Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16623
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor董桂書(Kuei-Shu Tung)
dc.contributor.authorHao-Yi Huangen
dc.contributor.author黃顥儀zh_TW
dc.date.accessioned2021-06-07T23:42:20Z-
dc.date.copyright2014-09-05
dc.date.issued2014
dc.date.submitted2014-07-28
dc.identifier.citationAdames, N.R., J.R. Oberle, and J.A. Cooper. 2001. The surveillance mechanism of the spindle position checkpoint in yeast. J Cell Biol. 153:159-168.
Bardin, A.J., R. Visintin, and A. Amon. 2000. A mechanism for coupling exit from mitosis to partitioning of the nucleus. Cell. 102:21-31.
Briza, P., A. Ellinger, G. Winkler, and M. Breitenbach. 1988. Chemical composition of the yeast ascospore wall. The second outer layer consists of chitosan. J Biol Chem. 263:11569-11574.
Briza, P., G. Winkler, H. Kalchhauser, and M. Breitenbach. 1986. Dityrosine is a prominent component of the yeast ascospore wall. A proof of its structure. J Biol Chem. 261:4288-4294.
Byers, B., and L. Goetsch. 1974. Duplication of spindle plaques and integration of the yeast cell cycle. Cold Spring Harb Symp Quant Biol. 38:123-131.
Caydasi, A.K., B. Ibrahim, and G. Pereira. 2010. Monitoring spindle orientation: Spindle position checkpoint in charge. Cell Div. 5:28.
Chen, C.-Y. 2007. The interation of Ady3 and Tem1 with Hsp26 in yeast sporulation. Institute of Molecular and Cellular Biology. Taipei, Taiwen, Nationsl Taiwam University.
Davidow, L.S., L. Goetsch, and B. Byers. 1980. Preferential occurrence of nonsister spores in two-spored asci of Saccharomyces cerevisiae: evidence for regulation of spore-wall formation by the spindle pole body. Genetics. 94:581-595.
Freese, E.B., M.I. Chu, and E. Freese. 1982. Initiation of yeast sporulation of partial carbon, nitrogen, or phosphate deprivation. J Bacteriol. 149:840-851.
Hartwell, L.H. 1974. Saccharomyces cerevisiae cell cycle. Bacteriol Rev. 38:164-198.
Herskowitz, I. 1988. Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol Rev. 52:536-553.
Ho, T.-M. 2005. The role of yeast Hsp26 in sporulattion. Institute of Molecular and
Cellular Biology. Taipei, Taiwen, Nationsl Taiwam University.
Hotz, M., and Y. Barral. 2014. The mitotic exit network: new turns on old pathways. Trends Cell Biol. 24:145-152.
Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. In J Bacteriol. Vol. 153. 163-168.
Jaspersen, S.L., and M. Winey. 2004. The budding yeast spindle pole body: structure, duplication, and function. Annu Rev Cell Dev Biol. 20:1-28.
Knop, M., and K. Strasser. 2000. Role of the spindle pole body of yeast in mediating assembly of the prospore membrane during meiosis. EMBO J. 19:3657-3667.
Kreger-Van Rij, N.J. 1978. Electron microscopy of germinating ascospores of Saccharomyces cerevisiae. Arch Microbiol. 117:73-77.
Kurtz, S., J. Rossi, L. Petko, and S. Lindquist. 1986. An ancient developmental induction: heat-shock proteins induced in sporulation and oogenesis. Science. 231:1154-1157.
Lam, C., E. Santore, E. Lavoie, L. Needleman, N. Fiacco, C. Kim, and A.M. Neiman. 2014. A visual screen of protein localization during sporulation identifies new components of prospore membrane-associated complexes in budding yeast. Eukaryot Cell. 13:383-391.
Lew, D.J., and D.J. Burke. 2003. The spindle assembly and spindle position checkpoints. Annu Rev Genet. 37:251-282.
Lindquist, S., and E.A. Craig. 1988. The heat-shock proteins. Annu Rev Genet. 22:631-677.
Lynn, R.R., and P.T. Magee. 1970. Development of the spore wall during ascospore formation in Saccharomyces cerevisiae. J Cell Biol. 44:688-692.
Maier, P., N. Rathfelder, M.G. Finkbeiner, C. Taxis, M. Mazza, S. Le Panse, R. Haguenauer-Tsapis, and M. Knop. 2007. Cytokinesis in yeast meiosis depends on the regulated removal of Ssp1p from the prospore membrane. EMBO J. 26:1843-1852.
Maier, P., N. Rathfelder, C.I. Maeder, J. Colombelli, E.H. Stelzer, and M. Knop. 2008. The SpoMBe pathway drives membrane bending necessary for cytokinesis and spore formation in yeast meiosis. EMBO J. 27:2363-2374.
Mathieson, E.M., Y. Suda, M. Nickas, B. Snydsman, T.N. Davis, E.G. Muller, and A.M. Neiman. 2010. Vesicle docking to the spindle pole body is necessary to recruit the exocyst during membrane formation in Saccharomyces cerevisiae. Mol Biol Cell. 21:3693-3707.
McAlister, L., and D.B. Finkelstein. 1980. Heat shock proteins and thermal resistance in yeast. Biochem Biophys Res Commun. 93:819-824.
Moens, P.B., and E. Rapport. 1971. Spindles, spindle plaques, and meiosis in the yeast Saccharomyces cerevisiae (Hansen). J Cell Biol. 50:344-361.
Moreno-Borchart, A.C., K. Strasser, M.G. Finkbeiner, A. Shevchenko, A. Shevchenko, and M. Knop. 2001. Prospore membrane formation linked to the leading edge protein (LEP) coat assembly. EMBO J. 20:6946-6957.
Nag, D.K., M.P. Koonce, and J. Axelrod. 1997. SSP1, a gene necessary for proper completion of meiotic divisions and spore formation in Saccharomyces cerevisiae. Mol Cell Biol. 17:7029-7039.
Neff, N.F., J.H. Thomas, P. Grisafi, and D. Botstein. 1983. Isolation of the beta-tubulin gene from yeast and demonstration of its essential function in vivo. Cell. 33:211-219.
Neiman, A.M. 1998. Prospore membrane formation defines a developmentally regulated branch of the secretory pathway in yeast. J Cell Biol. 140:29-37.
Neiman, A.M. 2005. Ascospore formation in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 69:565-584.
Nickas, M.E., and A.M. Neiman. 2002. Ady3p links spindle pole body function to spore wall synthesis in Saccharomyces cerevisiae. Genetics. 160:1439-1450.
Nickas, M.E., C. Schwartz, and A.M. Neiman. 2003. Ady4p and Spo74p are components of the meiotic spindle pole body that promote growth of the prospore membrane in Saccharomyces cerevisiae. Eukaryot Cell. 2:431-445.
Pereira, G., T. Hofken, J. Grindlay, C. Manson, and E. Schiebel. 2000. The Bub2p spindle checkpoint links nuclear migration with mitotic exit. Mol Cell. 6:1-10.
Rabitsch, K.P., A. Toth, M. Galova, A. Schleiffer, G. Schaffner, E. Aigner, C. Rupp, A.M. Penkner, A.C. Moreno-Borchart, M. Primig, R.E. Esposito, F. Klein, M. Knop, and K. Nasmyth. 2001. A screen for genes required for meiosis and spore formation based on whole-genome expression. Curr Biol. 11:1001-1009.
Roeder, G.S. 1997. Meiotic chromosomes: it takes two to tango. Genes Dev. 11:2600-2621.
Segal, M., and K. Bloom. 2001. Control of spindle polarity and orientation in Saccharomyces cerevisiae. Trends Cell Biol. 11:160-166.
Sentandreu, R., and D.H. Northcote. 1969. The formation of buds in yeast. J Gen Microbiol. 55:393-398.
Shonn, M.A., R. McCarroll, and A.W. Murray. 2000. Requirement of the spindle checkpoint for proper chromosome segregation in budding yeast meiosis. Science. 289:300-303.
Smits, G.J., H. van den Ende, and F.M. Klis. 2001. Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiology. 147:781-794.
Suda, Y., H. Nakanishi, E.M. Mathieson, and A.M. Neiman. 2007. Alternative modes of organellar segregation during sporulation in Saccharomyces cerevisiae. Eukaryot Cell. 6:2009-2017.

Visintin, R., K. Craig, E.S. Hwang, S. Prinz, M. Tyers, and A. Amon. 1998. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol Cell. 2:709-718.
Yeh, E., R.V. Skibbens, J.W. Cheng, E.D. Salmon, and K. Bloom. 1995. Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae. J Cell Biol. 130:687-700.
Zakeri, Z.F., and D.J. Wolgemuth. 1987. Developmental-stage-specific expression of the hsp70 gene family during differentiation of the mammalian male germ line. Mol Cell Biol. 7:1791-1796.
Zimmerman, J.L., W. Petri, and M. Meselson. 1983. Accumulation of a specific subset of D. melanogaster heat shock mRNAs in normal development without heat shock. Cell. 32:1161-1170.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16623-
dc.description.abstract酵母菌的生長方式會隨著環境中養分的不同而做出適當的改變,當環境中缺乏可發酵的醣類及氮源時,二倍體酵母菌的生長方式會從出芽分裂轉變成減數分裂,並產生孢子以度過逆境。
先前研究酵母菌Hsp26蛋白在孢子產生過程所扮演的角色時,發現hsp26突變株的產孢比例比野生型酵母菌為高,進一步分析減數分裂和孢子產生的過程發現,產孢差異的原因不是發生在減數分裂的啟始或分裂期,而是在孢子形成期。當使用benomyl (一種干擾紡錘絲形成的藥劑) 處理細胞後,此藥劑影響部分野生型酵母菌的產孢比例,但其孢子存活率不受影響;相反的,此藥劑不會影響hsp26突變株的產孢比例,但孢子存活率下降。因此推測存在一個與Hsp26有關的紡錘體位置檢控點 (spindle position checkpoint),可監控從第二次減數分裂到孢子形成的過程,子細胞核在母細胞中的位置或細胞內形成的紡錘體是否適合形成孢子。而本篇論文確認此藥劑會影響紡錘體的形成,和確認此藥劑會加重野生型酵母菌不能形成孢子的比例,進一步支持此檢控機制的存在。
為了瞭解此檢控點的詳細調控機制,先前找出幾個和Hsp26 蛋白有交互作用且可能參與在此調控機制的蛋白質。其中一個為Ady3蛋白。Ady3 蛋白位於原生孢子膜的前端,形成像甜甜圈般的環狀結構,稱為前緣蛋白質複合體 (leading edge complex),Ady3 蛋白主要和原生孢子膜形成以及孢子壁合成有關。而本篇研究顯示,以benomyl處理細胞後,許多野生型酵母菌細胞內的Ady3 蛋白無法參與前緣蛋白質複合體,但在hsp26突變細胞仍形成此Ady3複合體之比例不變。進一步分析此前緣蛋白質複合體的另一主要蛋白質Ssp1時,也得到類似的結果。由此結論推論,Hsp26蛋白能調控Ady3蛋白以及Ssp1蛋白形成前緣蛋白質複合體。
綜合所有的結果,我們提出,在酵母菌產生孢子的過程中,有一個Hsp26蛋白參與的紡錘體位置檢控點 (spindle position checkpoint),可監控從第二次減數分裂時,子細胞核在母細胞中的位置或細胞內形成的紡錘體是否適合形成孢子,若不適合,此檢控機制會透過調控Ady3蛋白及Ssp1蛋白形成前緣蛋白質複合體而阻止孢子形成,以確保形成的孢子都具有能力存活。
zh_TW
dc.description.abstractDiploid cells of the yeast Saccharomyces cerevisiae switch their growth in response to nutrient starvation. The complete absence of fermentable sugar and nitrogen resources causes cells to exit from the mitotic cycle, enter meiosis, and produce haploid spores.
During the study of the roles of heat-shock proteins in yeast sporulation, our laboratory found that the hsp26 mutant increased sporulation ~20% more than that of the wild type. This increase took place not at the beginning of meiosis, neither during meiotic divisions, but at the step of spore formation. Based on the experiments using benomyl to interfere the meiotic spindles, it was proposed that Hsp26 might be involved in a novel spindle position checkpoint that regulates spore formation in response to meiosis II progression. In this study, the existence of the Hsp26-dependent spindle position checkpoint was further confirmed by analyzing the defect of spindle formation after benomyl treatment.
To explore the mechanism of Hsp26 in controlling spore formation, previous studies have identified Ady3 as an Hsp26-interacting protein. Ady3 has been reported to form a ring-like structure at the leading edge of each growing prospore membrane that initiates the spore formation process. In this study, we showed that Ady3 localization was affected after benomyl treatment in the wild type, but not in the hsp26 mutant. Similar effect was also observed on the localization of Ssp1, which is the main component of the leading edge complex. Our experiments suggested that Hsp26 regulates Ady3 and Ssp1 localization.
Our results confirmed the novel Hsp26-dependent spindle position checkpoint that monitors the distribution or separation of daughter nuclei within the mother cell and controls spore formation. This checkpoint regulates Ady3 and Ssp1 localization and in turn, controls spore formation to ensure spore viability.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:42:20Z (GMT). No. of bitstreams: 1
ntu-103-R01B43024-1.pdf: 4935081 bytes, checksum: 52bd3fb9a883935781e60884bfccd051 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要 ------------------------------------------------------------------------------- i
ABSTRACT ------------------------------------------------------------------------------- iii
TABLE OF CONTENTS ------------------------------------------------------------------ v
LIST OF TABLES ------------------------------------------------------------------------ viii
LIST OF FIGURES ------------------------------------------------------------------------ ix
CHAPTER 1. INTRODUCTION -------------------------------------------------------- 1
I. Vegetative cell division --------------------------------------------------------------- 1
A. Budding ---------------------------------------------------------------------------- 1
B. The spindle position checkpoint ------------------------------------------------ 2
II. Sporulation ----------------------------------------------------------------------------- 3
A. Meiosis ----------------------------------------------------------------------------- 3
B. Spore formation ------------------------------------------------------------------- 4
1. Formation of the prospore membrane ------------------------------------- 4
a. Meiotic outer plaque of the SPB --------------------------------------- 5
b. Leading edge complex -------------------------------------------------- 7
2. Formation of the spore wall ------------------------------------------------- 9
III. Yeast small heat shock proteins ----------------------------------------------------- 9
A. Known functions of heat shock proteins --------------------------------------- 9
B. New discovery of the role of Hsp26 in sporulation ------------------------- 10
IV. Specific aims -------------------------------------------------------------------------- 12

CHAPTER 2. MATERIALS AND METHODS ---------------------------------- 13
I. Culture conditions -------------------------------------------------------------------- 13
II. DNA preparation, transformation -------------------------------------------------- 14
III. Yeast strain constructions ----------------------------------------------------------- 14
IV. Time course analyses ---------------------------------------------------------------- 16
A. Meiotic time course analyses -------------------------------------------------- 16
B. Nuclear division analyses ------------------------------------------------------- 16
V. Benomyl treatment ------------------------------------------------------------------- 17
VI. Spore viability analysis -------------------------------------------------------------- 18
VII. Cytology analysis ------------------------------------------------------------------ 18
A. Whole cell staining and immunofluorescence with yeast cells ------------ 18
B. Image analysis ------------------------------------------------------------------- 20
CHAPTER 3. RESULTS -------------------------------------------------------------- 21
I. More evidences to confirm the Hsp26-dependent spindle position checkpoint 21
A. Benomyl treatment affected spindle formation ----------------------------- 21
B. Benomyl affected spore formation in the wild type, but not in the hsp26 mutant ----------------------------------------------------------------------------- 23
C. Benomyl treatment caused a slight delay, if at all, in nuclear divisions -- 25
D. Hsp26-dependent spindle position checkpoint maintained the spore
viability in the wild type -------------------------------------------------------- 25
II. Hsp26 regulates leading edge complex formation during spore formation -- 26
A. Benomyl treatment affected Ady3 localization to the leading edge
complex -------------------------------------------------------------------------- 26
B. Benomyl treatment affected Ssp1 to form leading edge complex --------- 29
III. Benomyl treatment caused a localization defect of Ssp1 in the ady3 mutant 31

CHAPTER 4. DISCUSSION --------------------------------------------------------- 33
I. A novel role of Hsp26 in spore formation ---------------------------------------- 33
II. Hsp26 controls the leading edge complex formation during spore formation 35
III. The possible regulatory mechanisms of Hsp26 in Ady3 and Ssp1 localization 36
REFERENCES -------------------------------------------------------------------------- 39
APPENDIX ------------------------------------------------------------------------------- 76
dc.language.isoen
dc.subject紡錘體檢控點zh_TW
dc.subject減數分裂zh_TW
dc.subject前緣蛋白質複合體zh_TW
dc.subjectHsp26 蛋白zh_TW
dc.subjectHsp26en
dc.subjectmeiosisen
dc.subjectleading edge complexen
dc.subjectspindle checkpointen
dc.titleHsp26 蛋白調控酵母菌孢子形成的機制zh_TW
dc.titleThe Mechanism of Hsp26 Regulating Spore Formation in Budding Yeasten
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王廷方(Ting-Fang Wang),冀宏源(Hung-Yuan Chi)
dc.subject.keywordHsp26 蛋白,紡錘體檢控點,前緣蛋白質複合體,減數分裂,zh_TW
dc.subject.keywordHsp26,spindle checkpoint,leading edge complex,meiosis,en
dc.relation.page76
dc.rights.note未授權
dc.date.accepted2014-07-28
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved