventional fabrication techniques, J Prosthet Dent 119(1) (2018) 108-115.
[54] E.T. Mainieri, M.E. Boone, R.H. Potter, Tooth movement and dimensional change of denture base materials using two investment methods, J Prosthet Dent 44(4) (1980) 368-73.
[55] G.B. Brown, G.F. Currier, O. Kadioglu, J.P. Kierl, Accuracy of 3-dimensional printed dental models reconstructed from digital intraoral impressions, Am J Orthod Dentofacial Orthop 154(5) (2018) 733-739.
[56] N.G. Norvell, T.V. Korioth, D.R. Cagna, A. Versluis, Comparison of digital surface displacements of maxillary dentures based on noninvasive anatomic landmarks, J Prosthet Dent 120(1) (2018) 123-131.
[57] D. Windecker, M. Dippel, Comparative studies of the exactness of fit of maxillary complete dentures with resin and cast metal bases, Quintessence Dent Technol 5 (1981) 427-430.
[58] R. Huggett, A. Zissis, A. Harrison, A. Dennis, Dimensional accuracy and stability of acrylic resin denture bases, The Journal of prosthetic dentistry 68(4) (1992) 634-640.
[59] J.W. Choi, J.J. Ahn, K. Son, J.B. Huh, Three-Dimensional Evaluation on Accuracy of Conventional and Milled Gypsum Models and 3D Printed Photopolymer Models, Materials (Basel) 12(21) (2019).
[60] A.P. Keating, J. Knox, R. Bibb, A.I. Zhurov, A comparison of plaster, digital and reconstructed study model accuracy, J Orthod 35(3) (2008) 191-201; discussion 175.
[61] H.I. Yoon, H.J. Hwang, C. Ohkubo, J.S. Han, E.J. Park, Evaluation of the trueness and tissue surface adaptation of CAD-CAM mandibular denture bases manufactured using digital light processing, J Prosthet Dent 120(6) (2018) 919-926.
[62] A. Tahayeri, M. Morgan, A.P. Fugolin, D. Bompolaki, A. Athirasala, C.S. Pfeifer, J.L. Ferracane, L.E. Bertassoni, 3D printed versus conventionally cured provisional crown and bridge dental materials, Dent Mater 34(2) (2018) 192-200.
[63] N. Alharbi, R. Osman, D. Wismeijer, Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations, J Prosthet Dent 115(6) (2016) 760-7.
[64] A. Unkovskiy, P.H. Bui, C. Schille, J. Geis-Gerstorfer, F. Huettig, S. Spintzyk, Objects build orientation, positioning, and curing influence dimensional accuracy and flexural properties of stereolithographically printed resin, Dent Mater 34(12) (2018) e324-e333.
[65] T. Ollison, K. Berisso, Three-Dimensional Printing Build Variables That Impact Cylindricity, Journal of Industrial Technology 26(1) (2010).
[66] K. Puebla, K. Arcaute, R. Quintana, R.B. Wicker, Effects of environmental conditions, aging, and build orientations on the mechanical properties of ASTM type I specimens manufactured via stereolithography, Rapid Prototyping Journal (2012).
[67] D. Karalekas, A. Aggelopoulos, Study of shrinkage strains in a stereolithography cured acrylic photopolymer resin, Journal of Materials Processing Technology 136(1-3) (2003) 146-150.
[68] L.T. Camardella, O. de Vasconcellos Vilella, H. Breuning, Accuracy of printed dental models made with 2 prototype technologies and different designs of model bases, Am J Orthod Dentofacial Orthop 151(6) (2017) 1178-1187.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16655-
dc.description.abstract實驗目的:
本研究目的在檢測數位化技術包含3D列印以及CAD/CAM切削製作全口活動義齒於咬合面(occlusal surface) 準確度(accuracy) 之差異性。
材料與方法:
將上下顎全口無牙標準模型翻模後製作石膏模型,在上顎以及下顎依照平均值製作咬合蠟堤(occlusal wax rim),作為後續實驗的參考模型。以3D桌掃機 (E3 3D scanner, 3shape, Copenhagen, Denmark)掃描上下顎石膏模型以及咬合蠟堤並以牙科設計軟體(Exocad DentalCAD 2.4 Plovdiv, Exocad GmbH, Darmstadt, Germany)設計上下顎全口假牙之外型包含咬合面、組織面以及光滑面作為數位假牙設計檔CAD model,後續以CAD/CAM切削 (POLYWAX組)以及3D列印 (NextDent組)方式進行數位全口義齒之製作,3D列印組透過改變列印角度(build angle) 90度以及45度以及在石膏模型上進行後固化(post-curing) 分成四組,每組上下顎各製作10個 (共計90個)。義齒咬合面再現性之測試方式為:1. 掃描各組之義齒咬合面並與數位義齒設計檔CAD model影像疊合分析咬合面 (cameo surface)。2. 使用游標尺測量以及數位軟體距離測量方式測量義齒咬合面參考點之間距離,測量距離包含:大臼齒間寬度(intermolar width),犬齒間寬度(intercanine width),前後距離(anterior posterior distance), 垂直距離(vertical distance),並計算與數位義齒設計檔CAD model之間的差距。統計方式使用以Kruskal-Wallis Test先進行分析,並以Tukey法進行事後比較檢定 (post-hoc test) ,有意義水準設於p≤0.05。
實驗結果:
根據數位影像疊合方式檢測的結果,不論上下顎均顯示:咬合面的再現度在十個參考位置的比較來看,CAD/CAM切削相較於3D列印方式顯示出較高的準確度(accuracy)(變化量0.0115 ~ 0.0719mm),在3D列印方式的各組當中,改變列印角度顯著影響尺寸準確度,透過在石膏模型上進行後固化可以降低後固化時造成的收縮,進而提高咬合準確度。
根據游標尺測量以及數位軟體距離測量方式測量義齒咬合面參考點之間距離,並計算與數位義齒設計檔CAD model之間的差距,結果顯示在3D列印方式的各組當中,改變列印角度顯著影響尺寸準確度,透過在石膏模型上進行後固化可以降低後固化時造成的收縮,進而提高咬合面準確度。
結論:
在本實驗有限的條件下,對於全口義齒在咬合面再現度檢測的結果,使用游標卡尺以及數位測量方式測量參考點之間距離大小,CAD/CAM切削方式不論是在上顎或下顎,產生的距離差都小於3D列印方式。3D列印方式在上顎以及下顎的表現,改變列印角度以及後處理在模型上進行後固化,可以降低各參考點之間距離誤差。使用數位影像疊合方式檢測下,CAD/CAM切削方式製作義齒在咬合面有較高的真實度,而3D列印方式改變列印角度以及後處理在模型上進行後固化可以提高咬合面準確度。
zh_TW
dc.description.abstractObjective:
This in vitro study was to compare the reproducibility of the occlusal surface and dimensional accuracy of complete dentures fabricated with digital approaches (CNC milling and Rapid prototyping) .
Material and methods
Two maxillary and mandibular edentulous models (EDE1001-UL-UP-FEM, Nissin Dental Products Inc., Japan) were mounted on semi-adjustable articulator (Stratos 200, Ivoclar, Liechteinstein) using a technique based upon average values. Then, the models and wax rim were scanned by 3Shape E3 scanner (3Shape, Copenhagen, Denmark) and designed with software (Exocad DentalCAD 2.4 Plovdiv, Exocad GmbH, Darmstadt, Germany). The complete dentures were fabricated by two different manufacturing techniques: CAD/CAM milled (CORITEC 250i, imes-icore GmbH, Eiterfeld, Germany) and 3D printing (NextDent Denture base, NextDent, Soesterberg, The Netherlands). The 3D printing group was divided into 4 groups according to printing angles (45 and 90 degrees) and post-curing modifications (post curing on cast or not).
The dimensional accuracy was evaluated by: 1) intercanine width 2) intermolar width 3) anteroposterior plane 4) Vertical plane
All the specimens were scanned by optical scanner (3Shape E3, Copenhagen, Denmark) and outputting an STL file for each denture’s intaglio and cameo surface. The STL file of each denture was superimposed with the corresponding pre- processing cast using surface matching software (Geomagic Control 2014; 3D Systems) at selected points for each of the 40 dentures using an overlay guide to verify the location of the measurements.
Results
In both arches, The CAD/CAM milled technique had the least deviation on the reference area. Meanwhile, the 3D printing group showed larger deviaiton than the CAD/CAM milled group.
According to digital superimposition, the overall results showed that there was significant difference in the accuracy and precision of the occlusal surface between CAD/CAM milled and 3D printing groups. In the 3D printing groups, printing angle at 90 degrees and post cured on the cast showed the greater accuracy and precision.
Conclusions
Within the limitation of the study, the conclusions are
1. The CAD/CAM milled denture process presented with higher dimensional accuracy.
2. For complete denture fabrication with 3D printing technique, the building orientation affected the dimensional accuracy. Meanwhile, post-curing modifications (post-curing on master cast) can improve the adaptation of tissue surface of the denture, resulting in less distortion of the occlusal surface
en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:42:55Z (GMT). No. of bitstreams: 1
U0001-1008202018482700.pdf: 38378218 bytes, checksum: e843e281b876d11a44ba72b6f252c311 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents目錄
中 文 摘 要 I
Abstract III
目錄 VI
第一章 文獻回顧 1
1.1 傳統方式製作全口活動義齒優缺點 2
1.2 數位方式製作全口活動義齒流程 2
1.3 數位方式製作全口活動義齒的臨床結果評估 6
1.4影響DLP數位光固化處理 (DIGITAL LIGHT PROCESSING)尺寸精準度的因素 7
1.5全口活動義齒咬合面再現度評估方法 9
第二章 研究動機與目的 10
第三章 材料與方法 11
一、實驗用模型製作: 11
二、實驗用義齒製作: 11
三、全口義齒咬合面準確度與精密度之檢測: 14
四、實驗數據分析及統計方法 17
第四章 實驗結果 18
第五章 討論 45
5.1實驗模型的製作 46
5.2 義齒咬合面再現度的檢測 47
5.3 義齒咬合面再現度參考位置的選擇 48
5.4 不同方式製作義齒咬合面再現度的探討 50
5.5 實驗的誤差與限制 52
第六章 結論 53
第七章 未來展望 54
參考文獻 82
dc.language.isozh-TW
dc.title數位方式製作全口活動義齒咬合面準確度之比較-體外實驗
zh_TW
dc.titleComparison of occlusal surface accuracy of complete dentures fabricated with CAD/CAM technology
An In Vitro Study
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor林立德(LI-DEH LIN)
dc.contributor.oralexamcommittee洪志遠(Chi-Yuan Hong)
dc.subject.keywordCAD/CAM切削,3D列印,列印角度,全口活動義齒,咬合面準確度,精密度,真實度,zh_TW
dc.subject.keywordCAD/CAM milled,3D printing,complete denture,occlusal aurface accuracy,precision,trueness,en
dc.relation.page91
dc.identifier.doi10.6342/NTU202002858
dc.rights.note未授權
dc.date.accepted2020-08-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
Appears in Collections:臨床牙醫學研究所

Files in This Item:
File SizeFormat 
U0001-1008202018482700.pdf
  Restricted Access
37.48 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved