請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16601完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張耀文 | |
| dc.contributor.author | Wei-Yu Chen | en |
| dc.contributor.author | 陳威宇 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:23:06Z | - |
| dc.date.copyright | 2012-01-17 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-10-07 | |
| dc.identifier.citation | [1] S. Abdelwahed, R. Fathy, J. H. Kang, J. D. Kim, and Y. Kim, 'Pre-OPC layout decomposition for improved image fidelity,' in Proceedings of SPIE, volume 7274, pp. 72742I, 2009.
[2] S. N. Adya, S. Chaturvedi, J. A. Roy, D. A. Papa, and I. L. Markov, 'Unification of partitioning, placement and floorplanning,' in Proceedings of IEEE/ACM International conference on Computer-aided design, pp. 550-557, 2004. [3] C. Auth, A. Cappellani, J.-S. Chun, A. Dalis, A. Davis, T. Ghani, G. Glass, T. Glassman, M. Harper, M. Hattendorf, P. Hentges, S. Jaloviar, S. Joshi, J. Klaus, K. Kuhn, D. Lavric, M. Lu, H. Mariappan, K. Mistry, B. Norris, N. Rahhal-orabi, P. Ranade, J. Sandford, L. Shifren, V. Souw, K. Tone, F. Tambwe, A. Thompson, D. Towner, T. Troeger, P. Vandervoorn, C. Wallace, J. Wiedemer, and C. Wiegand, '45nm High-k + metal gate strain-enhanced transistors,' in Symposium on VLSI Technology, pp. 128-129, 2008. [4] S. Babin, A. B. Kahng, I. I. Mandoiu, and S. Muddu, 'Improving critical dimension accuracy and throughput by subfield scheduling in electron beam mask writing,' Journal of Vacuum Science & Technology B, 23(6):3094-3100, 2005. [5] G. E. Bailey, A. Tritchkov, J.-W. Park, L. Hong, V. Wiaux, E. Hendrickx, S. Verhaegen, P. Xie, and J. Versluijs, 'Double pattern EDA solutions for 32nm HP and beyond,' in Proceedings of SPIE, volume 6521, pp. 65211K, 2007. [6] Y. Borodovsky, 'Lithography 2009 overview of opportunities,' in Semicon West, 2009. [7] T. A. Brunner, 'Why optical lithography will live forever,' Journal of Vacuum Science & Technology B, 21(6):2632-2637, 2003. [8] G. Capetti, P. Cantu, E. Galassini, A. V. Pret, C. Turco, A. Vaccaro, P. Rigolli, F. D'Angelo, and G. Cotti, 'Sub-k1 = 0.25 lithography with double patterning technique for 45-nm technology node flash memory devices at lambda = 193nm,' in Proceedings of SPIE, volume 6520, pp. 65202K, 2007. [9] M. Chams, A. Hertz, and D. de Werra, 'Some experiments with simulated annealing for coloring graphs,' European Journal of Operational Research, 32(2):260-266, 1987. [10] S.-Y. Chen and Y.-W. Chang, 'Native-conflict-aware wire perturbation for double patterning technology,' in Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 556-561, 2010. [11] C. Cork, J.-C. Madre, and L. Barnes, 'Comparison of triple-patterning decomposition algorithms using aperiodic tiling patterns,' in Proceedings of SPIE, volume 7028, pp. 702839, 2008. [12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press, 2009. [13] M. Drapeau, V. Wiaux, E. Hendrickx, S. Verhaegen, and T. Machida, 'Double patterning design split implementation and validation for the 32nm node,' in Proceedings of SPIE, volume 6521, pp. 652109, 2007. [14] M. Dusa, J. Quaedackers, O. F. A. Larsen, J. Meessen, E. van der Heijden, G. Dicker, O. Wismans, P. de Haas, K. van I. Schenau, J. Finders, B. Vleeming, G. Storms, P. Jaenen, S. Cheng, and M. Maenhoudt, 'Pitch doubling through dual-patterning lithography challenges in integration and litho budgets,' in Proceedings of SPIE, volume 6520, pp. 65200G, 2007. [15] J. Finders, M. Dusa, and S. Hsu, 'Double patterning lithography: the bridge between low k1 ArF and EUV,' Microlithography World, 17(1):2-7, 2008. [16] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Company, 1979. [17] M. R. Garey, D. S. Johnson, and L. Stockmeyer, 'Some simplified NP-complete problems,' in Proceedings of ACM Symposium on Theory of Computing, pp. 47-63, 1974. [18] H. Haffner, J. Meiring, Z. Baum, and S. Halle, 'Paving the way to a full chip gate level double patterning application,' in Proceedings of SPIE, volume 6730, pp. 67302C, 2007. [19] Y. Inazuki, N. Toyama, T. Nagai, T. Sutou, Y. Morikawa, H. Mohri, N. Hayashi, M. Drapeau, K. Lucas, and C. Cork, 'Decomposition difficulty analysis for double patterning and the impact on photomask manufacturability,' in Proceedings of SPIE, volume 6925, pp. 69251O, 2008. [20] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon, 'Optimization by simulated annealing: an experimental evaluation; part II, graph coloring and number partitioning,' Operations Research, 39:378-406, 1991. [21] A. B. Kahng, C.-H. Park, X. Xu, and H. Yao, 'Layout decomposition for double patterning lithography,' in Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 465-472, 2008. [22] A. B. Kahng, C.-H. Park, X. Xu, and H. Yao, 'Layout decomposition approaches for double patterning lithography,' IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29(6):939-952, 2010. [23] S. Khanna, N. Linial, and S. Safra, 'On the hardness of approximating the chromatic number,' in Proceedings of Israel Symposium on Theory and Computing Systems, pp. 250-260, 1993. [24] E. Kratschmer and T. R. Groves, 'Resist heating effects in 25 and 50 kV e-beam lithography on glass masks,' Journal of Vacuum Science & Technology B, 8(6):1898-1902, 1990. [25] M. Laguna and R. Marti, 'A GRASP for coloring sparse graphs,' Computational Optimization and Applications, 19:165-178, 2001. [26] D. Lammers, 'EUV focus shifts to affordability,' Low-Power Engineering, Jul. 8, 2010. [27] M. LaPedus, 'SPIE: Intel to extend immersion to 11-nm,' EE Times, Feb. 22, 2010. [28] M. LaPedus, 'IBM sees immersion at 22nm, pushes out EUV,' EE Times, Feb. 23, 2007. [29] M. LaPedus, 'What's the impact of 450-mm and EUV delays?,' EE Times, Jan. 22, 2010. [30] F. T. Leighton, 'A graph coloring algorithm for large scheduling problems,' Journal of Research of the National Bureau of Standards, 84(6):489-506, 1979. [31] L. Liebmann and A. Torres, 'A designer's guide to sub-resolution lithography: enabling the impossible to get to the 15nm node,' in Proceedings of ACM/IEEE Design Automation Conference, 2011. [32] L. W. Liebmann and J.-A. Carballo, 'Layout methodology impact of resolution enhancement techniques,' in Proceedings of Electronic Design Processes Workshop, 2003. [33] B. J. Lin, 'Immersion lithography and its impact on semiconductor manufacturing,' Journal of Microlithography, MEMS and MOEMS, 3(3):377-395, 2004. [34] W.-S. Luk and H. Huang, 'Fast and lossless graph division method for layout decomposition using SPQR-tree,' in Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 112-115, 2010. [35] R. Merritt, 'Otellini: Intel to ship more SoCs than PC CPUs - someday,' EE Times, Sep. 22, 2009. [36] W. M. Moreau. Semiconductor Lithography: Principles, Practices, and Materials. Plenum Press, 1988. [37] G. Palubeckis, 'On the recursive largest first algorithm for graph colouring,' International Journal of Computer Mathematics, 85:191-200, 2008. [38] J. Park, S. Hsu, D. V. D. Broeke, J. F. Chen, M. Dusa, R. Socha, J. Finders, B. Vleeming, A. van Oosten, P. Nikolsky, V. Wiaux, E. Hendrickx, J. Bekaert, and G. Vandenberghe, 'Application challenges with double patterning technology (DPT) beyond 45 nm,' in Proceedings of SPIE, volume 6349, pp. 634922, 2006. [39] B. Streefkerk, J. Baselmans, W. G. Ansem, J. Mulkens, C. Hoogendam, M. Hoogendorp, D. G. Flagello, H. Sewell, and P. Graupner, 'Extending optical lithography with immersion,' in Proceedings of SPIE, volume 5377, pp. 285-305, 2004. [40] M. Switkes, R. R. Kunz, R. F. Sinta, M. Rothschild, P. M. Gallagher-Wetmore, V. J. Krukonis, and K. Williams, 'Immersion liquids for lithography in the deep ultraviolet,' in Proceedings of SPIE, volume 5040, pp. 690-699, 2003. [41] R. Tarjan, 'Depth-first search and linear graph algorithms,' in Symposium on Switching and Automata Theory, pp. 114-121, 1971. [42] Y. H. Tsin, 'A simple 3-edge-connected component algorithm,' Theory of Computing Systems, 40:125-142, 2007. [43] Y. Wei and R. L. Brainard. Advanced Processes for 193-nm Immersion Lithography . SPIE Press, 2009. [44] D. B. West. Introduction to Graph Theory. Prentice Hall, 2001. [45] V. Wiaux, S. Verhaegen, S. Cheng, F. Iwamoto, P. Jaenen, M. Maenhoudt, T. Matsuda, S. Postnikov, and G. Vandenberghe, 'Split and design guidelines for double patterning,' in Proceedings of SPIE, volume 6924, pp. 692409, 2008. [46] A. K.Wong. Resolution Enhancement Techniques in Optical Lithography. SPIE Press, 2001. [47] O. Wood, C.-S. Koay, K. Petrillo, H. Mizuno, S. Raghunathan, J. Arnold, D. Horak, M. Burkhardt, G. McIntyre, Y. Deng, B. L. Fontaine, U. Okoroanyanwu, A. Tchikoulaeva, T. Wallow, J. H.-C. Chen, M. Colburn, S. S.-C. Fan, B. S. Haran, and Y. Yin, 'Integration of EUV lithography in the fabrication of 22-nm node devices,' in Proceedings of SPIE, volume 7271, pp. 727104, 2009. [48] Y. Xu and C. Chu, 'GREMA: graph reduction based efficient mask assignment for double patterning technology,' in Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 601-606, 2009. [49] Y. Xu and C. Chu, 'A matching based decomposer for double patterning lithography,' in Proceedings of ACM International Symposium on Physical Design, pp. 121-126, 2010. [50] J.-S. Yang, K. Lu, M. Cho, K. Yuan, and D. Z. Pan, 'A new graph-theoretic, multi-objective layout decomposition framework for double patterning lithography,' in Proceedings of ACM/IEEE Asia and South Pacific Design Automation Conference, pp. 637-644, 2010. [51] B. Yu, K. Yuan, B. Zhang, D. Ding, and D. Z. Pan, 'Layout decomposition for triple patterning lithography,' in Proceedings of IEEE/ACM International Conference on Computer-Aided Design, 2011. [52] K. Yuan and D. Z. Pan, 'WISDOM: Wire spreading enhanced decomposition of masks in Double Patterning Lithography,' in Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 32-38, 2010. [53] K. Yuan, J.-S. Yang, and D. Z. Pan, 'Double patterning layout decomposition for simultaneous conflict and stitch minimization,' in Proceedings of ACM International Symposium on Physical Design, pp. 107-114, 2009. [54] N. Zeggaoui, V. Farys, Y. Trouiller, E. Yesilada, F. Robert, and M. Besacier, 'Optimization of double patterning split by analyzing diffractive orders in the pupil plane,' in Proceedings of SPIE, volume 7823, pp. 78233Y, 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16601 | - |
| dc.description.abstract | 對小於22 奈米的製程節點,雙圖樣微影技術(double patterning lithography)是目前用來增進可印刷性最受推崇的方法。然而,對於小於15 奈米的製程節點,有許多來自業界的文獻指出部分較複雜且密集的層,如閘層、接觸層和第一金屬層,將必須使用到三圖樣微影技術(triple patterning lithography)。不幸地,直至目前,專注在三圖樣微影技術之佈局分割的研究還相當少。最近才有學者對三圖影微影技術提出第一個系統性的方法。然而,我們觀察到,在三圖樣微影技術下,該演算法可能會遺漏相當多可能的縫合(stitch)位置,因此造成部分其實是可透過縫合解決的衝突(conflict)。在本論文中,我們先指出佈局分割在雙圖樣微影技術下和在三圖樣微影技術下主要的兩個不同之處。根據此兩個不同之處,我們提出一個包含四種削減技術的圖切割的方法,此方法可削減問題規模而不影響解的品質。接著,我們提出一個在分配光罩(mask)時考慮逢合的方法,此方法將會在分配光罩時讓衝突趨向產生在容易插入縫合的地方。由實驗結果可看出我們的圖切割的方法可有效的減少約93%的問題規模,且我們提出的光罩分配方法可減少約38%的衝突。 | zh_TW |
| dc.description.abstract | Double patterning lithography (DPL) has been widely recognized as one of the most promising solutions for the sub-22nm technology node to enhance pattern printability. However, much of the literature from industry states that, for the 15nm technology node and beyond, triple patterning lithography (TPL) will be required for the gate, contact, and metal one layers, which are too complex and dense to be split into two masks. Unfortunately, until now, there is very little research focusing on the layout decomposition for TPL. Recent work presented by Yu et al. proposed the first systematic study on the layout decomposition for TPL. However, we observe that their proposed algorithm may miss several possible stitch locations and result in some conflicts that can be resolved by inserting stitches. In this thesis, we first point out two main differences between DPL and TPL layout decompositions. Based on these two differences, we first present a graph division method consisting of four reduction techniques to reduce the problem size without degrading overall solution quality. Next, we propose a stitch-aware mask assignment algorithm, which is based on a heuristic that finds a mask assignment such that the conflicts among the features in the same mask are more likely to be resolved by inserting stitches. Experimental results show that our graph division method can significantly reduce the problem size by an average of 93%, and that the proposed stitch-aware mask assignment algorithm can achieve around 38% reduction of conflicts compared to a basic mask assignment method. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:23:06Z (GMT). No. of bitstreams: 1 ntu-100-R98943100-1.pdf: 818852 bytes, checksum: e12822579d053bc002b81183fec5ea88 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Acknowledgements i
Abstract (Chinese) ii Abstract iv List of Tables viii List of Figures ix Chapter 1. Introduction 1 1.1 Conventional Optical Lithography . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Multiple Patterning Lithography . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Double Patterning Lithography (DPL) . . . . . . . . . . . . . . . . 4 1.2.2 Triple Patterning Lithography (TPL) . . . . . . . . . . . . . . . . 7 1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Chapter 2. Preliminaries 13 2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Differences between DPL and TPL Layout Decompositions . . . . . . . . 14 2.2.1 Problem Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.2 Stitch Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Chapter 3. Algorithm 18 3.1 Overall Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Conflict Graph Construction . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Graph Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.1 Vertex with Degree Less than Three Removal . . . . . . . . . . . . 22 3.3.2 Connected Component Computation . . . . . . . . . . . . . . . . . 25 3.3.3 Biconnected Component Computation . . . . . . . . . . . . . . . . 27 3.3.4 Three-Edge-Connected Component Computation . . . . . . . . . . 29 3.4 Stitch-Aware Mask Assignment . . . . . . . . . . . . . . . . . . . . . . . 33 3.4.1 Edge Weight Calculation . . . . . . . . . . . . . . . . . . . . . . . 35 3.4.2 Mask Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.5 Stitch Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Chapter 4. Experimental Results 42 4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2 Result Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Chapter 5. Conclusion 50 Bibliography 52 | |
| dc.language.iso | en | |
| dc.subject | 光罩分配 | zh_TW |
| dc.subject | 三圖樣微影技術 | zh_TW |
| dc.subject | 佈局分割 | zh_TW |
| dc.subject | 圖切割 | zh_TW |
| dc.subject | Graph Division | en |
| dc.subject | Triple Patterning Lithography | en |
| dc.subject | Layout Decomposition | en |
| dc.subject | Mask Assignment | en |
| dc.title | 三圖樣微影技術下之佈局分割方法 | zh_TW |
| dc.title | Layout Decomposition for Triple Patterning Lithography | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳中寬,郭斯彥,江蕙如,陳宏明 | |
| dc.subject.keyword | 三圖樣微影技術,佈局分割,圖切割,光罩分配, | zh_TW |
| dc.subject.keyword | Triple Patterning Lithography,Layout Decomposition,Graph Division,Mask Assignment, | en |
| dc.relation.page | 58 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-10-11 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 799.66 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
