Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16482
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江昭皚
dc.contributor.authorTe-Yu Hsuen
dc.contributor.author許德瑜zh_TW
dc.date.accessioned2021-06-07T18:16:56Z-
dc.date.copyright2012-03-19
dc.date.issued2012
dc.date.submitted2012-02-12
dc.identifier.citation1. Anabtawi, A. L., and R. J. Howlett. 2000. Detection of Blade Contamination in Turbine Flowmeters Using Neural Networks. Proceedings of Fourth International Conference on knowledge-Based Intelligent Engineering Systems & Allied Technologies. Aug. 30th-Sep. 1st.
2. Bouchoule, S., R. Lefèvre, E. Legros, F. Devaux, H. Melchior, M. Duelk, R. Hess, E. Lach, H. Bülow, G. Veith, J. R. Burie, J. F. Cadiou, F. Brillouet, J. Hourany, D. Hoffman, B. Sartorius, K. S. Jepsen, A. T. Clausen, A. Buxens, H. N. Poulsen, et al. 1999. Photonic Technologies for Ultra-High-Speed Information Highways I. 40 Gbit/s TDM Components and Subsystems. Optical Fiber Technology. 5: 275-300.
3. Cheesewright, R., D. Bisset, and C. Clark. 1998. Factors Which Influence the Variability of Turbine Flowmeter Signal Characteristics. Flow Measurement and Instrumentation. 9: 83-89.
4. Culshaw, B. 1984. Optical Fibre Sensing and Signal Processing. 1st ed., London: Peter Peregrinus Ltd.
5. Doerr, C.R., and K. Okamoto. 2006. Advances in Silica Planar Lightwave Circuit. J. of Lightwave Technol. 24(12): 4763-4789.
6. Effenberger, F., and T.S. El-Bawab. 2009. Passive Optical Networks (PON): Past, Present, and Future. Optical Switching and Networking. 6: 143-150.
7. Eisenmann, M., and E. Weidel. 1988. Single-Mode Fused Biconical Couplers for Wavelength Division Multiplexing with Channel Spacing between 100 and 300 nm. J. of Lightwave Technol. 6(1): 113-119.
8. Essiambre, R. -J., G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel. 2010. Capacity Limits of Optical Fiber Networks. J. of Lightwave Technol. 28(4): 662-701.
9. Frazão, O., P. Caldas, F. M. Araújo, L. A. Ferreira, and J. L. Santos. 2007. Optical Flowmeter Using A Modal Interferometer Based on A Single Non-adiabatic Fiber Taper. Opt. Letters. 32: 1974-1976.
10. Habiby, S.F., and R. Vaidyanathan. 2009. WDM Optical Backbone Networks in Aircraft Applications: Networking Challenges and Standards Progress. Military Communications Conference MILCOM 2009 1-6.
11. Hu, C. C., J. J. Miau, and T. L. Chen. 2006. Determination of Real-time Vortex Shedding Frequency by A DSP. Journal of the Chinese Society of Mechanical Engineers. 27(3): 335-342.
12. Hussey, C.D., K.P. Oakley, E.M. O’brien, and P.F. O’sullivan. 2001. Adiabatic Fused Tapered Couplers. Electron. Lett. 37(16): 1009-1010.
13. ITU-T Recommendation G.652: Characteristics of a Single-mode Optical Fibre Cable. 2000. International Telecommunication Union.
14. Jedrzejewski, K. 2000. Biconical Fused Taper - A Universal Fibre Devices Technology. Opto-Electr. Rev. 8(2): 153-159.
15. Keiser, G. E. 1999. A Review of WDM Technology and Applications. Optical Fiber Technology. 5: 3-39.
16. Kim, B.Y., S.H. Lee, and K.Y. Song. 2005. Fused Bitapered Single-mode Fiber Directional Coupler for Core and Cladding Mode Coupling. IEEE Photonics Technol. Lett. 17(12): 2631-2633.
17. Lagakos, N., T. Litovitz, P. Macedo, R. Mohr, and R. Meister. 1981. Multimode Optical Fiber Displacement Sensor. Applied Optics. 20(2): 167-168.
18. Lee, C.H., W.V. Sorin, and B.Y. Kim. 2006. Fiber to the Home Using a PON Infrastructure. J. of Lightwave Technol. 24(12): 4568-4583.
19. Lee, W. T., S. J. Wu, and Y. M. Chen. 1998. Phase-resolved Investigation of Vertex Shedding in Flow Past a Circular Cylinder by Using Laser Doppler Anemometry. Journal of the Chinese Society of Mechanical Engineers. 19(5): 465-473.
20. Li, G., Q. Z. Li, and F. Dong. 2006. Study on Wide-Range Turbine Flowmeter. Proceedings of the Fifth International Conference on Machine Learning and Cybernetics. Dalian. Aug. 13th-16th.
21. Lyle, J. H., and C. W. Pitt. 1981. Vortex Shedding Fluid Flowmeter Using Optical Fibre Sensor. Electronics Letters, 17(6): 244-245.
22. Moeller, R.P., and C.A. Villarruel. 1981. Fused Single Mode Fibre Access Couplers. Electron. Letters. 17(6): 243-244.
23. Murakami, M., K.I. Suzuki, H. Maeda, T. Takahashi, A. Naka, N. Ohkawa, and M. Aiki. 1997. High-Speed TDM - WDM Techniques for Long-Haul Submarine Optical Amplifier Systems. Optical Fiber Technology. 3: 320-338.
24. Raatikainen, P., I. Kassamakov, R. Kakanakov, and M. Luukkala. 1997. Fiber-optic Liquid-level Sensor. Sensors and Actuators A. 58: 93-97.
25. Shumate, P.W. 2008. Fiber-to-the-Home: 1977-2007. J. of Lightwave Technol. 26(9): 1093-1103.
26. Sun, L., T. Zhang, and Z. Y. Zhou. 2006. Experimental Study on Turbine Flowmeter’s Performance Measuring Fluids with Different Viscosities. Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian. June 21th-23th.
27. Tai, H. M., J. T. Chou, H. C. Huang, and K. Y. Cheng. 2004. Optical Fiber Position Sensor with Phase Tuning and Interpolation Circuits. Journal of the Chinese Society of Mechanical Engineers. 25(5): 417-421.
28. Takashima, S., H. Asanuma, and H. Niitsuma. 2004. A Water Flowmeter Using Dual Fiber Bragg Grating Sensors and Cross-Correlation Technique. Sensors and Actuators A: Physical. 116(1):66-74.
29. Telcordia GR-1209-CORE: Generic Requirements for Passive Optical Components. 2010. Issue 4. Telcordia Technology Inc.
30. Telcordia GR-1221-CORE: Generic Reliability Assurance Requirements for Optical Passive Components. 2010. Issue 3. Telcordia Technology Inc.
31. Wadlow, D. 1998. The Measurement, Instrumentation and Sensors Handbook. Boca Raton. FL: CRC Press.
32. Wang, X., J. Xu, Y. Zhu, K. L. Cooper, and A. Wang. 2006. All-fused-silica Miniature Optical Fiber Tip Pressure Sensor. Optics Letters. 31(7): 885-887.
33. Yang, C., S. Chen, and G. Yang. 2001. Fiber Optical Liquid Level Sensor Under Cryogenic Environment. Sensors and Actuators A. 94: 69-75.
34. Yen, S. -H., S.-W. Wong, S. Das, N. Cheng, J. Cho, S. Yamashita, O. Solgaard, and L.G. Kazovsky. 2010. Photonic Components for Future Fiber Access Networks. IEEE J. Sel. Areas Commun. 28(6): 928-935.
35. Yokohama, I., J. Noda, and K. Okamoto. 1987. Fiber-Coupler Fabrication with Automatic Fusion-Elongation Processes for Low Excess Loss and High Coupling-Ratio Accuracy. J. of Lightwave Technol. 5(7): 910-915.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16482-
dc.description.abstractOptical fiber has become the main transmission media in the telecommunication applications due to its excellent properties of low transmission loss, free from electromagnetic interference, small size, etc. Therefore, optical fibers are widely used in the local area network, cable TV, medical endoscope and industrial sensing system.
  This dissertation is focusing on the industrial sensing system development on the base of optical fibers. As we know, there are several modulation methodologies that can be adopted in an optical fiber sensor design. They include the intensity modulation, phase modulation, frequency modulation and polarization modulation. Among these, the intensity modulation type is the one we adopted for the sensor head design, which has the simplest architecture and lower cost to fit the industrial applications. There are three main topics in this dissertation. The first topic is concerned with the optical sensing system design. Based on the intensity modulation principle, we developed three types of sensor head for measuring the pressure, liquid level, and flow rate, separately. From the experimental results, we received very good linearity and accuracy for the sensor response which will be shown in the text in detail.
  The second topic is for improving the system stability under significant variation of light intensity due to the long-time operation and environmental perturbation. Since the intensity of the light source will be attenuated accompanying with the operation after a long time or varied along with the changes of environmental conditions. They will impact on the measuring accuracy. Therefore, we advised a solution by proposing a new structure of 4-fiber configuration, in which two collecting fibers are designed to receive the reflected light from the sensing element. In addition, a dummy fiber is placed between the transmitting fiber and the second collecting fiber to cause the light intensity difference received by the first and second collecting fibers at equivalent distance of d which is the distance between sensing element and sensor probe. By dividing the light intensities received by these two collecting fibers, we received a line with very good linearity in the range of d values from 300μm to 1000μm. Furthermore, we verified the performance of the new structure of 4-fiber configuration under great variation of light intensity by adjusting the LED driving current to be 30 mA and 20 mA to simulate the light variation. Test results show that the quotients of the intensities received by two collecting fibers at different d values are consistent between two conditions of LED driving current to be 30 mA and 20 mA. It proves the new solution proposed in this dissertation can improve the system stability under a greater variation of light intensity and keep the measuring accuracy successfully from the test results.
  The third topic is to propose an innovative process to fabricate the key components for both the optical sensing system and the optical network. By means of the two-step process combining the main techniques of twisted and parallel fusion processes in the fused biconical taper (FBT) technology, we successfully accomplish a hybrid device with the compact size of φ3.5 × 65 mm to accommodate a wavelength-division multiplexer and an optical splitter inside which is only 1/128 of the volume of a conventional package in a 100 × 80 × 10 mm module box. The innovative process to realize the miniaturization of the hybrid device can increase the flexibility during the installation due to the smaller package size. Besides, the hybrid device has the other excellent performance of ultralow polarization dependent loss (PDL) of less than 0.05 dB which ensures the quality of transmitted signals. Moreover, with passing the reliability tests based on the Telcordia GR-1209-CORE and GR-1221-CORE, we have successfully demonstrated that the hybrid device we designed can meet the stringent requirements for various applications under adverse environments.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:16:56Z (GMT). No. of bitstreams: 1
ntu-101-D92631004-1.pdf: 22015301 bytes, checksum: 58a648e5999db1f9ca0e42892b496fa6 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsAcknowledgements (Chinese) i
Abstract (Chinese) ii
Abstract iii
Table of Contents iv
List of Illustrations v
List of Tables vi
Nomenclature vii
Chapter 1 Introduction 1
1.1 Overview 1
1.1.1 Intensity modulated optical fiber sensors for industry 1
1.1.2 Optical fiber sensing network 1
1.1.3 Optical fiber sensors 2
1.2 Key components 6
1.2.1 General applications 6
1.2.2 Fabrication technologies of the optical components 7
1.2.3 Assembly of the hybrid device 8
1.3 Motivations and objectives 9
1.4 Research contributions 11
1.5 Organization of this dissertation 12
Chapter 2 Design of the intensity modulated optical fiber sensing system 13
2.1 System overview 13
2.2 Subsystem design 14
2.2.1 Light source 14
2.2.2 Detection circuit 14
2.3 Flowmeter sensor head design 15
2.3.1 Turbine theory 15
2.3.2 Flowmeter sensor head 18
2.3.3 Experimental setup of flow measuring system 20
2.3.4 Results and discussions 20
2.4 Pressure sensor head design 24
2.4.1 Principle of the reflection-type intensity modulated sensor 24
2.4.2 Prototype of the optical fiber pressure sensor 28
2.4.3 Results and discussions 30
2.5 Liquid level sensor head design 30
2.5.1 Principle of the operation 30
2.5.2 Experimental setup of the liquid level measuring sytem 31
2.5.3 Results and discussions 32
2.5.4 Solution for the issue of liquid density changes 33
Chapter 3 Stability improvement of the optical fiber sensing system 35
3.1 Overview 35
3.2 Methodology for improving the system stability 35
3.3 Experimental setup 37
Chapter 4 Miniaturization of the key component used in the optical fiber sensing system 42
4.1 Introduction to the hybrid WDM coupler 42
4.1.1 Structure of the hybrid device 42
4.1.2 Parameters of the hybrid device 43
4.2 Fabricating system design 46
4.2.1 Design of the fabricating system 46
4.2.2 Manufacturing parameters 48
4.2.3 Package of the hybrid device 49
4.3 Performance analysis 52
4.3.1 Specification of the hybrid WDM coupler 52
4.3.2 Functionality highlights 54
4.3.3 Reliability 55
Chapter 5 Conclusions and possible future works 61
5.1 Intensity modulated optical fiber sensing system 61
5.2 Optical fiber key components for the sensing system 61
Reference 63
dc.language.isoen
dc.subject極化相依損耗zh_TW
dc.subject強度調變式光纖感測器zh_TW
dc.subject複合式光纖分波多工耦合器zh_TW
dc.subject熔接拉錐耦合法zh_TW
dc.subjectPDLen
dc.subjectFBTen
dc.subjectOptical fiber hybrid WDM coupleren
dc.subjectIntensity-modulated optical fiber sensoren
dc.title強度調變式光纖感測器及其關鍵元件之微型化研製zh_TW
dc.titleDevelopment of the Intensity-modulated Optical Fiber Sensors and Miniaturization of the Key Componentsen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree博士
dc.contributor.oralexamcommittee林鴻明,蕭瑛東,歐陽又新,鄭宗記
dc.subject.keyword強度調變式光纖感測器,複合式光纖分波多工耦合器,熔接拉錐耦合法,極化相依損耗,zh_TW
dc.subject.keywordIntensity-modulated optical fiber sensor,Optical fiber hybrid WDM coupler,FBT,PDL,en
dc.relation.page68
dc.rights.note未授權
dc.date.accepted2012-02-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
21.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved