Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16508
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王淑美(Shue-Mei Wang)
dc.contributor.authorYu-Shan Liuen
dc.contributor.author劉瑜珊zh_TW
dc.date.accessioned2021-06-07T18:18:13Z-
dc.date.copyright2012-03-19
dc.date.issued2012
dc.date.submitted2012-02-06
dc.identifier.citationAbe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., and Araki, T. (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309: 1052-1056.
An, H., Roussot, C., Suarez-Lopez, P., Corbesier, L., Vincent, C., Pineiro, M., Hepworth, S., Mouradov, A., Justin, S., Turnbull, C., and Coupland, G. (2004). CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131: 3615-3626.
Ausín, I., C. Alonso-Blanco, J.A. Jarillo, L. Ruiz-García, and J.M. Martínez-Zapater. (2004). Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nat. Genet. 36: 162-166.
Ayre, B.G., and Turgeon, R. (2004). Graft transmission of a floral stimulant derived from CONSTANS. Plant Physiol. 135: 2271-2278.
Banerjee, A.K., Chatterjee, M., Yu, Y., Suh, S.G., Miller, W.A., and Hannapel,
D.J. (2006). Dynamics of a mobile RNA of potato involved in a long-distance
signaling pathway. Plant Cell 18: 3443-3457.
Baurle, I., Dean, C. (2006). The timing of developmental transitions in plants. Cell
125: 655-664.
Bernier, G., and Perilleux, C. (2005). A physiological overview of the genetics of
flowering time control. Plant Biotechnol. J. 3: 3-16.
Boss, P.K., Bastow, R.M., Mylne, J.S, and Dean, C. (2004). Multiple pathways in
the decision to flower: enabling, promoting, and resetting. Plant Cell 16: S18-31.
Buhtz, A., Springer, F., Chappell, L., Baulcombe, D.C., and Kehr, J. (2008).
Identification and characterization of small RNAs from the phloem of Brassica
napus. Plant J. 53: 739-749.
Chailakhyan, M.K. (1936). New facts in support of the hormonal theory of plant
development. C.R. Acad. Sci. URRS 13: 79-83.
Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for
Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16:
735-743.
Corbesier, L., and Coupland, G. (2005). Photoperiodic flowering of Arabidopsis:
integrating genetic and physiological approaches to characterization of the floral
stimulus. Plant, Cell & Envir. 28: 54-66.
Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis,
A., Farrona, S., Gissot, L., Turnbull, C., and Coupland, G. (2007). FT Protein
Movement Contributes to Long-Distance Signaling in Floral Induction of
Arabidopsis. Science 316: 1030-1033.
Gregis, V., Sessa, A., Colombo, L., and Kater, M. M. (2006). AGL24, SHORT
VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during
early stages of flower development in Arabidopsis. Plant Cell 18: 1373-1382.
Gu, Q., Ferrándiz, C., Yanofsky, M. F., and Martienssen R. (1998). The
FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis
fruit development. Development 125: 1509-1517.
Huang, N.-C., and Yu, T.S. (2009). The sequences of Arabidopsis
GA-INSENSITIVE RNA constitute the motifs that are necessary and sufficient for
RNA long-distance trafficking. Plant J. 59: 921-929.
Haywood, V., Yu, T.S., Huang, N.C., and Lucas, W.J. (2005). Phloem
long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates
leaf development. Plant J. 42: 49-68.
Imlau, A., Truernit, E., and Sauer, N. (1999). Cell-to-cell and long-distance
trafficking of the green fluorescent protein in the phloem and symplastic unloading
of the protein into sink tissues. Plant Cell 11: 309-322.
Jeon J., and Kim J. (2011). FVE, an Arabidopsis homologue of the
retinoblastoma-associated protein that regulates flowering time and cold response, binds to chromatin as a large multiprotein complex. Mol. Cells 32: 227-234.
Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen,
J.T., Chory, J., Harrison, M.J., Weigel, D. (1999). Activation tagging of the
floral inducer FT. Science 286: 1962-1965.
Kehr, J., and Buhtz, A. (2008). Long-distance transport and movement of RNA
through the phloem. J. Exp. Bot. 59: 85-92.
Kim, M., Canio, W., Kessler, S., and Sinha, N. (2001). Developmental changes due
to long-distance movement of a homeobox fusion transcript in tomato. Science
293: 287-289.
Kim, H.-J., Hyun, Y., Park, J.-Y., Park, M.-J., Park, M.-K., Kim, M.D., Kim,
H.-J. Lee, M.H., Moon, J., Lee I., and Kim, J. (2004). A genetic link between
cold responses and flowering time through FVE in Arabidopsis thaliana. Nat.
Genet. 36: 167-171.
Knoblauch, M. and van Bel, A.J.E. (1998). Sieve tubes in action. Plant Cell 10:
35–50.
Knott, J.E. (1934). Effect of localized photoperiod on spinach. Proc. Am. Soc.
Hortic. Sci. 31: 152-154.
Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., and Araki, T. (1999). A pair of
related genes with antagonistic roles in mediating flowering signals. Science
286: 1960-1962.
Kobayashi, Y., and Weigel, D. (2007). Move on up, it's time for change--mobile
signals controlling photoperiod-dependent flowering. Genes Dev. 21: 2371-84.
Koornneef, M., Hanhart, C.J., and van der Veen, J.H. (1991). A genetic and
physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229: 57-66.
Lang, A., Chailakhyan, M.K., and Frolova, I.A. (1977). Promotion and Inhibition
of Flower Formation in a Dayneutral Plant in Grafts with a Short-Day Plant and a
Long-Day Plant. Proc. Natl. Acad. Sci. USA 74: 2412-2416.
Li, C., Zhang, K., Zeng, X., Jackson, S., Zhou, Y., and Hong, Y. (2009). A
cis-element within Flowering locus T mRNA determines its mobility and facilitates
trafficking of heterologous viral RNA. J. Virol. 83: 3540-3548
Liu, C., Chen, H., Er, H.L., Soo, H.M., Kumar, P.P., Han, J.H., Liou, Y.C., and
Yu, H. (2008). Direct interaction of AGL24 and SOC1 integrates flowering signals
in Arabidopsis. Development 135: 1481-1491.
Lee, J., Oh, M., Park, H., and Lee, I. (2008). SOC1 translocated to the nucleus by
interaction with AGL24 directly regulates LEAFY. Plant J. 55: 832-843.
Lee, J., and Lee, I. (2010). Regulation and function of SOC1, a flowering pathway integrator. J. Exp. Bot. 9: 2247-2254.
Lifschitz, E., Eviatar, T., Rozman, A., Shalit, A., Goldshmidt, A., Amsellem, Z., Alvarez, J.P., and Eshed, Y. (2006). The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc. Natl. Acad. Sci. USA 103: 6398-6403.
Lough, T.J. and Lucas, W.J. (2006). Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu. Rev. Plant Biol. 57: 203-232.
Lucas, W.J., Bouche-Pillon, S., Jackson, D.P., Nguyen, L., Bake, L.r, Ding, B.,
and Hake, S. (1995). Selective trafficking of KNOTTED1 homeodomain protein
and its mRNA through plasmodesmata. Science 270: 1980-1983.
Lucas, W.J., B.C. Yoo, and F. Kragler. (2001). RNA as a longdistance information
macromolecule in plants. Nat. Rev. Mol. Cell Biol. 2: 849-857.
Mandel, M. A., and Yanofsky, M. F. (1995). The Arabidopsis AGL8 MADS Box
Gene 1s Expressed in lnflorescence Meristems and 1s Negatively Regulated by
APETALAI. Plant Cell 7: 1763-1771.
Mathieu, J., Warthmann, N., Küttner, F., Schmid, M. (2007). Export of FT protein
from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr.
Biol. 17: 1055-1060.
Michaels, S.D., and Amasino, R.M. (1999). FLOWERING LOCUS C encodes a
novel MADS domain protein that acts as a repressor of flowering. Plant Cell
11: 949–956.
Michaels, S.D., G. Ditta, C. Gustafson-Brown, S. Pelaz, M. Yanofsky, and R.M.
Amasino. (2003). AGL24 acts as a promoter of flowering in Arabidopsis and is
positively regulated by vernalization. Plant J. 33: 867-874.
Mouradov, A., Cremer, F., and Coupland, G. (2002). Control of flowering time:
interacting pathways as a basis for diversity. Plant Cell 14 Suppl, S111-130.
Parcy, F. ( 2005). Flowering: a time for integration. International Journal of
Development Biology 49: 585–593.
Pazhouhandeh, M., Molinier, J., Berr, A., and Genschik, P. (2011). MSI4/FVE
interacts with CUL4-DDB1 and a PRC2-like complex to control epigenetic
regulation of flowering time in Arabidopsis. Proc. Natl. Acad. Sci. USA 108:
3430-3435.
Putterill, J., Laurie, R., and Macknight, R. (2004). It's time to flower: the genetic
control of flowering time. Bioessays 26: 363-373.
Rédei, G.P. (1962). Supervital Mutants of Arabidopsis. Genetics 47: 443-60.
Reid, J.B., and Murfet, I.C. (1975). Flowering in Pisum sites and possible
mechanisms of vernalization response. J. Exp. Bot. 26: 860–867.
Ross, J.J., and Murfet, I.C. (1986). The mechanism of action of vernalization
in Lathyrus odoratus L. Annals of Botany 57: 783–790.
Schwab, R., Ossowski, S., Riester, M., Warthmann, N., and Weigel, D. (2006).
Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell
18: 1121-33.
Searle, I., Y. He, F. Turck, C. Vincent, F. Fornara, A. Krober, R.A. Amasino,
and G. Coupland. (2006). The transcription factor FLC confers a flowering
response to vernalization by repressing meristem competence and systemic
signaling in Arabidopsis. Genes Dev. 20: 898-912.
Schulz, A. (1998). Phloem: structure related to function. Prog. Bot. 59: 429-475.
Sung, S.B., and Amasino R.M. (2004). Vernalization and epigenetics: how
plants remember winter. Curr. Opin. plant Bio. 7: 4-10.
Tamaki, S., Matsuo, S., Wong, H.L., Yokoi, S., and Shimamoto, K. (2007). Hd3a
Protein Is a Mobile Flowering Signal in Rice. Science 316: 1033-1036.
Teper-Bamnolker, P., and Samach, A. (2005). The Flowering Integrator FT
Regulates SEPALLATA3 and FRUITFULL Accumulation in Arabidopsis Leaves.
Plant Cell 17: 2661-2675.
Turgeon, R. and Wolf, S. (2009). Phloem transport: cellular pathways and molecular
trafficking. Annu. Rev. Plant Biol. 60: 207-221.
Turnbull, C. (2011). Long-distance regulation of flowering time. J. Exp. Bot. 62:
4399-4413.
van Bel, A.J.E. (2003). The phloem, a miracle of ingenuity. Plant, Cell &
Envir. 26: 125-149.
Wellensiek SJ. (1962). Dividing cells as the locus for vernalization. Nature
195: 307–308.
Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U.,
and Weigel, D. (2005). Integration of spatial and temporal information during
floral induction in Arabidopsis. Science 309: 1056–1059.
Wigge, P. A. (2011). FT, A Mobile Developmental Signal in Plants. Curr. Bio. 21:
374-378.
Yang, H.-W., and Yu, T.-S. (2010). Arabidopsis floral regulators FVE and AGL24
are phloem-mobile RNAs. Botanical Studies 51: 17-26.
Yu, H., Xu, Y., Tan, E. L., and Kumar, P. P. (2002). AGAMOUS-LIKE 24, a
dosagedependent mediator of the flowering signals. Proc. Natl. Acad. Sci. USA 99:
16336-16341.
Zeevaart, J.A.D. (1976). Physiology of Flower Formation. Annual Review of Plant
Physiology 27: 321-348.
Zeevaart, J.A. (2006). Florigen coming of age after 70 years. Plant Cell 18:
1783-1789.
Zeevaart, J.A.D. (2008). Leaf-produced floral signals. Curr. Opin. plant Bio. 11:
541-571.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16508-
dc.description.abstract開花,是由植物體內局部性或系統性的開花訊息因子所共同調控。其中最廣為人知的開花素「FLOWERING LOCUS T (FT)」,會受到光週期的刺激而活化,並由葉片經韌皮部長距離的運送至莖頂而誘導開花。近來的微陣列結果與嫁接實驗發現,「AGAMOUS-LIKE 24 (AGL24)」與「FVE」兩個阿拉伯芥開花基因的RNA亦可由轉殖株砧木長距離移動至接穗中。因此,本篇研究主要目的為探討內源的AGL24 與 FVE RNA 在植物中長距離移動之能力,並針對其誘導開花的功能性作進一步的研究。為了解 AGL24 及 FVE 的非細胞自主 (non-cell autonomous) 功能性,我利用具組織專一性的啟動子在突變株中改變 AGL24 及 FVE 表現量。藉此互補實驗發現韌皮部中 AGL24 與 FVE 的表現量改變時,會影響到植物莖頂的開花時間。此外,利用阿拉伯芥嫁接方式及反轉錄聚合酶連鎖反應(RT-PCR) 的分析,證實內源的 AGL24 RNA 具有於韌皮部中長距離運送的能力。而利用阿拉伯芥轉殖技術及共軛焦顯微鏡觀察結果得知,FVE 的蛋白質可能具有從韌皮部的伴細胞運送至表皮細胞的能力。因此,我推測 AGL24 與 FVE 可能在植物的開花途徑中,扮演著系統性開花調節因子的角色。zh_TW
dc.description.abstractFloral initiation is regulated by many local and systemic florigenic signals. In addition to FLOWERING LOCUS T (FT), which mediates systemic photoperiodic signal, evidences show that other systemic floral regulators may participate in floral induction. Previous microarray analysis reveals that the RNA of some floral regulators is presented in broccoli phloem sap. Further Arabidopsis grafting experiments demonstrate that at least two phloem sap RNA, AGAMOUS-LIKE 24 (AGL24) and FVE, moves long-distance in transformants. In this study, we aim to investigate the systemic florigenic avtivity of endogenous AGL24 and FVE RNA. To determine the non-cell autonomous function of AGL24 and FVE, we ectopically expressed the AGL24 and FVE in comanion cells and found that the expression of AGL24 and FVE in companion cells is sufficient to promote floral initiation. We also examined the RNA movement of endogenous AGL24 and FVE and found that endogenous AGL24 RNA is a non-cell autonomous RNA. In addition, our preliminary results demonstrated that the FVE protein may be a non-cell autonomous protein. In conclusion, our data showed that AGL24 and FVE may participate in systemic floral regulation.en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:18:13Z (GMT). No. of bitstreams: 1
ntu-101-R98b42032-1.pdf: 3593532 bytes, checksum: 0f5e1f089ad0ca1980e903eee684773a (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
口試委員會審定書 I
致謝 II
中文摘要 III
英文摘要 IV
第一章 前言 1
植物韌皮部運輸系統的結構與特性 1
開花素 FT 的發現與研究 2
其他系統性開花調節因子參與開花的調控 3
研究目的 5
第二章 材料與方法 7
植物材料 7
質粒 (plasmid) DNA 之構築 7
植物 RNA 之萃取 7
反轉錄反應 (Reverse transcription, RT) 8
聚合酶連鎖反應 (polymerase chain reaction, PCR) 8
由瓊脂膠體回收並純化 DNA 片段 9
DNA 黏合反應 (ligation) 9
E. coli質粒 (plasmid) DNA mini-prep 10
轉型作用 (transformation) 10
製備農桿菌勝任細胞 (competent cells) 11
阿拉伯芥之轉殖 11
植物基因組 (genomic) DNA 之製備 12
選殖 FVE 與 AGL24 之 artificial miRNA (amiRNA) 12
阿拉伯芥開花枝嫁接法 15
GUS 之染色分析法 15
共軛焦顯微鏡 (Confocal Microscope) 16
第三章 結果 17
第一部分 阿拉伯芥韌皮部中 AGL24 對開花之影響 17
提高韌皮部中 AGL24 表現量可促進植物開花 17
降低韌皮部中 AGL24 表現量對開花時間之影響 18
AGL24 RNA 之長距離運輸能力 19
第二部分 阿拉伯芥韌皮部中 FVE 對開花之影響 23
增加韌皮部中 FVE 表現量可促進植物開花 23
降低韌皮部中 FVE 表現量會延遲植物的開花 24
FVE 基因產物之長距離運輸能力 25
第四章 討論 29
AGL24 可能為系統性的開花調節因子 29
FVE 可能參與在植物的系統性開花調控 30
植物韌皮部中非細胞自主 RNA 長距離運輸機制 31
總論 32
圖表 34
參考文獻 52
附錄 59
dc.language.isozh-TW
dc.title阿拉伯芥開花基因AGL24與FVE參與系統性開花調控之研究zh_TW
dc.titleStudy on systemic floral regulation by flowering genes AGL24 and FVE in Arabidopsisen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.coadvisor余天心(Tien-Shin Yu)
dc.contributor.oralexamcommittee鄭石通(Shih-Tong Jeng)
dc.subject.keywordAGL24,FVE,長距離運輸,嫁接,阿拉伯芥,zh_TW
dc.subject.keywordAGL24,FVE,RNA movemen,grafting,Arabidopsis,en
dc.relation.page60
dc.rights.note未授權
dc.date.accepted2012-02-07
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
3.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved