Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16523
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊燦堯
dc.contributor.authorPei-Chuan Chuangen
dc.contributor.author莊佩涓zh_TW
dc.date.accessioned2021-06-07T18:18:59Z-
dc.date.copyright2012-02-10
dc.date.issued2012
dc.date.submitted2012-01-31
dc.identifier.citationAlbert, D.B., Martens, C.S., Alperin, M.J., 1998. Biogeochemical processes controlling methane in gassy coastal sediments—part 2: groundwater flow control of acoustic turbidity in Eckernförde Bay Sediments. Continental Shelf Research, 18, 1771–1793.
Alperin, M.J., Hoehler, T.M., 2009. Anaerobic methane oxidation by archaea/sulfate–reducing bacteria aggregates: 1. Thermodynamic and physical constraints. American Journal of Science, 309, 869–957.
Barnes, R.O., Goldberg, E.D., 1976, Methane production and consumption in anoxic marine sediments. Geology, 4, 297–300.
Berner, R.A., 1980. Early Diagenesis. A Theoretical Approach. Princeton University Press, 241pp.
Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Giesecke, A., Amann, R., Jorgensen, B.B., Witte, U., Pfannkuche, O., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623– 626.
Boudreau, B.P., 1997. Diagenetic Models and Their Implementation. Springer–Verlag.
Chao, H.C., You, C.F., Wang, B.S., Chung, C.H., Huang, K.F., 2011. Boron isotopic composition of mud volcano fluids: Implications for fluid migration in shallow subduction zones. Earth and Planetary Science Letters, 305, 32–44.
Chi, W.C., Reed, D.L., Liu, C.S., Lunberg, N., 1998. Distribution of the bottom simulating reflector in the offshore Taiwan collision zone. Terrestrial, Atmospheric and Oceanic Sciences, 9, 779-793.
Chiu, J.K., Tseng, W.H., Liu, C.S., 2006. Distribution of gassy sediments and mud volcanoes offshore southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 17, 703–722.
Chuang, P.C., Yang, T.F., Lin, S., Lee, H.F., Lan, T.F., Hong, W.L., Liu, C.S., Chen, J.C., Wang, Y., 2006. Extremely high methane concentration in bottom water and cored sediments from offshore southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 17, 903–920.
Chuang, P.C., Yang, T.F., Hong, W.L., Lin, S., Sun, C.H., Lin, A.T.–S., Chen, J.C., Wang, Y., Chung, S.H., 2010. Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation. Geofluids, 10, 497-510.
Coffin, R.B., Hamdan, L., PlummerSmith, R.J., Gardner, J., Wood, W.T., 2008. Analysis of methane and sulfate flux in methane charged sediments from the Mississippi Canyon, Gulf of Mexico. Marine and Petroleum Geology, 25, 977–987.
Dale, A.W., Regnier, P., Knab, N.J., Jørgensen, B.B., Van Cappellen, P., 2008. Anaerobic oxidation of methane (AOM) in marine sediments from the Skagerrak (Denmark): II. Reaction–transport modelling. Geochimica et Cosmochimica Acta, 72, 2880–2894.
Duan, Z., Møller, N., Greenberg, J., Weare, J. H., 1992a. The prediction of methane solubility in natural waters to high ionic strength from 0 to 250°C and from 0 to 1600 bar. Geochimica et Cosmochimica Acta, 56, 1451–1460.
Duan, Z., Møller, N., Weare, J. H., 1992b. An equation of state for the CH4–CO2–H2O system: I. Pure systems from 50 to 1000°C and 0 to 8000 bar. Geochimica et Cosmochimica Acta, 56, 2605–2617.
Dickens, G.R., 2001. Sulfate profiles and barium fronts in sediment on the Blake Ridge: Present and past methane fluxes through a large gas hydrate reservoir. Geochimica et Cosmochimica Acta, 65, 529–543.
Egeberg, P.K., Dickens, G.R., 1999. Thermodynamics and pore water halogen constraints on gas hydrate distribution at ODP Site 997 (Blake Ridge). Chemical Geology, 153, 53–79.
Feseker, T., Brown, K.R., Blanchet, C., Scholz, F., Nuzzo, M., Reitz, A., Schmidt, M., Hensen, C., 2010. Active mud volcanoes on the upper slope of the western Nile deep–sea fan–first results from the P362/2 cruise of R/V Poseidon. Geo–Marine Letters, 30, 169–186.
Fossing H., Ferdelman, T.G., Berg, P., 2000. Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (South–East Atlantic off Namibia). Geochimica et Cosmochimica Acta, 64, 897–910.
Haeckel, M., Suess, E., Wallmann, K., Rickert, D., 2004. Rising methane gas bubbles form massive hydrate layers at the seafloor. Geochimica et Cosmochimica Acta, 68, 4335–4354.
Haeckel, M., Wallmann, K., Boudreau, B.P., 2007. Bubble–induced porewater mixing: a 3–D model for deep porewater irrigation. Geochimica et Cosmochimica Acta, 71, 5135–5154.
Head, I.M., Jones, D.M., Larter, S.R., 2003. Biological activity in the deep subsurface and the origin of heavy oil. Nature, 426, 344-352.
Hensen, C., Zabel, M., Pfeifer, K., Schwenk, T., Kasten, S., Riedinger, N., Schulz, H. D., Boetius, A., 2003. Control of sulfate pore–water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments. Geochimica et Cosmochimica Acta, 67, 2631–2647.
Hesse, R., Harrison, W.E., 1981. Gas hydrates (clathrates) causing porewater freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins. Earth and Planetary Science Letters, 55, 453–462.
Hilton, R.G., Galy, A., Hovius, N., Chen, M.C., Horng, M.J., Chen, H., 2008. Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains. Nature-geoscience, 11, 759-762.
Huang, C.Y., Wu, W.Y., Chang, C.P., Tsao, S., Yuan, P.B., Lin, C.W., Xa, K.Y., 1997. Tectonic evolution of accretionary prism in the arc–continent collision terrane of Taiwan. Tectonophysics, 281, 31–51.
Huang, C.Y., Chien, C.W., Zhao, M., Li, H.C., Iizuka, Y., 2006. Geological study of active cold seeps in the syn–collision accretionary prism Kaoping slope off SW Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 17, 679–702.
Hyndman, R.D., Davis, E.E., 1992. A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion. Journal of Geophysical Research, 97, 7125-7041.
Jorgensen, B.B., 1982. Mineralization of organic matter in the sea bed – the role of sulfate reduction. Nature, 296, 643–645
Jørgensen, B.B., Nelson, D.C., 2004. Sulfur Biogeochemistry—Past and Present. In: Amend, J.P., Edwards, K.J., Lyons, T.W. (Eds.), Sulfide oxidation in marine sediments: geochemistry meets microbiology. Geological Society of America Special Paper, 379, pp. 63–81.
Jørgensen, B.B., Kasten, S., 2006. Sulfur cycling and methane oxidation, pp. 271–309. In: H. D. Schulz and M. Zabel (eds.), Marine Geochemistry, 2nd ed. Springer, Berlin.
Kastner, M., Elderfield, H., Martin, J.B., 1991. Fluids in convergent margins: What do we know about their composition, origin, role in diagenesis and importance for oceanic chemical fluxes? Philosophical Transactions of the Royal Society, 335, 243-259.
Kvenvolden, K.A., 1993. Gas hydrates - geological perspective and global change. Reviews of Geophysics, 31, 173–187.
Kvenvolden, K.A., 1998. A primer on the geological occurrence of gas hydrate. In: Henriet, J.P. and Mienert, J. (Eds.), Gas hydrates: relevance to world margin stability and climate change. Geological Society of London Special Publication, 137, 9–30.
Lin, A.T., Liu, C.S., Lin, C.C., Schnürle, P., Chen, G.Y., Liao, W.Z., Teng, L.S., Chuang, H.R., Wu, M.S., 2008. Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: An example from Taiwan. Marine Geology, 255, 186–203.
Lin, C.C., Lin, A.T., Liu, C.S., Chen, G.Y., Liao, W.Z., Schnürle, P., 2009. Geological controls on BSR occurrences in the incipient arc–continent collision zone off southwest Taiwan. Marine and Petroleum Geology, 26, 1118–1131.
Lin, S., Hsieh, W.C., Lim, Y.C., Yang, T.F., Liu, C.S., Wang, Y., 2006. Methane migration and its influence on sulfate reduction in Good Weather Ridge region, South China Sea continental margin sediments. Terrestrial, Atmospheric and Oceanic Sciences, 17, 883–902.
Lin, S., Lim, Y.C., Yang, T.F., Chung, S.–H., Wang, Y., 2009. Proxy of past and present methane migration in the active accreted continental margin sediments offshore southwestern Taiwan. Geochimica et Cosmochimica Acta, 73 (13), A767. Supplement 1.
Lim, Y.C., Lin, S., Yang, T.F., Chen, Y.G., Liu, C.S., 2011. Variations of methane induced pyrite formation in the accretionary wedge sediments offshore southwestern Taiwan. Marine and Petroleum Geology, 28, 1829-1837.
Liu, C.S., Huang, I.L., Teng, L.S., 1997. Structural features off southwestern Taiwan. Marine Geology, 137, 305–319.
Liu, C.S., Liu, S.Y., Lallemand, S., Lundberg, N., Reed, D.L., 1998. Digital elevation model offshore Taiwan and its tectonic implication. Terrestrial, Atmospheric and Oceanic Sciences, 9, 705–738.
Liu, C.S., Deffontaines B., Lu C.Y., Lallemand S., 2004. Deformation patterns of an accretionary wedge in transition zone from subduction to collision offshore southwestern Taiwan. Marine Geophysical Reserches, 25 (1–2), 123–137.
Liu, C.S., Schnürle, P., Wang, Y., Chung, S.H., Chen, S.C., Hsiuan, T.H., 2006. Distribution and characters of gas hydrate offshore of southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 17, 615–644.
Lu, Z., Hensen, C., Fehn, U., Wallmann, K., 2008. Halogen and 129I systematics in gas hydrate fields at the northern Cascadia margin (IODP Expedition 311): Insights from numerical modeling, Geochemistry Geophysics Geosystems, 9, Q10006, doi:10.1029/2008GC002156.
Martin, J.B., Gieskes, J.M., Torres, M., Kastner, M., 1993. Bromine and iodine in Peru margin sediments and pore fluids: implications for fluid origins. Geochimica et Cosmochimica Acta, 57, 4377-4389.
Marquardt, M., Hensen, C., Pinero, E., Wallmann, K., Haeckel, M., 2010. A transfer function for the prediction of gas hydrate inventories in marine sediments. Biogeosciences, 7, 2925–2941.
Middelburg, J.J., 1989. A simple model for organic matter decomposition in marine sediments. Geochemistry Geophysics Geosystems, 53, 1577–1581.
Milkov, A.V., 2004. Global estimates of hydrate–bound gas in marine sediments: How much is really out there? Earth Science Reviews, 66, 183–197.
Meyers, P.A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 114, 289–302.
Niewöhner, C., Hensen, C., Kasten, S., Zabel, M., Schulz, H.D., 1998. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochimica et Cosmochimica Acta, 62, 455–464.
Oung, J., Lee, C.Y., Lee, C.S., Kuo, C., 2006. Geochemical Study on Hydrocarbon Gases in Seafloor Sediments, Southwestern Offshore Taiwan - Implications in the Potential Occurrence of Gas Hydrates. Terrestrial Atmospheric And Oceanic Sciences, 17(4), 921-931.
Price, N.B., Calvert, S.E., Jones P.G.W., 1970. The distribution of iodine and bromine in recent sediments of the southwestern Barents sea. Journal of Marine Research, 28, 22-34.
Reed, D.L., Lundberg, N., Liu, C.S., Kuo, B.Y., 1992. Structural relations along the margins of the offshore Taiwan accretionary wedge: implications for accretion and crustal kinematics. Acta Geologica Taiwanica, 30, 105–122.
Schmidt, M., Hensen, C., Mörz, T., Müller, C., Grevemeyer, I., Wallmann, K., Mau, S., Kaul, N., 2005. Methane hydrate accumulation in “Mound 11” mud volcano, Costa Rica forearc. Marine Geololgy, 216, 77–94.
Schulz, H.D., Dahmke, A., Schinzel, U., Wallmann, K., Zabel, M., 1994. Early diagenetic processes, fluxes, and reaction rates in sediments of the South Atlantic. Geochimica et Cosmochimica Acta, 58, 2041–2060.
Schwalenberg, K., Haeckel, M., Poort, J., Jegen, M., 2010. Evaluation of gas hydrate deposits in an active seep area using marine controlled source electromagnetics: results from Opouawe Bank, Hikurangi Margin, New Zealand. Marine Geology, 272, 79–88.
Selvaraj, K., Parthiban, G., Chen, C.T.A., Lou, J., 2010. Anthropogenic effects on sediment quality offshore southwestern Taiwan: Assessing the sediment core geochemical record. Continental Shelf Research, 30(10-11), 1200-1210.
Shiskina, O.V., 1978. Distribution of bromine, Cl/Br relationships, and iodine in interstitial water of the Black Sea, based on DSDP Leg 42B. In: Ross, D.A., Neprochnov, Y.P. et al., Init. Repts. DSDP, 42, Pt. 2, Washington (U.S. Govt. Printing Office), 631-635.
Shyu, C.T., Chen, Y.J., Chiang, S. T., Liu, C.S., 2006. Heat flow measurements over bottom simulating reflectors, offshore southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 17, 845-869.
Suess, E., Carson, B., Ritger, S.D., Moore, J.C., Jones, M.L., Kulm, G.R., Cochrane, G.R., 1985. Biological communities at vent sites along the subduction zone off Oregon. Bulletin of the Biological Society of Washington, 6, 475–484.
Suess, E., Torres, M.E., Bohrmann, G., Collier, R.W., Greinert, J., Linkea, P., Rehder, G., Trehu, A., Wallmann, K., Winckler, G., Zuleger, E., 1999. Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin. Earth and Planetary Science Letters, 170, 1–15.
Sun, C.H., Chang, S.C., Kuo, C.L., Wu, J.C., Shao, P.H., Oung, J.N., 2010. Origins of Taiwan’s mud volcanoes: Evidence from geochemistry. Journal of Asian Earth Sciences, 37, 105–116.
Teichert, B.M.A., Gussone, N., Eisenhauer, A., Bohrmann, G., 2005. Clathrites: Archives of near–seafloor pore–fluid evolution (delta Ca–44/40, delta C–13, delta O–18) in gas hydrate environments. Geology, 33, 213–216.
Teng, L. S., 1990. Geotectonic evolution of late Cenozoic arc–continent collision in Taiwan. Tectonophysics, 183, 57–76.
Thullner, M., Dale, A.W., Regnier, P., 2009. Global–scale quantification of mineralization pathways in marine sediments: a reactionetransport modeling approach. Geochemistry, Geophysics, Geosystems, 10, Q10012. doi:10.1029/2009GC002484.
Tishchenko, P., Hensen, C., Wallmann, K., Wong, C.S., 2005. Calculation of the stability and solubility of methane hydrate in seawater. Chemical Geology, 219, 37–52.
Torres, M.E., McManus, J., Hammond, D., de Angelis, M.A., Heeschen, K., Colbert, S., Tryon, M.D., Brown, K.M., Suess, E., 2002. Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR: I. Hydrological provinces. Earth and Planetary Science Letters, 201, 525–540.
Torres, M.E., Wallmann, K., Trehu, A.M., Bohrmann, G., Borowski, W.S., Tomaru, H., 2004. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon. Earth and Planetary Science Letters, 226, 225–241.
Tryon, M.D., Henry, P., Çağatay, M.N., Zitter, T.A.C., Géli, L., Gasperini, L., Burnard, P., Bourlange, S., Grall, C., 2010. Pore fluid chemistry of the North Anatolian Fault Zone in the Sea of Marmara: A diversity of sources and processes, Geochemistry Geophysics Geosystems, 11, Q0AD03, doi:10.1029/ 2010GC003177.
Wallmann, K., Aloisi, G., Haeckel, M., Obzhirov, A., Pavlova, G., Tishchenko, P., 2006a. Kinetics of organic matter degradation, microbial methane generation and gas hydrate formation in anoxic marine sediments. Geochimica et Cosmochimica Acta, 70, 3905–3927.
Wallmann, K., Drews, M., Aloisi, G., Bohrmann, G., 2006b. Methane discharge into the Black Sea and the global ocean via fluid flow through submarine mud volcanoes. Earth and Planetary Science Letters, 248, 544–559.
Westrich, J.T., Berner, R.A., 1984. The role of sedimentary organic matter in bacterial sulfate reduction. The p model tested. Limnology and Oceanography, 29, 236-249.
Whiticar, M.J., 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161, 291–314.
Yang, T.F., 2008. Recent progress in the application of gas geochemistry: examples from Taiwan and the 9th International Gas Geochemistry Conference. Geofluids, 8, 219–229.
Yang, T.F., Chou, C.Y., Chen, C.H., Chyi, L.L., Jiang, J.H., 2003. Exhalation of radon and its carrier gases in SW Taiwan. Radiation Measurements, 36, 425–429.
Yang, T.F., Yeh, G.H., Fu, C.C., Wang, C.C., Lan, T.F., Lee, H.F., Chen, C.H., Walia, V., Sung, Q.C., 2004. Composition and exhalation flux of gases from mud volcanoes in Taiwan. Environmental Geology, 46, 1003–1011.
Yang, T.F., Chuang, P.C., Lin, S., Chen, J.C., Wang, Y., Chung, S.H., 2006. Methane venting in gas hydrate potential area offshore of SW Taiwan: evidence of gas analysis of water column samples. Terrestrial, Atmospheric and Oceanic Sciences, 17, 933–950.
Yeh, G.H., Yang, T.F., Chen, J.C., Chen, Y.G., Song, S.R., 2005. Fluid geochemistry of mud volcanoes in Taiwan. In: Martinelli, G., Panahi, B. (Eds.), Mud Volcanoes, Geodynamics and Seismicity, pp. 227–237. Springer, Amesterdam.
You, C.F., Gieskes, J.M., Lee, T., Yui, T.F., Chen, H.W., 2004. Geochemistry of mud volcano fluids in the Taiwan accretionary prism. Applied Geochemistry, 19, 695–707.
Zabel, M., Schulz, H.D., 2001. Importance of submarine landslides for non–steady state conditions in pore water systems – lower Zaire (Congo) deep–sea fan. Marine Geology, 176, 87–99.
Zinder, S.H., 1993. Physiological ecology of methanogens. In: J.G. Ferry (ed.), Methanogenesis Ecology, Physiology, Biochemistry, and Genetic. Chapman and Hall, New York, 128–206.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16523-
dc.description.abstract甲烷自海洋沉積物及土壤逸散至海水甚至大氣已被視為全球碳循環之重要傳輸過程。近年來地球物理研究顯示,「海床仿擬反射」(Bottom Simulating Reflection,簡稱BSR)廣布於台灣西南海域,顯示海床仿擬反射層該深度以上蘊可能含天然氣水合物,以下則有游離氣體(free gas)存在,甲烷的儲量與遷移過程影響天然氣水合物生成與游離氣的分布,其中甲烷的儲量主要受控於沉積物中有機物的保存與降解量,而甲烷在遷移過程中受微生物作用影響,常於沉積物淺層發生甲烷厭氧氧化反應並消耗表層硫酸鹽。由於大量甲烷儲存於天然氣水合物中,其重要性可見於相關能源、氣候變遷與地質災害研究。本研究主要目的在了解台灣西南海域海床上以及沉積物中甲烷濃度於空間中分布情形、沉積物中甲烷通量及其來源、甲烷逸散至海床之通量、甲烷厭氧氧化速率、硫酸根與有機物對甲烷通量之影響,最後並探討大地構造與甲烷來源、通量及淺層甲烷反應之關係。
對於台灣西南海域海床上以及沉積物中甲烷濃度於空間中分布情形,本研究採集海水及沉積物樣品,分析其中海水溶解甲烷氣濃度及沉積物間隙氣體甲烷濃度。即使無法避免甲烷在採樣過程因溫壓條件改變而造成逸氣情形,調查分析結果顯示,台灣西南海域仍有許多異常高濃度含量甲烷氣的位置被發現(ORI-697航次之G23;ORI-718航次之N8;ORI-732航次之G96;MD05-2911;MD05-2912;MD05-2913;MD05-2914;ORI-758航次之GH10、GH16;ORI-765航次A、C、D、H;ORI-792航次之GS5;ORI-835航次之GT39B等站位),且甲烷濃度有隨沉積物深度增加而逐漸增高的趨勢。此外,ORI-765航次A、H兩站位海水溶解氣體也出現異常高之甲烷氣濃度,也有隨深度加深而逐漸增高的趨勢,對應兩站位沉積物間隙氣體的甲烷氣濃度也異常高,顯示該站位有大量甲烷氣自沉積物深部向上遷移,並逸散至海床與海水中。綜合各航次調查結果顯示,主要高甲烷濃度的站位皆分佈於活動大陸邊緣(台南海脊、永安海脊、好景海脊、枋寮海脊),而被動大陸邊緣顯著異常甲烷逸氣的站位主要出現於福爾摩沙海脊。
本研究部分站位沉積物之硫酸鹽-甲烷交界面(sulfate methane interface, SMI)非常淺,顯示沉積物深部具高甲烷通量,由於硫酸鹽梯度呈線性、總有機碳(TOC)含量低,顯示沉積物中的硫酸鹽還原反應主要是經甲烷厭氧氧化反應(AOM)所進行。根據AOM反應所消耗的甲烷及硫酸鹽的莫爾數比為1:1,可經由擴散定律公式先計算出硫酸鹽通量用以代表甲烷通量。由硫酸鹽濃度隨深度變化梯度計算結果顯示台灣西南海域普遍都具有高的甲烷通量,尤其是ORI-697航次之G23(4.12×10-2 mmol cm-2yr-1)及ORI-718航次之N8(2.11×10-2 mmol cm-2yr-1)兩站位更有異常高的甲烷通量出現於沉積物中。
本研究亦利用數值模擬方法,模擬間隙水化學濃度隨深度變化情形((CH4, SO42–, I–, Cl–, TOC),計算甲烷、硫酸鹽及有機物之通量與反應速率,結果顯示沉積物表層之硫酸鹽主要經AOM反應所消耗,有機物降解對本區硫酸鹽濃度變化影響較小。部分岩心分析結果顯示,表層硫酸鹽濃度不隨深度遞減反而維持海水值,甚至大於一米深之沉積物中亦可見此情形,其主要是因氣泡(甲烷)擾動影響所致,此外,由於地球化學資料無法顯示深部流體存在之訊號,硫酸鹽的消耗需由沉積物深部之氣體遷移(gas flow)支持,甲烷自氣相溶解至間隙水中以進一步行AOM反應。而各項反應速率與通量也受控於採樣地點之地質構造。
沉積物間隙氣體碳同位素分析結果顯示,甲烷之碳同位素值(δ13C)介於-28.3‰ ~ -95.0 ‰。可推論本研究區沉積物淺處之氣體成份以生物來源為主,越往深處則可能有熱分解來源之氣體加入。整合甲烷與溶解無機碳(Dissolved Inorganic Carbon, DIC)之碳同素隨深度變化情形,可見兩者之碳同位素最小值皆出現於 SMI深度附近,主要是因AOM與二氧化碳還原反應在此深度附近形成碳循環,本研究發展之數值模擬方法亦證明碳循環與同位素交換等過程存在於此區沉積物中。
利用數值模擬方法可進一步推估天然氣水合物上界,該深度為甲烷濃度與天然氣水合物達飽和平衡,初步估算結果顯示天然氣水合物有機會於所採岩心中形成(< 40m),且多位於SMI深度較淺的站位中,未來研究將配合沉積速率與其他地球化學濃度資料進行估算,以減少誤差並可進一步估算天然氣水合物儲量。
zh_TW
dc.description.abstractMethane emission’ from ocean sediments or soils to the water column or atmosphere is an important process for global carbon cycling. According to the geophysical study, the widely distributed Bottom Simulating Reflectors (BSRs) imply the potential existence of gas hydrates above them in offshore southwestern Taiwan. Free gas can be trapped below BSRs. Except temperature and pressure conditions, the existences of gas hydrate and free gas are controlled by the amount of methane and methane migration paths in marine sediments. Organic matter perseveration and degradation determine the size of methane reservoir. When methane migrates to the surface, methane would involve the surface biogeochemical diagenetic reactions. Through the Gas hydrate exploration program conducted by the Central Geological Survey in Taiwan, we have systematically collected sea waters and cored sediments for the dissolved and pore-space gas composition and isotope analysis in offshore southwestern Taiwan. The main purpose of this study is to understand the sources and sinks for methane, since large amount of methane trapped in gas hydrates plays important roles on some issues, e.g., a potential energy source, a factor in global climate change and a submarine geohazard.
Some sites with extremely high methane concentrations have been found, e.g., sites G23 of ORI-697, N8 of ORI-718, G96 of ORI-732; MD05-2911; MD05-2912; MD05-2913; MD05-2914; GH10, GH16 of ORI-758; A, C,D, H of ORI-765; GS5 of ORI-792 and GT39B of ORI-835. The methane concentrations of cored sediments display an increasing trend with depth. In addition, sites with high dissolved methane concentrations in the water column have been found at sites A and H of ORI-765 which indicates the high gas venting activities in this region. Data reveal that high CH4 concentrations are mainly distributed in the active margin, e.g. Yuan-An Ridge, Tai-Nan Ridge, Good Weather Ridge and Fangliao Ridge. The high gas venting sites found in the passive South China Sea continental margin are mainly around the Formosa Ridge.
In addition, the depth profiles of methane and sulfate contain very shallow depths of sulfate methane interface (SMI) at some sites. The linear sulfate gradients, low total organic carbon (TOC) and high methane concentrations imply that anaerobic oxidation of methane (AOM) is the main process for sulfate consumption. Thus, the diffusive methane fluxes can be determined through the gradients of sulfate by Fick’s first law. The methane fluxes are very high in comparison with other gas hydrate study areas, especially at sites G23 of ORI-697 (4.12×10-2 mmol cm-2yr-1) and N8 of ORI-718 (2.11×10-2 mmol cm-2yr-1).
A numerical transport-reaction model applied to the data (CH4, SO42–, I–, Cl–, TOC) can quantify the diagenesis processes. Results show that AOM is the major reaction for sulfate reduction rather than organic matter degradation. Some porewater sulfate concentrations show bottom-water like signatures deeper than 1 meter which may be induced by bubble irrigation. Due to there is no evidence for upward fluid flows, methane consumed by sulfate needs to be dissolved from gas phase indicating the migration of methane through gas flows. The modeled results also demonstrate that the geochemical trends in the sediments offshore SW Taiwan can be explained by the different geological settings.
The δ13C-CH4 values range from -28.3‰ ~ -95.0‰. Except sites in the upper slope domain (site GT39B or G96), bacterial methane is dominated in the surface sediments. The 13C-depletion around the SMI can be observed both from δ13C-CH4 and δ13C-DIC profiles. Hence, δ13C-CH4 and δ13C-DIC data coupled with the particulate organic carbon content (POC) less than 1% can confirm again that sulfate reduction is mainly driven by the process of anaerobic methane oxidation in this study area.
Furthermore, the depths of 13C-depletion in methane and DIC are discordant. The lightest δ13C-CH4 values are slightly deeper than the lightest δ13C-DIC values among seven cores. This may infer the carbon cycling around the depths of SMI through AOM and CO2 reduction. A reaction-transport model developed to fit carbon isotopic data in this study can proof carbon cycling and isotopic mixing in the surface sediment.
Finally, the upper boundary of gas hydrate can be predicted by numerical simulations according to the methane saturation depth. The preliminary results show that gas hydrate can form within the cored sediments (<40 m) are coexist with the shallow depth of the SMI. However, to get reliable results for the upper boundary of gas hydrate, sedimentation rates and more completed geochemical profiles are needed to apply in the model. Afterward, we can estimate the amount of gas hydrates stored in offshore SW Taiwan.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:18:59Z (GMT). No. of bitstreams: 1
ntu-101-D95224001-1.pdf: 18131883 bytes, checksum: 9b875f07641dca0e52fadc41a52d9f00 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsChapter 1…………………………………………………………1-18
General Introduction
Chapter 2…………………………………………………………19-44
Extremely High Methane Concentration in Bottom Water and Cored Sediments from Offshore Southwestern Taiwan
Chapter 3…………………………………………………………45-79
Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation
Chapter 4…………………………………………………………80-128
Dependence of organic carbon degradation rates and methane dynamics on the geology of the accretionary prism offshore SW Taiwan
Chapter 5…………………………………………………………129-159
Carbon isotopic evidence for coupled sulfate reduction-methane oxidation and carbon cycling in offshore SW Taiwan
Conclusions.……………………………………………………160-165
Appendixes…………………………………..…………………166-179
dc.language.isoen
dc.title台灣西南海域天然氣水合物賦存區
沉積物間隙水地球化學與數值模擬分析研究
zh_TW
dc.titlePorewater geochemistry study and numerical simulation of cored sediments in gas hydrate potential area offshore SW Taiwanen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree博士
dc.contributor.oralexamcommittee林立虹,林曉武,王詠絢,游鎮烽,林殿順
dc.subject.keyword天然氣水合物,碳同位素,碳循環,zh_TW
dc.subject.keywordGas Hydrate,Carbon isotope,Carbon Cycling,en
dc.relation.page179
dc.rights.note未授權
dc.date.accepted2012-01-31
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
17.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved