請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16626完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林敏聰 | |
| dc.contributor.author | Yi-Chang Chen | en |
| dc.contributor.author | 陳宜昌 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:42:24Z | - |
| dc.date.copyright | 2014-08-14 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-25 | |
| dc.identifier.citation | [1] V. M. Edelstein, Solid State Commun. 73, 233 (1990).
[2] S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990). [3] G. Binnig and H. Rohrer, Helv. Phys. Acta 55, 726 (1982). [4] Nobel Lectures in Physics (1981-1990) (1993). [5] D. P. Woodru and T. A. Delchar, Techniques of Surface Science, (Cambridge University Press 2nd ed.). [6] Neil W. Ashcroft, N. David Mermin, Solid state physics (Saunders College, 1976). [7] C. Kittel, Introduction to solid state physics (John Wiley, eighth edition, 2005). [8] J. Bardeen, Phys. Rev. Lett. 6, 57 (1961). [9] Daniel Wortmann, Ab Initio Description of Electronic Transport, Computational Nanoscience: Do It Yourself!, 2006 [10] J. Terso , and D. R. Hamann, Phys. Rev. Lett. 50, 1998 (1983) [11] K. Oura, V. G. Lifshits, A. A. Saranin, A. V. Zotov, and M. Katayama, Surface Science: An Introduction, (Berlin: Springer-Verlag, 2003). [12] C. Julian Chen, Introduction to Scanning Tunneling Microscopy (Oxford University Press, Inc., 1993). [13] X. J. Wu, R. W. Wang, M. Y. Lin, Vacuum technology and application (2001). [14] The Scanning Probe Image Processor User's and Reference Guide (ImageMetrology, 1998). [15] I. Horcas, R. Fernandez, J.M. Gomez-Rodriguez, J. Colchero, J. Gomez- Herrero, and A.M. Baro, Rev. Sci. Instrum. 78, 013705 (2007). [16] https://www.cs.unm.edu/ brayer/vision/fourier.html. [17] George B. Arfken, Hans J. Weber, Mathematical methods for physicists (Elsevier Inc., 2005). [18] Franz Schwabl, Quantum mechanics (Berlin ; New York : Springer-Verlag, 1992). [19] R. Shankar, Principle of Quantum Mechanics (Plenum Press, 2nd, 1994). [20] David H. Mclntyre, Quantum Mechanics (Pearson, 2012). [21] D. J. Gri ths, Introduction to Quantum Mechanics (Prentice-Hall, Englewood Cli s, NJ, 1995). [22] A. Selloni, P. Carnevali, E. Tosatti, and C. D. Chen, Phys. Rev. B 31, 2602 (1985). [23] Vladimir A. Ukraintsev, Phys. Rev. B 53, 11176 (1996). [24] R.K. Pathria and Paul D. Beale Statistical mechanics (Academic Press, 2007). [25] S. D. Kevan and R. H. Gaylord, Phys. Rev. B 36, 5809 (1987). [26] D. Shoenberg, Phil. Trans. Roy. Soc. Lond. A 255, 85 (1962). [27] E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960). [28] S. LaShell, B. A. McDougall, and E. Jensen, Phys. Rev. Lett. 77, 3419 (1996). [29] G. Nicolay, F. Reinert, S. H ufner and P. Blaha, Phys. Rev. B 65, 033407 (2001). [30] M. Hoesch, M. Muntwiler, V. N. Petrov, M. Hengsberger, L. Patthey, M. Shi, M. Falub, T. Greber, and J. Osterwalder, Phys. Rev. B 69, 241401(R) (2004). [31] L. Moreschini, A. Bendounan, H. Bentmann, M. Assig, K. Kern, F. Reinert, J. Henk, C. R. Ast, and M. Grioni, Phys. Rev. B 80, 035438 (2009). [32] W. Shockley, Phys. Rev. 56, 317 (1936). [33] K. Schouteden, P. Lievens, and C. Van Haesendonck, Phys. Rev. B 79, 195409 (2009). [34] L. B urgi, L. Petersen, H. Brune, K. Kern, Surf. Sci. 447, L157 (2000). [35] C. Kittel, Quantum Theory of Solids (Wiley, New York, 1963) [36] L. Petersen, P. Laitenberger, E. L gsgaard, and F. Besenbacher, Phys. Rev. B 58, 7361 (1998). [37] L. Petersen and P. Hedeg ard, Surf. Sci. 459, 49 (2000). [38] L. Petersen and Ph. Hofmann, E. W. Plummer, F. Besenbacher, Journal of Electron Spectroscopy and Related Phenomena 109, 97 (2000). [39] Y. Hasegawa and Ph. Avouris, Phys. Rev. Lett. 71, 1071 (1993). [40] J. Friedel, Nuovo Cimento Suppl. 7, 287 (1958). [41] Gabriele F. Giuliani, George E. Simion, Solid State Communications 127, 789 (2003). [42] A. M. Gabovich, L. G. Il'chenko, E. A. pashitski, and Yu. A. Romanov, J. Exp. Theor. Phys. 48, 124 (1978). [43] A. Gold, Phil. Mag. Lett. 70, 141 (1994). [44] M. F. Crommie, C. P. Lutz, and D. M. Eigler, Science 262, 218 (1993). [45] V. S. Stepanyuk, N. N. Negulyaev, L. Niebergall, R. C. Longo, and P. Bruno, Phys. Rev. Lett. 97, 186403 (2006). [46] J. Li, W.-D. Schneider, R. Berndt, and S. Crampin, Phys. Rev. Lett. 80, 3332 (1998). [47] L. Diekhner, M. A. Schneider, A. N. Baranov, V. S. Stepanyuk, P. Bruno, and K. Kern, Phys. Rev. Lett. 90, 236801 (2003). [48] K. Schouteden, E. Lijnen, E. Janssens, A. Ceulemans, L. F. ChiChibotaru, P. Lievens, and C. Van Haesendonck, New J. Phys. 10, 043016 (2008). [49] H. Jensen, J. Krger, R. Berndt, and S. Crampin, Phys. Rev. B 71, 155417 (2005). [50] L. Niebergall, G. Rodary, H. F. Ding, D. Sander, V. S. Stepanyuk, P. Bruno, and J. Kirschner, Phys. Rev. B 74, 195436 (2006). [51] Joel E. Moore, Nature 464, 194 (2010). [52] X. L. Qi, and S. C. Zhang, Phys. Today 63(1), 33 (2010). [53] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 30453067 (2010). [54] S. Narasimhan and D. Vanderbilt, Phys. Rev. Lett. 69, 1564 (1992). [55] J. V. Barth, H. Brune, G. Ertl, and R. J. Behm, Phys. Rev. B 42, 9307 (1990). [56] U. Harten, A. M. Lahee, J. Peter Toennies, and Ch. W oll, Phys. Rev. Lett. 54, 2619 (1985). [57] F. Hanke and J. Bj ork, Phys. Rev. B 87, 235422 (2013). [58] W. Chen, V. Madhavan, T. Jamneals and M. F. Crommie, Phys. Rev. Lett. 80, 1469 (1998). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16626 | - |
| dc.description.abstract | 在金(111)表面存在強Rashba效應自旋分裂的表面態,而Rashba效應與當今熱門題材拓撲絕緣體(Topological insulators)有所關連,這個表面態接近自由二維電子氣存在許多有趣的物理性質,其中之一是區域狀態密度的震盪行為,它產生於電子受散射物的散射而產生之量子干涉行為,亦可稱之為駐波或準粒子干涉。在我們的工作中,我們利用掃描式穿隧電子顯微鏡/能譜(STM/STS)在低溫下研究金(111)表面的結構狀態、電子特性和由點缺陷產生的駐波。藉由對不同能量下的dI/dV分布圖作傅利葉分析,可以從中發現新的區域狀態密度的震盪模式,不同於文獻上所提及的那些包含來自彈性碰撞的表面電子和塊材內部電子的貢獻。我們認為這個新的震盪模式來自於表面電子與具有未填滿能階之凹陷點缺陷的非彈性碰撞,藉由STS的量測,在一些凹陷點缺陷上我們量測到這個未填滿能階在0.22 eV處,我們利用凹陷點缺陷產生的量子井去解釋這個能階的存在。而且根據這個能階,我們可以建立一個非彈性碰撞的模型去解釋這些新的震盪模式,當一個高於費米能的表面電子入射到這個具有未填滿能階之凹陷點缺陷時,它可能會與附近位於費米面的電子發生碰撞,促使這個在費米面的電子躍遷到這個未填滿的能階,因此入射電子損失了0.22 eV,進而產生新的震盪模式,經過比較這個模型與我們的數據後,發現模型確實相當吻合我們的數據。 | zh_TW |
| dc.description.abstract | At the Au(111) surface, there exists a strong Rashba spin splitting surface state, which refers to a prevalent issue topological insulators. The surface state with two-dimensional nearly-free electron gas exhibits many interesting properties. One of them is the spatially oscillating local density of states (LDOS), which come from interference of electrons scattered by scatterers and also was named as the standing waves or quasi-particle interference (QPI). In this work, we have investigated the morphology, the electronic property and the standing wave induced by point defects on the Au(111) surface by scanning tunneling microscope and spectroscopy (STM/STS) at low temperature. By analyzing the Fourier-transform images from dI/dV images at different energies, we obtained additional spatially oscillating LDOS other than the contributions from elastically scattered surface electrons and bulk electrons. We contended that the new oscillations might result from the inelastic collision between surface electrons and concave point defects with an unoccupied state. By STS, the unoccupied state was found at 0.22 eV on some concave point defects. We used the quantum well formed by the concave point defect to explain the unoccupied state. According to this unoccupied state, we built an inelastic collision model to explain the new oscillations. The inelastic collision model is that the surface electrons with energy higher than Fermi energy incident into the defect collide with the electrons near the defect and make the electrons exited to the unoccupied state from the Fermi level. Hence, the incident electrons losing energy create the new oscillation modes. By comparison between the model and our data, we found the results from the model was consistent with our data. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:42:24Z (GMT). No. of bitstreams: 1 ntu-103-R01222005-1.pdf: 50668043 bytes, checksum: 4a48a9e78295ac32be068b04cd74b0d9 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 1 Introduction ........................................1
2 Basic Concepts ......................................4 2.1 Theory of Scanning Tunneling Microscopy ...........4 2.1.1 Tunneling Eect for Electrons.....................5 2.1.2 Bardeen's Method and Tunneling Current ..........8 2.1.3 Terso-Hamann's Model ............................13 2.1.4 Theory of Scanning Tunneling Spectroscopy .......15 2.2 Dispersion Relation on Au(111).....................16 3 Apparatus and Methodology ...........................20 3.1 Ultra-high Vacuum System ..........................20 3.2 Preparation of the Au(111) Sample..................24 3.3 Scanning Tunneling Microscopy / Spectroscopy ......25 3.4 Fourier-transform Scanning Tunneling Microscopy ...30 3.4.1 Discrete Fourier Transform ......................30 3.4.2 Filtration of Fourier-transform images ..........31 3.4.3 Calibration of STM Images .......................31 4 Morphology and Electronic Properties of Au(111) .....35 4.1 Morphology of Au(111)..............................36 4.2 Electronic Properties of Au(111)...................39 4.3 Morphology and Electronic Properties of defects on Au(111)................................................41 5 Spatially Oscillating Local Density of States (LDOS) from Point Defects on Au(111) ..............................43 5.1 Standing Waves on the Au(111) Surface .............44 5.2 Dispersion Relation of the Au(111) Surface.........49 6 Discussion ..........................................52 6.1 Quantum Interference of Elastically Scattered Surface Electrons .............................................53 6.2 Quantum Interference of Bulk Electrons.............55 6.3 Quantum Interference of Inelastically Scattered Surface Electrons .............................................57 7 Conclusion ..........................................64 A Details of Dispersion Relation Data .................66 B Zoom-In Test ........................................69 Bibliography ..........................................74 | |
| dc.language.iso | en | |
| dc.subject | Friedel 震盪 | zh_TW |
| dc.subject | 金(111) | zh_TW |
| dc.subject | 金表面 | zh_TW |
| dc.subject | 電子穿隧顯微鏡 | zh_TW |
| dc.subject | 傅立葉轉換掃描式穿隧電子顯微鏡(FT-STM) | zh_TW |
| dc.subject | 區域狀態密度的震盪 | zh_TW |
| dc.subject | 準粒子干涉(QPI) | zh_TW |
| dc.subject | 非彈性碰撞 | zh_TW |
| dc.subject | 點缺陷 | zh_TW |
| dc.subject | 量子井 | zh_TW |
| dc.subject | quantum well | en |
| dc.subject | Fourier-transform scanning tunneling microscope (FT-STM) | en |
| dc.subject | spatially oscillating local density of states | en |
| dc.subject | Friedel oscillation | en |
| dc.subject | quasi-particle interference (QPI) | en |
| dc.subject | inelastic collision | en |
| dc.subject | point defect | en |
| dc.subject | Au(111) | en |
| dc.subject | the gold surface | en |
| dc.subject | scanning tunneling microscope (STM) | en |
| dc.title | 利用傅立葉轉換掃描式穿隧電子顯微鏡研究金(111)表面上區域狀態密度的震盪 | zh_TW |
| dc.title | Investigation of Spatially Oscillating Local Density of States on Au(111) by Fourier-Transform Scanning Tunneling Microscope | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 莊天明,白偉武,霍夫曼 | |
| dc.subject.keyword | 金(111),金表面,電子穿隧顯微鏡,傅立葉轉換掃描式穿隧電子顯微鏡(FT-STM),區域狀態密度的震盪,Friedel 震盪,準粒子干涉(QPI),非彈性碰撞,點缺陷,量子井, | zh_TW |
| dc.subject.keyword | Au(111),the gold surface,scanning tunneling microscope (STM),Fourier-transform scanning tunneling microscope (FT-STM),spatially oscillating local density of states,Friedel oscillation,quasi-particle interference (QPI),inelastic collision,point defect,quantum well, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-07-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 49.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
