請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16597完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李芳仁 | |
| dc.contributor.author | Lin-Chun Chang | en |
| dc.contributor.author | 張翎君 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:22:53Z | - |
| dc.date.copyright | 2012-03-02 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-10-18 | |
| dc.identifier.citation | 1. Wilusz, C.J. and Wilusz, J. (2004) Bringing the role of mRNA decay in the control of gene expression into focus. Trends Genet, 20, 491-497.
2. Parker, R. and Song, H. (2004) The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol, 11, 121-127. 3. Garneau, N.L., Wilusz, J. and Wilusz, C.J. (2007) The highways and byways of mRNA decay. Nat Rev Mol Cell Biol, 8, 113-126. 4. Daugeron, M.C., Mauxion, F. and Seraphin, B. (2001) The yeast POP2 gene encodes a nuclease involved in mRNA deadenylation. Nucleic Acids Res, 29, 2448-2455. 5. Tucker, M., Staples, R.R., Valencia-Sanchez, M.A., Muhlrad, D. and Parker, R. (2002) Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J, 21, 1427-1436. 6. Tucker, M., Valencia-Sanchez, M.A., Staples, R.R., Chen, J., Denis, C.L. and Parker, R. (2001) The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell, 104, 377-386. 7. Boeck, R., Tarun, S., Jr., Rieger, M., Deardorff, J.A., Muller-Auer, S. and Sachs, A.B. (1996) The yeast Pan2 protein is required for poly(A)-binding protein-stimulated poly(A)-nuclease activity. J Biol Chem, 271, 432-438. 8. Brown, C.E., Tarun, S.Z., Jr., Boeck, R. and Sachs, A.B. (1996) PAN3 encodes a subunit of the Pab1p-dependent poly(A) nuclease in Saccharomyces cerevisiae. Mol Cell Biol, 16, 5744-5753. 9. Dehlin, E., Wormington, M., Korner, C.G. and Wahle, E. (2000) Cap-dependent deadenylation of mRNA. EMBO J, 19, 1079-1086. 10. Houseley, J., LaCava, J. and Tollervey, D. (2006) RNA-quality control by the exosome. Nat Rev Mol Cell Biol, 7, 529-539. 11. Butler, J.S. (2002) The yin and yang of the exosome. Trends Cell Biol, 12, 90-96. 12. Araki, Y., Takahashi, S., Kobayashi, T., Kajiho, H., Hoshino, S. and Katada, T. (2001) Ski7p G protein interacts with the exosome and the Ski complex for 3'-to-5' mRNA decay in yeast. EMBO J, 20, 4684-4693. 13. Parker, R. and Song, H. (2004) The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol, 11, 121-127. 14. Garneau, N.L., Wilusz, J. and Wilusz, C.J. (2007) The highways and byways of mRNA decay. Nat Rev Mol Cell Biol, 8, 113-126. 15. Hu, W., Sweet, T.J., Chamnongpol, S., Baker, K.E. and Coller, J. (2009) Co-translational mRNA decay in Saccharomyces cerevisiae. Nature, 461, 225-229. 16. Lejeune, F., Li, X. and Maquat, L.E. (2003) Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol Cell, 12, 675-687. 17. Mitchell, P. and Tollervey, D. (2003) An NMD pathway in yeast involving accelerated deadenylation and exosome-mediated 3'-->5' degradation. Mol Cell, 11, 1405-1413. 18. Takahashi, S., Araki, Y., Sakuno, T. and Katada, T. (2003) Interaction between Ski7p and Upf1p is required for nonsense-mediated 3'-to-5' mRNA decay in yeast. EMBO J, 22, 3951-3959. 19. Frischmeyer, P.A., van Hoof, A., O'Donnell, K., Guerrerio, A.L., Parker, R. and Dietz, H.C. (2002) An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science, 295, 2258-2261. 20. van Hoof, A., Frischmeyer, P.A., Dietz, H.C. and Parker, R. (2002) Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science, 295, 2262-2264. 21. Passos, D.O., Doma, M.K., Shoemaker, C.J., Muhlrad, D., Green, R., Weissman, J., Hollien, J. and Parker, R. (2009) Analysis of Dom34 and its function in no-go decay. Mol Biol Cell, 20, 3025-3032. 22. Doma, M.K. and Parker, R. (2006) Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature, 440, 561-564. 23. Coller, J. and Parker, R. (2004) Eukaryotic mRNA decapping. Annu Rev Biochem, 73, 861-890. 24. Franks, T.M. and Lykke-Andersen, J. (2008) The control of mRNA decapping and P-body formation. Mol Cell, 32, 605-615. 25. Coller, J.M., Tucker, M., Sheth, U., Valencia-Sanchez, M.A. and Parker, R. (2001) The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA, 7, 1717-1727. 26. Fischer, N. and Weis, K. (2002) The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. EMBO J, 21, 2788-2797. 27. Hatfield, L., Beelman, C.A., Stevens, A. and Parker, R. (1996) Mutations in trans-acting factors affecting mRNA decapping in Saccharomyces cerevisiae. Mol Cell Biol, 16, 5830-5838. 28. Coller, J. and Parker, R. (2005) General translational repression by activators of mRNA decapping. Cell, 122, 875-886. 29. Tharun, S. and Parker, R. (2001) Targeting an mRNA for decapping: displacement of translation factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs. Mol Cell, 8, 1075-1083. 30. Tharun, S., He, W., Mayes, A.E., Lennertz, P., Beggs, J.D. and Parker, R. (2000) Yeast Sm-like proteins function in mRNA decapping and decay. Nature, 404, 515-518. 31. Schwartz, D., Decker, C.J. and Parker, R. (2003) The enhancer of decapping proteins, Edc1p and Edc2p, bind RNA and stimulate the activity of the decapping enzyme. RNA, 9, 239-251. 32. Tritschler, F., Eulalio, A., Truffault, V., Hartmann, M.D., Helms, S., Schmidt, S., Coles, M., Izaurralde, E. and Weichenrieder, O. (2007) A divergent Sm fold in EDC3 proteins mediates DCP1 binding and P-body targeting. Mol Cell Biol, 27, 8600-8611. 33. Kshirsagar, M. and Parker, R. (2004) Identification of Edc3p as an enhancer of mRNA decapping in Saccharomyces cerevisiae. Genetics, 166, 729-739. 34. Decker, C.J., Teixeira, D. and Parker, R. (2007) Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. J Cell Biol, 179, 437-449. 35. Sheth, U. and Parker, R. (2006) Targeting of aberrant mRNAs to cytoplasmic processing bodies. Cell, 125, 1095-1109. 36. Anderson, P. and Kedersha, N. (2006) RNA granules. J Cell Biol, 172, 803-808. 37. Eulalio, A., Behm-Ansmant, I. and Izaurralde, E. (2007) P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol, 8, 9-22. 38. Parker, R. and Sheth, U. (2007) P bodies and the control of mRNA translation and degradation. Mol Cell, 25, 635-646. 39. Sheth, U. and Parker, R. (2003) Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science, 300, 805-808. 40. Cougot, N., Babajko, S. and Seraphin, B. (2004) Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol, 165, 31-40. 41. van Dijk, E., Cougot, N., Meyer, S., Babajko, S., Wahle, E. and Seraphin, B. (2002) Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J, 21, 6915-6924. 42. Teixeira, D., Sheth, U., Valencia-Sanchez, M.A., Brengues, M. and Parker, R. (2005) Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA, 11, 371-382. 43. Eulalio, A., Behm-Ansmant, I., Schweizer, D. and Izaurralde, E. (2007) P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol, 27, 3970-3981. 44. Hoyle, N.P., Castelli, L.M., Campbell, S.G., Holmes, L.E. and Ashe, M.P. (2007) Stress-dependent relocalization of translationally primed mRNPs to cytoplasmic granules that are kinetically and spatially distinct from P-bodies. J Cell Biol, 179, 65-74. 45. Kedersha, N., Stoecklin, G., Ayodele, M., Yacono, P., Lykke-Andersen, J., Fritzler, M.J., Scheuner, D., Kaufman, R.J., Golan, D.E. and Anderson, P. (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol, 169, 871-884. 46. Kimball, S.R., Horetsky, R.L., Ron, D., Jefferson, L.S. and Harding, H.P. (2003) Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes. Am J Physiol Cell Physiol, 284, C273-284. 47. Kedersha, N.L., Gupta, M., Li, W., Miller, I. and Anderson, P. (1999) RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol, 147, 1431-1442. 48. Linder, P. (2006) Dead-box proteins: a family affair--active and passive players in RNP-remodeling. Nucleic Acids Res, 34, 4168-4180. 49. Rocak, S. and Linder, P. (2004) DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol, 5, 232-241. 50. Silverman, E., Edwalds-Gilbert, G. and Lin, R.J. (2003) DExD/H-box proteins and their partners: helping RNA helicases unwind. Gene, 312, 1-16. 51. Cordin, O., Banroques, J., Tanner, N.K. and Linder, P. (2006) The DEAD-box protein family of RNA helicases. Gene, 367, 17-37. 52. Jankowsky, E. (2011) RNA helicases at work: binding and rearranging. Trends Biochem Sci, 36, 19-29. 53. Fairman-Williams, M.E., Guenther, U.P. and Jankowsky, E. (2010) SF1 and SF2 helicases: family matters. Curr Opin Struct Biol, 20, 313-324. 54. Tseng-Rogenski, S.S., Chong, J.L., Thomas, C.B., Enomoto, S., Berman, J. and Chang, T.H. (2003) Functional conservation of Dhh1p, a cytoplasmic DExD/H-box protein present in large complexes. Nucleic Acids Res, 31, 4995-5002. 55. Jankowsky, E. and Fairman, M.E. (2007) RNA helicases--one fold for many functions. Curr Opin Struct Biol, 17, 316-324. 56. de la Cruz, J., Kressler, D. and Linder, P. (1999) Unwinding RNA in 113 Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem Sci, 24, 192-198. 57. Linder, P., Gasteiger, E. and Bairoch, A. (2000) A comprehensive web resource on RNA helicases from the baker's yeast Saccharomyces cerevisiae. Yeast, 16, 507-509. 58. Cheng, Z., Coller, J., Parker, R. and Song, H. (2005) Crystal structure and functional analysis of DEAD-box protein Dhh1p. RNA, 11, 1258-1270. 59. Weston, A. and Sommerville, J. (2006) Xp54 and related (DDX6-like) RNA helicases: roles in messenger RNP assembly, translation regulation and RNA degradation. Nucleic Acids Research, 34, 3082-3094. 60. Reijns, M.A., Alexander, R.D., Spiller, M.P. and Beggs, J.D. (2008) A role for Q/N-rich aggregation-prone regions in P-body localization. J Cell Sci, 121, 2463-2472. 61. Minshall, N., Thom, G. and Standart, N. (2001) A conserved role of a DEAD box helicase in mRNA masking. RNA, 7, 1728-1742. 62. Nakamura, A., Amikura, R., Hanyu, K. and Kobayashi, S. (2001) Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis. Development, 128, 3233-3242. 63. Navarro, R.E., Shim, E.Y., Kohara, Y., Singson, A. and Blackwell, T.K. (2001) cgh-1, a conserved predicted RNA helicase required for gametogenesis and protection from physiological germline apoptosis in C. elegans. Development, 128, 3221-3232. 64. Smillie, D.A. and Sommerville, J. (2002) RNA helicase p54 (DDX6) is a shuttling protein involved in nuclear assembly of stored mRNP particles. J Cell Sci, 115, 395-407. 65. Lee, F.J. and Moss, J. (1993) An RNA-binding protein gene (RBP1) of Saccharomyces cerevisiae encodes a putative glucose-repressible protein containing two RNA recognition motifs. J Biol Chem, 268, 15080-15087. 66. Deutschbauer, A.M., Williams, R.M., Chu, A.M. and Davis, R.W. (2002) Parallel phenotypic analysis of sporulation and postgermination growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 99, 15530-15535. 67. Buu, L.M., Jang, L.T. and Lee, F.J. (2004) The yeast RNA-binding protein Rbp1p modifies the stability of mitochondrial porin mRNA. J Biol Chem, 279, 453-462. 68. Jang, L.T., Buu, L.M. and Lee, F.J. (2006) Determinants of Rbp1p localization in specific cytoplasmic mRNA-processing foci, P-bodies. J Biol Chem, 281, 29379-29390. 69. Longtine, M.S., McKenzie, A., 3rd, Demarini, D.J., Shah, N.G., Wach, A., Brachat, A., Philippsen, P. and Pringle, J.R. (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast, 14, 953-961. 70. Muhlrad, D., Decker, C.J. and Parker, R. (1995) Turnover mechanisms of the stable yeast PGK1 mRNA. Mol Cell Biol, 15, 2145-2156. 71. Felici, F., Cesareni, G. and Hughes, J.M. (1989) The most abundant small cytoplasmic RNA of Saccharomyces cerevisiae has an important function required for normal cell growth. Mol Cell Biol, 9, 3260-3268. 72. Shimoi, H., Kitagaki, H., Ohmori, H., Iimura, Y. and Ito, K. (1998) Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance. J Bacteriol, 180, 3381-3387. 73. Muhlrad, D. and Parker, R. (2005) The yeast EDC1 mRNA undergoes deadenylation-independent decapping stimulated by Not2p, Not4p, and Not5p. EMBO J, 24, 1033-1045. 74. Hogan, D.J., Riordan, D.P., Gerber, A.P., Herschlag, D. and Brown, P.O. (2008) Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol, 6, e255. 75. Alves-Rodrigues, I., Mas, A. and Diez, J. (2007) Xenopus Xp54 and human RCK/p54 helicases functionally replace yeast Dhh1p in brome mosaic virus RNA replication. J Virol, 81, 4378-4380. 76. Westmoreland, T.J., Olson, J.A., Saito, W.Y., Huper, G., Marks, J.R. and Bennett, C.B. (2003) Dhh1 regulates the G1/S-checkpoint following DNA damage or BRCA1 expression in yeast. J Surg Res, 113, 62-73. 77. Bergkessel, M. and Reese, J.C. (2004) An essential role for the Saccharomyces cerevisiae DEAD-box helicase DHH1 in G1/S DNA-damage checkpoint recovery. Genetics, 167, 21-33. 78. Muhlrad, D. and Parker, R. (1999) Aberrant mRNAs with extended 3' UTRs are substrates for rapid degradation by mRNA surveillance. RNA, 5, 1299-1307. 79. Pedro-Segura, E., Vergara, S.V., Rodriguez-Navarro, S., Parker, R., Thiele, D.J. and Puig, S. (2008) The Cth2 ARE-binding protein recruits the Dhh1 helicase to promote the decay of succinate dehydrogenase SDH4 mRNA in response to iron deficiency. J Biol Chem, 283, 28527-28535. 80. Goldstrohm, A.C., Hook, B.A., Seay, D.J. and Wickens, M. (2006) PUF proteins bind Pop2p to regulate messenger RNAs. Nat Struct Mol Biol, 13, 533-539. 81. Jankowsky, E. and Bowers, H. (2006) Remodeling of ribonucleoprotein complexes with DExH/D RNA helicases. Nucleic Acids Res, 34, 4181-4188. 82. Linder, P., Tanner, N.K. and Banroques, J. (2001) From RNA helicases to RNPases. Trends Biochem Sci, 26, 339-341. 83. Badis, G., Saveanu, C., Fromont-Racine, M. and Jacquier, A. (2004) Targeted mRNA degradation by deadenylation-independent decapping. Mol Cell, 15, 5-15. 84. Dong, S., Li, C., Zenklusen, D., Singer, R.H., Jacobson, A. and He, F. (2007) YRA1 autoregulation requires nuclear export and cytoplasmic Edc3p-mediated degradation of its pre-mRNA. Mol Cell, 25, 559-573. 85. Bashkirov, V.I., Scherthan, H., Solinger, J.A., Buerstedde, J.M. and Heyer, W.D. (1997) A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. J Cell Biol, 136, 761-773. 86. Eystathioy, T., Chan, E.K., Tenenbaum, S.A., Keene, J.D., Griffith, K. and ritzler, M.J. (2002) A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol Biol Cell, 13, 1338-1351. 87. Brengues, M., Teixeira, D. and Parker, R. (2005) Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science, 310, 486-489. 88. Sweet, T.J., Boyer, B., Hu, W., Baker, K.E. and Coller, J. (2007) Microtubule disruption stimulates P-body formation. RNA, 13, 493-502. 89. Aizer, A., Brody, Y., Ler, L.W., Sonenberg, N., Singer, R.H. and Shav-Tal, Y. (2008) The dynamics of mammalian P body transport, assembly, and disassembly in vivo. Mol Biol Cell, 19, 4154-4166. 90. Uesono, Y. and Toh, E.A. (2002) Transient inhibition of translation initiation by osmotic stress. J Biol Chem, 277, 13848-13855. 91. Ashe, M.P., De Long, S.K. and Sachs, A.B. (2000) Glucose depletion rapidly inhibits translation initiation in yeast. Mol Biol Cell, 11, 833-848. 92. de Nadal, E., Alepuz, P.M. and Posas, F. (2002) Dealing with osmostress through MAP kinase activation. EMBO Rep, 3, 735-740. 93. Teixeira, D. and Parker, R. (2007) Analysis of P-body assembly in Saccharomyces cerevisiae. Mol Biol Cell, 18, 2274-2287. 94. Pilkington, G.R. and Parker, R. (2008) Pat1 contains distinct functional domains that promote P-body assembly and activation of decapping. Mol Cell Biol, 28, 1298-1312. 95. Uesono, Y., Ashe, M.P. and Toh, E.A. (2004) Simultaneous yet independent regulation of actin cytoskeletal organization and translation initiation by glucose in Saccharomyces cerevisiae. Mol Biol Cell, 15, 1544-1556. 96. Morton, W.M., Ayscough, K.R. and McLaughlin, P.J. (2000) Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nat Cell Biol, 2, 376-378. 97. Lindsay, A.J. and McCaffrey, M.W. (2011) Myosin Va is required for P body but not stress granule formation. J B iol Chem, 286, 11519-11528. 98. Silberstein, S., Schlenstedt, G., Silver, P.A. and Gilmore, R. (1998) A role for the DnaJ homologue Scj1p in protein folding in the yeast endoplasmic reticulum. J Cell Biol, 143, 921-933. 99. Ramachandran, V., Shah, K.H. and Herman, P.K. (2011) The cAMP-Dependent Protein Kinase Signaling Pathway Is a Key Regulator of P Body Foci Formation. Mol Cell, 43, 973-981. 100. Wullschleger, S., Loewith, R. and Hall, M.N. (2006) TOR signaling in growth and metabolism. Cell, 124, 471-484. 101. Torres, J., Di Como, C.J., Herrero, E. and De La Torre-Ruiz, M.A. (2002) Regulation of the cell integrity pathway by rapamycin-sensitive TOR function in budding yeast. J Biol Chem, 277, 43495-43504. 102. Aronova, S., Wedaman, K., Anderson, S., Yates, J., 3rd and Powers, T. (2007) Probing the membrane environment of the TOR kinases reveals functional interactions between TORC1, actin, and membrane trafficking in Saccharomyces cerevisiae. Mol Biol Cell, 18, 2779-2794. 103. Liu, L., Chen, L., Chung, J. and Huang, S. (2008) Rapamycin inhibits F-actin reorganization and phosphorylation of focal adhesion proteins. Oncogene, 27, 4998-5010. 104. Paquin, N. and Chartrand, P. (2008) Local regulation of mRNA translation: new insights from the bud. Trends Cell Biol, 18, 105-111. 105. Chang, W., Zaarour, R.F., Reck-Peterson, S., Rinn, J., Singer, R.H., Snyder, M., Novick, P. and Mooseker, M.S. (2008) Myo2p, a class V myosin in budding yeast, associates with a large ribonucleic acid-protein complex that contains mRNAs and subunits of the RNA-processing body. RNA, 14, 491-502. 106. Noble, S.L., Allen, B.L., Goh, L.K., Nordick, K. and Evans, T.C. (2008) Maternal mRNAs are regulated by diverse P body-related mRNP granules during early Caenorhabditis elegans development. J Cell Biol, 182, 559-572. 107. Roberts, R.L. and Fink, G.R. (1994) Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev, 8, 2974-2985. 108. Guo, B., Styles, C.A., Feng, Q. and Fink, G.R. (2000) A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci U S A, 97, 12158-12163. 109. Reynolds, T.B. and Fink, G.R. (2001) Bakers' yeast, a model for fungal biofilm formation. Science, 291, 878-881. 110. Sampermans, S., Mortier, J. and Soares, E.V. (2005) Flocculation onset in Saccharomyces cerevisiae: the role of nutrients. J Appl Microbiol, 98, 525-531. 111. Gancedo, J.M. (2001) Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiol Rev, 25, 107-123. 112. Cullen, P.J. and Sprague, G.F., Jr. (2000) Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci U S A, 97, 13619-13624. 113. Douglas, L.J. (2003) Candida biofilms and their role in infection. Trends Microbiol, 11, 30-36. 114. Dranginis, A.M., Rauceo, J.M., Coronado, J.E. and Lipke, P.N. (2007) A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol Rev, 71, 282-294. 115. Verstrepen, K.J. and Fink, G.R. (2009) Genetic and epigenetic mechanisms underlying cell-surface variability in protozoa and fungi. Annu Rev Genet, 43, 1-24. 116. Govender, P., Domingo, J.L., Bester, M.C., Pretorius, I.S. and Bauer, F.F. (2008) Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl Environ Microbiol, 74, 6041-6052. 117. Halme, A., Bumgarner, S., Styles, C. and Fink, G.R. (2004) Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell, 116, 405-415. 118. Lo, W.S. and Dranginis, A.M. (1998) The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell, 9, 161-171. 119. Palecek, S.P., Parikh, A.S. and Kron, S.J. (2002) Sensing, signalling and integrating physical processes during Saccharomyces cerevisiae invasive and filamentous growth. Microbiology, 148, 893-907. 120. Verstrepen, K.J. and Klis, F.M. (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol, 60, 5-15. 121. Bharucha, N., Ma, J., Dobry, C.J., Lawson, S.K., Yang, Z. and Kumar, A. (2008) Analysis of the yeast kinome reveals a network of regulated protein localization during filamentous growth. Mol Biol Cell, 19, 2708-2717. 122. Verstrepen, K.J., Reynolds, T.B. and Fink, G.R. (2004) Origins of variation in the fungal cell surface. Nat Rev Microbiol, 2, 533-540. 123. Liu, H., Styles, C.A. and Fink, G.R. (1996) Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics, 144, 967-978. 124. Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X., Fasolo, J., Guo, H., Jona, G., Breitkreutz, A., Sopko, R. et al. (2005) Global analysis of protein phosphorylation in yeast. Nature, 438, 679-684. 125. Kuchin, S., Vyas, V.K. and Carlson, M. (2002) Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol, 22, 3994-4000. 126. Cutler, N.S., Pan, X., Heitman, J. and Cardenas, M.E. (2001) The TOR signal transduction cascade controls cellular differentiation in response to nutrients. Mol Biol Cell, 12, 4103-4113. 127. Pan, X. and Heitman, J. (2000) Sok2 regulates yeast pseudohyphal differentiation via a transcription factor cascade that regulates cell-cell adhesion. Mol Cell Biol, 20, 8364-8372. 128. Soulard, A., Cremonesi, A., Moes, S., Schutz, F., Jeno, P. and Hall, M.N. (2010) The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Mol Biol Cell, 21, 3475-3486. 129. Vernet, T., Dignard, D. and Thomas, D.Y. (1987) A family of yeast expression vectors containing the phage f1 intergenic region. Gene, 52, 225-233. 130. Gietz, R.D. and Prakash, S. (1988) Cloning and nucleotide sequence analysis of the Saccharomyces cerevisiae RAD4 gene required for excision repair of UV-damaged DNA. Gene, 74, 535-541. 131. Gyuris, J., Golemis, E., Chertkov, H. and Brent, R. (1993) Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell, 75, 791-803. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16597 | - |
| dc.description.abstract | 正確控制訊息核醣核酸的降解,對於適當表達細胞基因來說是關鍵的。酵母菌中一個包含三個核醣核酸辨識基序(RRM)及兩個富含麩氨酸區域的核醣核酸結合蛋白Rbp1p,被鑑定為負向生長調控因子。我們已經證實Rbp1p可以促進粒線體外膜孔蛋白porin的訊息核醣核酸降解。在這個研究中,我們發現Rbp1p可以直接與DEAD-box核醣核酸解旋酶Dhh1p結合,並且鑑定出Dhh1p的功能性區域,可專一性的用來參與Rbp1p所媒介的porin核醣核酸降解。酵母菌雙雜交實驗以及體外拉下分析皆可證實Rbp1p與Dhh1p碳端非保留區的八十一個胺基酸進行交互作用。Dhh1p-dC81具有完全補足DHH1剔除菌株的生長缺陷以及EDC1核醣核酸的量。此結果指出Dhh1p-dC81在體內仍具有Dhh1p的其他的生物功能。然後,剔除碳端八十一個胺基酸的Dhh1p確實失去降解porin核醣核酸及調控Rbp1p媒介的porin核醣核酸降解的功能。我們也發現Dhh1p結合至porin核醣核酸是依賴Rbp1p存在的。表現辨識基序突變的Rbp1p或是剔除碳端天冬醯胺、甲硫胺酸和脯胺酸區域的Rbp1p,都不能補足在剔除RBP1菌株中,Dhh1p結合至porin核醣核酸的能力。這些結果顯示與Rbp1p交互作用對於Dhh1p結合至porin核醣核酸是必須的,並且暗示Rbp1p吸引Dhh1p解旋酶將porin核醣核酸進行降解。而且,當哺乳動物的Dhh1p相似物DDX6的碳端聚合了Dhh1p的非保留區胺基酸序列後,DDX6變具有與Rbp1p交互作用以及可以進行Rbp1p媒介的porin降解的能力。因此,我們提出Dhh1p的碳端非保留區扮演確定Dhh1p可以專一性與核醣核酸因子結合,進而促進不同核醣核酸降解的角色。 | zh_TW |
| dc.description.abstract | The control of mRNA degradation is critical for proper gene expression. In Saccharomyces cerevisiae, an RNA-binding protein Rbp1p was first identified as a negative growth regulator, which contains three copies of RNA recognition motifs (RRMs) and two glutamine-rich stretches. We have demonstrated that Rbp1p decreased the level of mitochondrial porin mRNA by enhancing its degradation. Here, we show that Rbp1p directly interacts with the DExD/H-box RNA helicase Dhh1p and identify the Dhh1p-specific functional region required for Rbp1p-mediated porin mRNA decay. Yeast two-hybrid and in vitro pull-down assays showed that Rbp1p interacts with the C-terminal nonconserved 81 residues of Dhh1p. Dhh1p-dC81 fully complements the growth defect and EDC1 mRNA steady level of dhh1Δ mutant, indicating that Dhh1p-dC81 still contains other biological function of Dhh1p in vivo. However, deleted C-terminal 81 residues in Dhh1p lost its function to restore the porin mRNA degradation in dhh1Δ mutant and in modulating Rbp1p- mediated porin mRNA decay. Dhh1p binds to porin mRNA is Rbp1p dependent. Expression of Rbp1p-rrm1, a mutant lost its ability to bind porin mRNA, in rbp1Δ mutant does not restore Dhh1p to bind porin mRNA. In addition, expression of Rbp1-dNMP, a mutant does not interact with Dhh1p, does not rescue the binding of porin mRNA to Dhh1p in rbp1Δ mutant. These data indicate that Rbp1p is required for binding of porin mRNA to Dhh1p in vivo and suggest that Rbp1p recruits the Dhh1p helicase to promote porin mRNA decay. Moreover, mammalian DDX6 becomes capable of interacting with Rbp1p and could confer Rbp1p-mediated POR1 mRNA decay in the dhh1Δ strain upon fusion to the C-terminal unique region of Dhh1p. Thus, we propose that the nonconserved C-terminus of Dhh1p plays a role in defining specific interactions with mRNA regulatory factors that promote distinct mRNA decay. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:22:53Z (GMT). No. of bitstreams: 1 ntu-100-D95448008-1.pdf: 6960638 bytes, checksum: 707d581587de3f378152f7674551d696 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 中文摘要 .................................... II
Abstract ..................................... III Part I: The RNA helicase Dhh1p cooperates with Rbp1p to promote porin mRNA decay via its non-conserved C-terminal domain ................ 1 Introduction ...................... 1 Materials and Methods ........................................................ 8 Results ................................. 14 Perspective and discussion ................................................ 26 Figures ................................. 33 Part II: To characterize the subcellular localization of Rbp1p under stresses ......................... 50 Abstract ................................ 50 Introduction .................... 51 Materials and Methods ............................ 53 Results ................................. 56 Perspective and discussion ...................................... 64 Figures ................................. 69 Part III: To characterize the Rbp1p-mediated regulation of yeast filamentous growth ................................. 88 Abstract ................................ 88 Introduction .................... 89 Materials and Methods .............................. 90 Results ................................. 91 Perspective and discussion .............................. 93 Figures ................................. 94 Tables ................................ 98 References ................ 109 | |
| dc.language.iso | en | |
| dc.subject | 解旋酶 | zh_TW |
| dc.subject | 核醣體核酸結合蛋白 | zh_TW |
| dc.subject | Rbp1p | en |
| dc.subject | RNA hecliase | en |
| dc.title | 酵母菌核醣體結合蛋白Rbp1p及其結合蛋白的功能性探討 | zh_TW |
| dc.title | Functional Characterization of RNA-binding protein Rbp1p and its interacting proteins in Saccharomyces cerevisiae | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 鄧述諄,譚婉玉,張典顯,鄭明媛,黃瀝萱 | |
| dc.subject.keyword | 核醣體核酸結合蛋白,解旋酶, | zh_TW |
| dc.subject.keyword | Rbp1p,RNA hecliase, | en |
| dc.relation.page | 118 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-10-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 6.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
