Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16630
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林敏聰
dc.contributor.authorKe-Chih Linen
dc.contributor.author林格至zh_TW
dc.date.accessioned2021-06-07T23:42:27Z-
dc.date.copyright2014-07-31
dc.date.issued2014
dc.date.submitted2014-07-25
dc.identifier.citation[1] T. Zhu, X. Xiang, F. Shen, Z. Zhang, G. Landry, D. V. Dimitrov, N. Garca, and John Q. Xiao, Phys. Rev. B 66, 094423 (2002).
[2] M. Grunewald, J. Kleinlein, F. Syrowatka, F. Wurthner, L.W. Molenkamp, G. Schmidt, Organic Electronics 14, 2082-2086 (2013).
[3] David D. Awschalom, Michael E. Flatt, Nature Physics 3, 153-159 (2007).
[4] C. Tang and S. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
[5] R. Friend, et al., Nature 397, 121 (1999).
[6] C. D. Dimitrakopoulos, P. R. Malenfant, Adv. Mater. 14, 99 (2002).
[7] P. Peumans, S. Uchida, and S. R. Forrest, Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Pub- lishing Group 94, (2010).
[8] Chua L-L, Zaumseil J, Chang J-F, Ou E C-W, Ho P K-H, Sirringhaus H and Friend R H, Nature 434, 194 (2005).
[9] Silinsh E A, Capek V, Organic Molecular Crystals: Interaction, Localization, and Transport Phenomena (New York: AIP) (1994).
[10] A B Walker, A Kambili and S J Martin, J. Phys.: Condens. Matter 14, 9825- 9876 (2002).
[11] Vissenberg M C J M, Matters M, Phys.Rev.B 57, 12964 (1998).
[12] Nelson S F, Lin Y-Y, Gundlach D J, Jackson N, Appl. Phys. Lett. 72, 1854 (1998).
[13] Coehoorn R, Phys.Rev.B 72, 155206 (2005).
[14] Pasveer W F, Cottaar J, Tanase C, Coehoorn R, Bobbert P A, Blom P W M, de Leeuw D M and Michels M A J, Phys. Rev. Lett. 94, 206601(2005).
[15] W J M Naber, S Faez, W G van der Wiel, J. Phys. D: Appl. Phys. 40, (2007).
[16] Brazovskii S A, Kirova N N, Sov. Phys.JETP 33, 4 (1981).
[17] Chance R R, Bre das J L, Silbey R, Phys. Rev. B 29, 4491 (1984).
[18] Yevgeni Preezant, Yevgeni Preezant, Noam Rappaport, and Yohai Roich- manCharge Transport in Disordered Organic Materials and Its Relevance to Thin-Film Devices: A Tutorial Review 434, 194 (2009).
[19] Ling Li, Gregor Meller, Hans Kosina, Microelectronics Journal 38, 39-44 (2007).
[20] Ruden P P and Smith D L, Appl. Phys. 95, 4898 (2004).
[21] Campbell I H and Smith D L, Solid State Physics 55 ed H Ehrenreich and F
Spaepen (New York: Academic) (2001).
[22] S. Takahashi and S. Maekawa, Phys. Rev. B 67, 052409 (2003).
[23] Huanjun Ding and Yongli Gao, ECS Transactions 11 (25), 1-13 (2008).
[24] Alexander Mityashin, David Cheyns, Barry P. Rand, Paul Heremans, Appl. Phys. Lett. 100, 053305 (2012).
[25] Y. Roichman and N. Tessler, Appl. Phys. Lett. 80, (2002).
[26] G. Bridoux, M.V. Costache, J. Van De Vondel, I. Neumann, and S.O. Valen-
zuela, Appl. Phys. Lett. 99, 102107 (2011).
[27] J Hirsch, J. Phys. C: Solid State Phys. 12, (1979).
[28] Scott J C, Pautmeier L T and Schein L B, Phys. Rev. B 46, 8603 (1992).
[29] Sayani Majumdar, R. Laiho, P. Laukkanen, I. J. Vyrynen, Himadri S. Ma- jumdar, and R. sterbacka, Appl. Phys. Lett. 89, 122114 (2006).
[30] V. Dediu, L. E. Hueso, I. Bergenti, A. Riminucci, F. Borgatti, P. Graziosi, C. Newby, F. Casoli, M. P. De Jong, C. Taliani, and Y. Zhan, Phys. Rev. B 78, 115203 (2008).
[31] N. A. Morley, A. Rao, D. Dhandapani, M. R. J. Gibbs, M. Grell, and T. Richardson, J. Appl. Phys. 103, 07F306 (2008).
[32] Hadi AlQahtani, Matthew T. Bryan, Thomas J. Hayward, Matthew P. Hodges, M.-Y. Im, Peter Fischer, Martin Grell, Dan A. Allwood, Organic Electronics 15, 276280 (2014).
[33] L. Schulz, L. Nuccio, M. Willis, P. Desai, P. Shakya, T. Kreouzis, V. K. Malik, C. Bernhard, F. L. Pratt, N. A. Morley, A. Suter, G. J. Nieuwenhuys, T. Prokscha, E. Morenzoni, W. P. Gillin, A. J. Drew, Nature Materials 10, 39-44 (2011).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16630-
dc.description.abstract有機半導體的自旋電子注入與傳輸是一個尚在發展的研究課題,自旋電子在有 機材料內的傳輸機制也還未被全面地了解。因此,為了研究自旋電子的傳輸, 我們發展出一套製造並五苯平面有機自旋電子傳輸元件的技術。目前這套技術 已經趨於成熟,能讓我們將鐵磁電極及有機材料間的界面品質最佳化,並且確 保整個製備流程能在高真空的環境下完成。
雖然該平面有機自旋電子傳輸元件的樣品式樣已經能利用光刻和電子束曝光等 技術來完成,但有機半導體材料本身因為載子遷移率及帶電載子濃度低,使得 樣品電導率過低,導致測量上的困難。所以,我們使用鋁作為摻雜劑,試圖增 加元件的電導。截至目前為止,摻雜鋁之後的並五苯的電導可以提升到摻雜前 的三倍以上。除了電導外,我們也進行了該樣品之電性測量,包括在不同溫度 下的I-V曲線及場效應電晶體測量實驗。這些電性測量的實驗表現出帶電載子在 有機半導體和摻雜鋁的有機半導體內的傳輸特性。我們也分析了場效應電晶體 測量實驗結果,藉此了解摻雜劑如何影響並五苯在費米面附近的電子能帶結構。
此外,摻雜鋁之後的平面並五苯自旋電子元件在室溫下的局域磁阻也被觀察到 了。並五苯 5 nm 而鋁 0.1 nm 的摻雜比例下,該自旋電子元件的局域磁阻可以 達到 -0.7%。帶電載子傳輸過程保留的自旋訊號,讓這項平面有機自旋電子傳輸 元件的製備技術成為未來自旋電子傳輸機制研究的有力工具。
zh_TW
dc.description.abstractSpin injection and transport in organic semiconductors is a developing topic in the last ten years, and the detailed mechanics is not thoroughly understood yet. In order to investigate the spin transport mechanisms, we develop a technique to fabricate lateral pentacene spin transport devices. By far, the in situ fabrication techniques are well developed to make sure that the whole fabrication process is done under a high vacuum environment. On the other hand, to achieve higher con- ductance of the devices, we selected aluminum as the dopant. So far the conductance of Al-doped pentacene can be up to three times the value of the intrinsic pentacene.
According to electrical transport measurement, the identicality of the electri- cal transport properties of pure pentacene and Al-doped pentacene, including the linearity feature of ln(G) − T 1/4 relation and the Poole-Frenkel form between the conductivity and electric field, indicates that the charge transport mechanism be- hind should be the same. The dopant only increases the carrier concentration of the organic semiconductor via charge transfer between the organic material and the metallic dopant, but does not change the electrical transport mechanism. We also analyze the experimental result of the FET measurement to understand how the dopant influence the band structure of pentacene near conducting region.
Additionally, the local magnetoresistance -0.7% of the lateral Al-doped pentacene at room temperature is observed. The main contribution of our work is to make scientific demonstration that the poor conductivity of the organic materials can be improved with proper choice of metallic doping, while local magnetoresistance can still be observed in such system. Therefore, the in situ fabricated lateral pattern with metallic doped organic materials would serve as a suitable candidate for further researches on spin transport mechanism such as spin diffusion in organic semicon- ductors.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:42:27Z (GMT). No. of bitstreams: 1
ntu-103-R01222036-1.pdf: 13421016 bytes, checksum: 4113e04e7c81635dc4c516faeffbc180 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents1 Motivation and Introduction . . . . . . . . . 1
2 Basic Concepts and Background . . . . . . . . . 4
2.1 TheIntroductiontoOrganicSpintronics . . . . . . . . . 4
2.1.1 Basic Concepts about Organic Electronics . . . . . . . . . 4
2.1.2 Charge Transport in Organic Semiconductors . . . . . . . . . 5
2.1.3 Spin Injection and Detection in Magnetic Nanostructures . . . . . . . . . 8
2.2 Metal Doping for Organic Charge Transport Channel . . . . . . . . . 10
2.3 Configurations of Organic Field Effect Transistors . . . . . . . . . 11
3 Apparatus and Methodology . . . . . . . . . 13
3.1 The in situ Fabrication Process of the Lateral Spin Transport Device: the Tilt Angle Method . . . . . . . . . 13
3.1.1 The Fabrication of the Back Gate . . . . . . . . . 13
3.1.2 E-beam Lithography and the PMMA Contact Mask . . . . . . . . . 14
3.1.3 The Tilt Angle E-beam Evaporation and Thermal Evaporation . . . . . . . . . 17
3.2 DesignoftheInvestigation . . . . . . . . . 22
3.2.1 I-V Features and G-T Curves of the Lateral Device . . . . . . . . . 22
3.2.2 The FET Measurement of the Back-gated Device . . . . . . . . . 26
3.2.3 The Local Magnetoresistance of the Lateral Spin Transport
Device . . . . . . . . . 27
4 Experimental Results and Discussion . . . . . . . . . 28
4.1 I-V Curves and the Conductance of the Devices at Different Temperature . . . . . . . . . 28
4.2 The Features of Gate-voltage Dependent Measurement . . . . . . . . . 36
4.3 Magneto-transport Properties of the Lateral Spin Transport Devices . . . . . 40
5 Conclusion and Further Work . . . . . . . . . 43
Bibliography . . . . . . . . . 45
dc.language.isoen
dc.subject自旋傳輸zh_TW
dc.subject磁阻zh_TW
dc.subject電子束曝光zh_TW
dc.subject並五苯zh_TW
dc.subject平面自旋閥zh_TW
dc.subjectpentaceneen
dc.subjectmagnetoresistanceen
dc.subjecte-beam lithographyen
dc.subjectspin transporten
dc.subjectlateral spin valveen
dc.title原位製備並五苯平面有機自旋電子傳輸元件之電性及磁性傳輸特性研究zh_TW
dc.titleElectrical and Magneto-Transport Properties of in situ Fabricated Lateral Pentacene-Based Organic Spin Transport Deviceen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳啟東,江文中,何家驊,李愷信
dc.subject.keyword自旋傳輸,平面自旋閥,並五苯,電子束曝光,磁阻,zh_TW
dc.subject.keywordspin transport,lateral spin valve,pentacene,e-beam lithography,magnetoresistance,en
dc.relation.page47
dc.rights.note未授權
dc.date.accepted2014-07-25
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
13.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved