請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16413完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪傳揚(Chwan-Yang Hong) | |
| dc.contributor.author | Jhong-Kai Syue | en |
| dc.contributor.author | 薛仲凱 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:13:47Z | - |
| dc.date.copyright | 2021-02-20 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-02-05 | |
| dc.identifier.citation | Babić, M., Radić, S., Cvjetko, P., Roje, V., Pevalek-Kozlina, B., Pavlica, M. (2009). Antioxidative response of Lemna minor plants exposed to thallium(I)-acetate. Aquatic Botany, 91(3), 166-172. Bailleul, B., Berne, N., Murik, O., Petroutsos, D., Prihoda, J., Tanaka, A., Villanova, V., Bligny, R., Flori, S., Falconet, D., Krieger-Liszkay, A., Santabarbara, S., Rappaport, F., Joliot, P., Tirichine, L., Falkowski, P. G., Cardol, P., Bowler, C., Finazzi, G. (2015). Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature, 524(7565), 366-369. Bakker-Grunwald, T. (1979). Movement of thallous ion across the ascites cell membrane. The Journal of Membrane Biology, 47(2), 171-183. Bari, R., Jones, J. D. (2009). Role of plant hormones in plant defence responses. Plant Mol Biol, 69(4), 473-488. Belkhadi, A., Hediji, H., Abbes, Z., Nouairi, I., Barhoumi, Z., Zarrouk, M., Chaïbi, W., Djebali, W. (2010). Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotoxicology and Environmental Safety, 73(5), 1004-1011. Berrocal-Lobo, M., Molina, A., Solano, R. (2002). Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J, 29(1), 23-32. Bolger, A. M., Lohse, M., Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. Bovet, L., Feller, U., Martinoia, E. (2005). Possible involvement of plant ABC transporters in cadmium detoxification: a cDNA sub-microarray approach. Environ Int, 31(2), 263-267. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248-254. Britten, J. S., Blank, M. (1968). Thallium activation of the (Na+-K+)-activated ATPase of rabbit kidney. Biochimica et Biophysica Acta (BBA) - Enzymology, 159(1), 160-166. Brodersen, P., Petersen, M., Bjørn Nielsen, H., Zhu, S., Newman, M. A., Shokat, K. M., Rietz, S., Parker, J., Mundy, J. (2006). Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J, 47(4), 532-546. Brown, R. L., Kazan, K., McGrath, K. C., Maclean, D. J., Manners, J. M. (2003). A Role for the GCC-Box in Jasmonate-Mediated Activation of the <em>PDF1.2</em> Gene of Arabidopsis. Plant Physiology, 132(2), 1020-1032. Busk, P. K., Pagès, M. (1998). Regulation of abscisic acid-induced transcription. Plant Molecular Biology, 37(3), 425-435. Chini, A., Fonseca, S., Fernández, G., Adie, B., Chico, J. M., Lorenzo, O., García-Casado, G., López-Vidriero, I., Lozano, F. M., Ponce, M. R., Micol, J. L., Solano, R. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature, 448(7154), 666-671. Chou, Y. T., Lo, K. Y. (2019). Thallium(I) treatment induces nucleolar stress to stop protein synthesis and cell growth. Sci Rep, 9(1), 6905. Choudhury, S., Panda, P., Sahoo, L., Panda, S. K. (2013). Reactive oxygen species signaling in plants under abiotic stress. Plant signaling behavior, 8(4), e23681. Crookes, W. (1861). XLVI. On the existence of a new element, probably of the sulphur group. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 21(140), 301-305. Cuypers, A., Smeets, K., Ruytinx, J., Opdenakker, K., Keunen, E., Remans, T., Horemans, N., Vanhoudt, N., Van Sanden, S., Van Belleghem, F., Guisez, Y., Colpaert, J., Vangronsveld, J. (2011). The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol, 168(4), 309-316. De Grauwe, L., Dugardeyn, J., Van Der Straeten, D. (2008). Novel mechanisms of ethylene-gibberellin crosstalk revealed by the gai eto2-1 double mutant. Plant signaling behavior, 3(12), 1113-1115. Durner, J., Klessig, D. F. (1996). Salicylic acid is a modulator of tobacco and mammalian catalases. J Biol Chem, 271(45), 28492-28501. Edreva, A. (2005). Generation and scavenging of reactive oxygen species in chloroplasts: a submolecular approach. Agriculture, Ecosystems Environment, 106(2), 119-133. Eichhorn, H., Klinghammer, M., Becht, P., Tenhaken, R. (2006). Isolation of a novel ABC-transporter gene from soybean induced by salicylic acid. J Exp Bot, 57(10), 2193-2201. Eskandari, M. R., Mashayekhi, V., Aslani, M., Hosseini, M.-J. (2015). Toxicity of thallium on isolated rat liver mitochondria: The role of oxidative stress and MPT pore opening. Environmental Toxicology, 30(2), 232-241. Eulgem, T., Somssich, I. E. (2007). Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol, 10(4), 366-371. Finkel, T. (2012). Signal transduction by mitochondrial oxidants. J Biol Chem, 287(7), 4434-4440. Fonseca, S., Chini, A., Hamberg, M., Adie, B., Porzel, A., Kramell, R., Miersch, O., Wasternack, C., Solano, R. (2009). (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nature Chemical Biology, 5(5), 344-350. Foyer, C. H., Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta, 133(1), 21-25. Foyer, C. H., Noctor, G. (2005). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell, 17(7), 1866-1875. Gadjev, I., Stone, J. M., Gechev, T. S. (2008). Programmed cell death in plants: new insights into redox regulation and the role of hydrogen peroxide. Int Rev Cell Mol Biol, 270, 87-144. Galván-Arzate, S., Santamaría, A. (1998). Thallium toxicity. Toxicol Lett, 99(1), 1-13. Gill, S., Gill, R., Wen, Y., Enderle, T., Roth, D., Liang, D. (2017). A High-Throughput Screening Assay for NKCC1 Cotransporter Using Nonradioactive Rubidium Flux Technology. Assay Drug Dev Technol, 15(4), 167-177. Grisham, C. M., Gupta, R. K., Barnett, R. E., Mildvan, A. S. (1974). Thallium-205 nuclear relaxation and kinetic studies of sodium and potassium ion-activated adenosine triphosphatase. J Biol Chem, 249(21), 6738-6744. Guo, B., Liang, Y., Zhu, Y. (2009). Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? Journal of Plant Physiology, 166(1), 20-31. Guo, B., Liang, Y. C., Zhu, Y. G., Zhao, F. J. (2007). Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environ Pollut, 147(3), 743-749. Guo, B., Liu, C., Li, H., Yi, K., Ding, N., Li, N., Lin, Y., Fu, Q. (2016). Endogenous salicylic acid is required for promoting cadmium tolerance of Arabidopsis by modulating glutathione metabolisms. J Hazard Mater, 316, 77-86. Guo, Q., Meng, L., Mao, P.-C., Jia, Y.-Q., Shi, Y.-J. (2013). Role of exogenous salicylic acid in alleviating cadmium-induced toxicity in Kentucky bluegrass. Biochemical Systematics and Ecology, 50, 269-276. Gupta, K. J., Zabalza, A., Van Dongen, J. T. (2009). Regulation of respiration when the oxygen availability changes. Physiologia Plantarum, 137(4), 383-391. Hachiya, T., Watanabe, C. K., Boom, C., Tholen, D., Takahara, K., Kawai-Yamada, M., Uchimiya, H., Uesono, Y., Terashima, I., Noguchi, K. (2010). Ammonium-dependent respiratory increase is dependent on the cytochrome pathway in Arabidopsis thaliana shoots. Plant Cell Environ, 33(11), 1888-1897. Hiei, Y., Ohta, S., Komari, T., Kumashiro, T. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal, 6(2), 271-282. Hille, B. (1973). Potassium channels in myelinated nerve. Selective permeability to small cations. J Gen Physiol, 61(6), 669-686. Hofstadter, R. (1949). The detection of gamma-rays with thallium-activated sodium iodide crystals. Physical Review, 75(5), 796-810. Hsu, Y. T., Kao, C. H. (2003). Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ, 26(6), 867-874. Hsu, Y. T., Kao, C. H. (2005). Abscisic acid accumulation and cadmium tolerance in rice seedlings. Physiologia Plantarum, 124(1), 71-80. Hultin, T., Näslund, P. H. (1974). Effects of thallium (I) on the structure and functions of mammalian ribosomes. Chemico-Biological Interactions, 8(5), 315-328. Jaspers, P., Kangasjärvi, J. (2010). Reactive oxygen species in abiotic stress signaling. Physiol Plant, 138(4), 405-413. Jia, Y. X., Lee, C. S., Zettl, A. (1994). Stabilization of the Tl2Ba2Ca2Cu3O10 superconductor by Hg doping. Physica C, 234(1-2), 24-28. Jin, C.-W., Mao, Q.-Q., Luo, B.-F., Lin, X.-Y., Du, S.-T. (2013). Mutation of mpk6 enhances cadmium tolerance in Arabidopsis plants by alleviating oxidative stress. Plant and Soil, 371(1), 387-396. Juszczuk, I. M., Rychter, A. M. (2003). Alternative oxidase in higher plants. Acta Biochim Pol, 50(4), 1257-1271. Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., Yamanishi, Y. (2008). KEGG for linking genomes to life and the environment. Nucleic Acids Res, 36(Database issue), D480-484. Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., Tanabe, M. (2019). New approach for understanding genome variations in KEGG. Nucleic Acids Res, 47(D1), D590-d595. Kayne, F. J. (1971). Thallium (I) activation of pyruvate kinase. Archives of Biochemistry and Biophysics, 143(1), 232-239. Keunen, E., Florez-Sarasa, I., Obata, T., Jozefczak, M., Remans, T., Vangronsveld, J., Fernie, A. R., Cuypers, A. (2016). Metabolic responses of Arabidopsis thaliana roots and leaves to sublethal cadmium exposure are differentially influenced by ALTERNATIVE OXIDASE1a. Environmental and Experimental Botany, 124, 64-78. Khan, A., Bilal, S., Khan, A. L., Imran, M., Shahzad, R., Al-Harrasi, A., Al-Rawahi, A., Al-Azhri, M., Mohanta, T. K., Lee, I.-J. (2020). Silicon and Gibberellins: Synergistic Function in Harnessing ABA Signaling and Heat Stress Tolerance in Date Palm (Phoenix dactylifera L.). Plants (Basel, Switzerland), 9(5), 620. Khan, M. I., Nazir, F., Asgher, M., Per, T. S., Khan, N. A. (2015). Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol, 173, 9-18. Kim, D., Langmead, B., Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357-360. Koo, A. J., Gao, X., Jones, A. D., Howe, G. A. (2009). A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J, 59(6), 974-986. Kranner, I., Roach, T., Beckett, R. P., Whitaker, C., Minibayeva, F. V. (2010). Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum. J Plant Physiol, 167(10), 805-811. Kurimoto, K., Millar, A. H., Lambers, H., Day, D. A., Noguchi, K. (2004). Maintenance of growth rate at low temperature in rice and wheat cultivars with a high degree of respiratory homeostasis is associated with a high efficiency of respiratory ATP production. Plant Cell Physiol, 45(8), 1015-1022. Laforte, L., Tessier, A., Gobeil, C., Carignan, R. (2005). Thallium diagenesis in lacustrine sediments. Geochimica et Cosmochimica Acta, 69(22), 5295-5306. Landowne, D. (1975). A comparison of radioactive thallium and potassium fluxes in the giant axon of the squid. The Journal of physiology, 252(1), 79-96. Lata, C., Prasad, M. (2011). Role of DREB in regulation of abiotic stress response in plants. Journal of Experimental Botany, 62, 4731-4748. Leon-Reyes, A., Van der Does, D., De Lange, E. S., Delker, C., Wasternack, C., Van Wees, S. C., Ritsema, T., Pieterse, C. M. (2010). Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta, 232(6), 1423-1432. Li, J., Brader, G., Palva, E. T. (2004). The WRKY70 Transcription Factor: A Node of Convergence for Jasmonate-Mediated and Salicylate-Mediated Signals in Plant Defense. The Plant Cell, 16(2), 319-331. Li, Q., Rottländer, M., Xu, M., Christoffersen, C. T., Frederiksen, K., Wang, M. W., Jensen, H. S. (2011). Identification of novel KCNQ4 openers by a high-throughput fluorescence-based thallium flux assay. Anal Biochem, 418(1), 66-72. Li, Z., Xing, D. (2010). Mechanistic study of mitochondria-dependent programmed cell death induced by aluminum phytotoxicity using fluorescence techniques. Journal of Experimental Botany, 62, 331-343. Liao, Y., Smyth, G. K., Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923-930. Lorenzo, O., Piqueras, R., Sánchez-Serrano, J. J., Solano, R. (2003). ETHYLENE RESPONSE FACTOR1 Integrates Signals from Ethylene and Jasmonate Pathways in Plant Defense. The Plant Cell, 15(1), 165-178. Love, M. I., Huber, W., Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. Maksymiec, W. (2007). Signaling responses in plants to heavy metal stress. Acta Physiologiae Plantarum, 29(3), 177. Martínez Domínguez, D., Torronteras Santiago, R., Córdoba Garcí a, F. (2009). Modulation of the antioxidative response of Spartina densiflora against iron exposure. Physiologia Plantarum, 136(2), 169-179. Maxwell, D. P., Wang, Y., McIntosh, L. (1999). The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proceedings of the National Academy of Sciences, 96(14), 8271-8276. May, M. J., Vernoux, T., Leaver, C., Montagu, M. V., Inzé, D. (1998). Glutathione homeostasis in plants: implications for environmental sensing and plant development. Journal of Experimental Botany, 49(321), 649-667. Mhamdi, A., Hager, J., Chaouch, S., Queval, G., Han, Y., Taconnat, L., Saindrenan, P., Gouia, H., Issakidis-Bourguet, E., Renou, J. P., Noctor, G. (2010). Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol, 153(3), 1144-1160. Mizoi, J., Shinozaki, K., Yamaguchi-Shinozaki, K. (2012). AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta, 1819(2), 86-96. Moffat, C. S., Ingle, R. A., Wathugala, D. L., Saunders, N. J., Knight, H., Knight, M. R. (2012). ERF5 and ERF6 Play Redundant Roles as Positive Regulators of JA/Et-Mediated Defense against Botrytis cinerea in Arabidopsis. PLOS ONE, 7(4), e35995. Morin, R. D., Bainbridge, M., Fejes, A., Hirst, M., Krzywinski, M., Pugh, T. J., McDonald, H., Varhol, R., Jones, S. J. M., Marra, M. A. (2008). Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. BioTechniques, 45(1), 81-94. Mulkey, J. P., Oehme, F. W. (1993). A review of thallium toxicity. Vet Hum Toxicol, 35(5), 445-453. Mullins, L. J., Moore, R. D. (1960). The Movement of Thallium Ions in Muscle. Journal of General Physiology, 43(4), 759-773. Nakashima, K., Yamaguchi-Shinozaki, K. (2013). ABA signaling in stress-response and seed development. Plant Cell Reports, 32(7), 959-970. Narusaka, Y., Nakashima, K., Shinwari, Z. K., Sakuma, Y., Furihata, T., Abe, H., Narusaka, M., Shinozaki, K., Yamaguchi-Shinozaki, K. (2003). Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J, 34(2), 137-148. Navarro, L., Bari, R., Achard, P., Lisón, P., Nemri, A., Harberd, N. P., Jones, J. D. G. (2008). DELLAs Control Plant Immune Responses by Modulating the Balance of Jasmonic Acid and Salicylic Acid Signaling. Current Biology, 18(9), 650-655. Nishiyama, R., Watanabe, Y., Leyva-Gonzalez, M. A., Ha, C. V., Fujita, Y., Tanaka, M., Seki, M., Yamaguchi-Shinozaki, K., Shinozaki, K., Herrera-Estrella, L., Tran, L. S. (2013). Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proc Natl Acad Sci U S A, 110(12), 4840-4845. Nriagu, J. O. (1998). Thallium in the environment (Vol. 31): Advances in Environmental Science and Technology. Oung, H.-M., Lin, K.-C., Wu, T.-M., Chandrika, N. N. P., Hong, C.-Y. (2015). Hygromycin B-induced cell death is partly mediated by reactive oxygen species in rice (Oryza sativa L.). Plant Molecular Biology, 89(6), 577-588. Pál, M., Horváth, E., Janda, T., Páldi, E., Szalai, G. (2005). Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays) plants. Physiologia Plantarum, 125(3), 356-364. Palma, J. M., Mateos, R. M., López-Jaramillo, J., Rodríguez-Ruiz, M., González-Gordo, S., Lechuga-Sancho, A. M., Corpas, F. J. (2020). Plant catalases as NO and H(2)S targets. Redox Biol, 34, 101525. Park, Y. B. (1994). Ion selectivity and gating of small conductance Ca(2+)-activated K+ channels in cultured rat adrenal chromaffin cells. The Journal of physiology, 481 ( Pt 3)(Pt 3), 555-570. Peñarrubia, L., Romero, P., Carrió-Seguí, A., Andrés-Bordería, A., Moreno, J., Sanz, A. (2015). Temporal aspects of copper homeostasis and its crosstalk with hormones. Frontiers in plant science, 6, 255. Peter, A. L. J., Viraraghavan, T. (2005). Thallium: a review of public health and environmental concerns. Environment International, 31(4), 493-501. Pilon, M., Ravet, K., Tapken, W. (2011). The biogenesis and physiological function of chloroplast superoxide dismutases. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1807(8), 989-998. Pino, M. T. L., Verstraeten, S. V. (2015). Tl(I) and Tl(III) alter the expression of EGF-dependent signals and cyclins required for pheochromocytoma (PC12) cell-cycle resumption and progression. Journal of Applied Toxicology, 35(8), 952-969. Pitzschke, A., Hirt, H. (2006). Mitogen-Activated Protein Kinases and Reactive Oxygen Species Signaling in Plants. Plant Physiology, 141(2), 351. Poyton, R. O., McEwen, J. E. (1996). CROSSTALK BETWEEN NUCLEAR AND MITOCHONDRIAL GENOMES. Annual Review of Biochemistry, 65(1), 563-607. Prashanth, S. R., Sadhasivam, V., Parida, A. (2008). Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res, 17(2), 281-291. Radić, S., Cvjetko, P., Glavas, K., Roje, V., Pevalek-Kozlina, B., Pavlica, M. (2009). Oxidative stress and DNA damage in broad bean (Vicia faba L.) seedlings induced by thallium. Environmental Toxicology and Chemistry, 28(1), 189-196. Raphemot, R., Kadakia, R. J., Olsen, M. L., Banerjee, S., Days, E., Smith, S. S., Weaver, C. D., Denton, J. S. (2013). Development and validation of fluorescence-based and automated patch clamp-based functional assays for the inward rectifier potassium channel Kir4.1. Assay Drug Dev Technol, 11(9-10), 532-543. Raza, S., Shafiq, F. (2013). Exploring the Role of Salicylic Acid to Attenuate Cadmium Accumulation in Radish (Raphanus sativus). International Journal of Agriculture and Biology, 15, 547–552. Renkema, H., Koopmans, A., Hale, B., Berkelaar, E. (2015). Thallium and potassium uptake kinetics and competition differ between durum wheat and canola. Environmental Science and Pollution Research, 22(3), 2166-2174. Reuben, J., Kayne, F. J. (1971). Thallium-205 nuclear magnetic resonance study of pyruvate kinase and its substrates. Evidence for a substrate-induced conformational change. J Biol Chem, 246(20), 6227-6234. Rhoads, D. M., Subbaiah, C. C. (2007). Mitochondrial retrograde regulation in plants. Mitochondrion, 7(3), 177-194. Sahraeian, S. M. E., Mohiyuddin, M., Sebra, R., Tilgner, H., Afshar, P. T., Au, K. F., Bani Asadi, N., Gerstein, M. B., Wong, W. H., Snyder, M. P., Schadt, E., Lam, H. Y. K. (2017). Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis. Nature Communications, 8(1), 59. Sasaki, T., International Rice Genome Sequencing, P. (2005). The map-based sequence of the rice genome. Nature, 436(7052), 793-800. Schellingen, K., Van Der Straeten, D., Vandenbussche, F., Prinsen, E., Remans, T., Vangronsveld, J., Cuypers, A. (2014). Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression. BMC Plant Biology, 14(1), 214. Schlagnhaufer, C. D., Arteca, R. N., Pell, E. J. (1997). Sequential expression of two 1-aminocyclopropane-1-carboxylate synthase genes in response to biotic and abiotic stresses in potato (Solanum tuberosum L.) leaves. Plant Molecular Biology, 35(6), 683-688. Schurch, N. J., Schofield, P., Gierliński, M., Cole, C., Sherstnev, A., Singh, V., Wrobel, N., Gharbi, K., Simpson, G. G., Owen-Hughes, T., Blaxter, M., Barton, G. J. (2016). How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? Rna, 22(6), 839-851. Shakirova, F. M., Allagulova, C. R., Maslennikova, D. R., Klyuchnikova, E. O., Avalbaev, A. M., Bezrukova, M. V. (2016). Salicylic acid-induced protection against cadmium toxicity in wheat plants. Environmental and Experimental Botany, 122, 19-28. Skulskii, I. A., Manninen, V., Järnefelt, J. (1978). Factors affecting the relative magnitudes of the ouabain-sensitive and the ouabian-insensitive fluxes of thallium ion in erythrocytes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 506(2), 233-241. Steffens, B. (2014). The role of ethylene and ROS in salinity, heavy metal, and flooding responses in rice. Frontiers in plant science, 5, 685-685. Sun, P., Tian, Q.-Y., Chen, J., Zhang, W.-H. (2010). Aluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin. Journal of Experimental Botany, 61(2), 347-356. Tamás, L., Mistrík, I., Alemayehu, A., Zelinová, V., Bočová, B., Huttová, J. (2015). Salicylic acid alleviates cadmium-induced stress responses through the inhibition of Cd-induced auxin-mediated reactive oxygen species production in barley root tips. J Plant Physiol, 173, 1-8. Tang, K., Zhan, J. C., Yang, H. R., Huang, W. D. (2010). Changes of resveratrol and antioxidant enzymes during UV-induced plant defense response in peanut seedlings. J Plant Physiol, 167(2), 95-102. Tao, S., Sun, L., Ma, C., Li, L., Li, G., Hao, L. (2013). Reducing basal salicylic acid enhances Arabidopsis tolerance to lead or cadmium. Plant and Soil, 372(1), 309-318. Trinh, N.-N., Huang, T.-L., Chi, W.-C., Fu, S.-F., Chen, C.-C., Huang, H.-J. (2014). Chromium stress response effect on signal transduction and expression of signaling genes in rice. Physiologia Plantarum, 150(2), 205-224. Umbach, A. L., Siedow, J. N. (1993). Covalent and Noncovalent Dimers of the Cyanide-Resistant Alternative Oxidase Protein in Higher Plant Mitochondria and Their Relationship to Enzyme Activity. Plant Physiology, 103(3), 845-854. Vanlerberghe, G. C. (2013). Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. International journal of molecular sciences, 14(4), 6805-6847. Verma, V., Ravindran, P., Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 16(1), 86. Wang, X., Andrews, L. (2004). Infrared Spectra of Thallium Hydrides in Solid Neon, Hydrogen, and Argon. The Journal of Physical Chemistry A, 108(16), 3396-3402. Wang, Z., Gerstein, M., Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 10(1), 57-63. Weaver, C. D., Harden, D., Dworetzky, S. I., Robertson, B., Knox, R. J. (2004). A thallium-sensitive, fluorescence-based assay for detecting and characterizing potassium channel modulators in mammalian cells. J Biomol Screen, 9(8), 671-677. Winter, T. R., Borkowski, L., Zeier, J., Rostás, M. (2012). Heavy metal stress can prime for herbivore-induced plant volatile emission. Plant Cell Environ, 35(7), 1287-1298. Xiao, T., Boyle, D., Guha, J., Rouleau, A., Hong, Y., Zheng, B. (2003). Groundwater-related thallium transfer processes and their impacts on the ecosystem: southwest Guizhou Province, China. Applied Geochemistry, 18(5), 675-691. Yamaguchi, S. (2008). Gibberellin Metabolism and its Regulation. Annual Review of Plant Biology, 59(1), 225-251. Yang, T., Zhang, S., Hu, Y., Wu, F., Hu, Q., Chen, G., Cai, J., Wu, T., Moran, N., Yu, L., Xu, G. (2014). The Role of a Potassium Transporter OsHAK5 in Potassium Acquisition and Transport from Roots to Shoots in Rice at Low Potassium Supply Levels. Plant Physiology, 166(2), 945-959. Yoshida, S. (1976). Routine procedure for growing rice plants in culture solution. Laboratory Manual for Physiological Studies of Rice, 61-66. Yu, G., Wang, L. G., Han, Y., He, Q. Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. Omics, 16(5), 284-287. Yue, J., Qiao, G., Liu, N., Nan, F., Gao, Z. (2016). Novel KCNQ2 channel activators discovered using fluorescence-based and automated patch-clamp-based high-throughput screening techniques. Acta pharmacologica Sinica, 37(1), 105-110. Zawoznik, M. S., Groppa, M. D., Tomaro, M. L., Benavides, M. P. (2007). Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Science, 173(2), 190-197. Zhang, G. B., Yi, H. Y., Gong, J. M. (2014). The Arabidopsis Ethylene/Jasmonic Acid-NRT Signaling Module Coordinates Nitrate Reallocation and the Trade-Off between Growth and Environmental Adaptation. The Plant Cell, 26(10), 3984-3998. Zhang, J., Jia, W., Yang, J., Ismail, A. (2006). Role of ABA in Integrating Plant Responses to Drought and Salt Stresses. Field Crops Research, 97, 111–119. Zhang, J., Schurr, U., Davies, W. J. (1987). Control of Stomatal Behaviour by Abscisic Acid which Apparently Originates in the Roots. Journal of Experimental Botany, 38(7), 1174-1181. Zhang, L., Oh, Y., Li, H., Baldwin, I. T., Galis, I. (2012). Alternative Oxidase in Resistance to Biotic Stresses: Nicotiana attenuata AOX Contributes to Resistance to a Pathogen and a Piercing-Sucking Insect But Not Manduca sexta Larvae. Plant Physiology, 160(3), 1453-1467. Zhang, S., Klessig, D. F. (2001). MAPK cascades in plant defense signaling. Trends Plant Sci, 6(11), 520-527. Zhang, Z., Zhang, B., Long, J., Zhang, X., Chen, G. (1998). Thallium pollution associated with mining of thallium deposits. Science in China Series D: Earth Sciences, 41(1), 75-81. Zhu, Z., An, F., Feng, Y., Li, P., Xue, L., A, M., Jiang, Z., Kim, J.-M., To, T. K., Li, W., Zhang, X., Yu, Q., Dong, Z., Chen, W.-Q., Seki, M., Zhou, J.-M., Guo, H. (2011). Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in <em>Arabidopsis</em>. Proceedings of the National Academy of Sciences, 108(30), 12539-12544. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16413 | - |
| dc.description.abstract | 隨著鉈應用有關之科技興起,鉈對於生物體的毒害研究也逐漸受到重視。鉈對水稻之毒害機制研究仍相當少,其毒害機制與鉀競爭效應是本試驗之研究目的。水耕栽培幼苗試驗結果顯示,Kimura B水耕液中添加總鉀濃度10倍之不同種鉀化合物和10 μM的硝酸鉈,其中不同鉀化合物包括KNO3、KH2PO4、K2SO4和KCl均能顯著抑制根部和地上部約70% 以上的鉈累積。全株水稻的水耕試驗中,在抽穗期處理相較於Kimura B水耕液總鉀濃度5倍或50倍KCl濃度於含1 μM鉈之水耕液中,均可顯著的抑制鉈在水稻葉片、莖部、根部、稻殼、穀粒的累積,在葉片、莖、稻殼可抑制約80% 以上,根部可抑制50%,穀粒則可抑制高達95% 以上,且不論5倍或50倍鉀離子影響效果皆相同,顯示鉀離子可有效地競爭鉈在水稻的吸收及累積。毒害機制方面,透過已知AOX過量表現轉殖株 (AOX-OE) 在鉈逆境下生長勢較野生型 (WT) 生長還要好,將AOX-OE和WT處理10 μM硝酸鉈24小時後,採集地上部做轉錄體分析。結果顯示24 H鉈處理會使泛素化作用發生,抑制光合作用相關蛋白之表現,並誘導穀胱甘肽還原酶 (GR3) 和抗壞血酸過氧化酶 (APX7) 等抗氧化酵素表現,而AOX-OE在鉈逆境下表現之穀胱甘肽轉移酶 (glutathione-S-transferase, GST) 基因種類和量都較WT還要來得多。荷爾蒙方面,不論AOX-OE或WT,鉈皆會抑制ABA生合成,並促使GA和乙烯生合成基因表現,且透過GA/ABA雙報導系統也能驗證該趨勢。高親和性鉀通道蛋白 (high‐affinity K+ transporter, HAK) 為重要之鉀離子吸收轉運蛋白,從其差異表現基因顯示,OsHAK5在AOX-OE中被誘導表現,而將三葉齡之AOX-OE和WT處理10 μM硝酸鉈一週,可以觀測到在AOX-OE根部鉈累積量顯著較WT根部還要來得少,因此這可能為AOX-OE較WT抗鉈逆境的原因之一,仍須進一步去驗證。從本試驗結果顯示,鉀會競爭鉈吸收通道進入水稻中,因此鉈可能透過鉀通道進入水稻中,同時,轉錄體分析結果顯示,鉈逆境的確會誘導GR3和APX7等抗樣化酵素的表現,而AOX-OE在鉈逆境下會誘導更多解毒重要酵素GST的表現,且AOX-OE本身會誘導OsHAK5表現,這些皆可能為AOX-OE較WT抗鉈逆境的原因。 | zh_TW |
| dc.description.abstract | With the rise of technology related to thallium application, research on the toxicity of thallium to organisms has gradually noticed. Thallium toxicity study in rice has not been studied yet, therefore, this study aims to investigate the mechanism and potassium competition effect in rice. Hydroponic experiment results of rice seedlings showed that different minerals containing potassium including KNO3, KH2PO4, K2SO4 and KCl into half-strength Kimura B solution significantly inhibit up to 70% accumulation of thallium. At mature stage, 5 times or 50 times of potassium ion concentration treated with 1 μM thallium simultaneously in hydroponic solution during the heading stage can significantly inhibit the accumulation of thallium in leaves, stems, roots, husks, and brown rice. Tl accumulation of brown rice can be inhibited by more than 80% in leaves, stems, and husks, 50% in roots, and up to 95% in brown rice, and the effect of excess 5 times or 50 times potassium concentration is the same. The competition of potassium with thallium on absorption and accumulation in rice is present. In terms of the toxicity mechanism, AOX overexpression transgenic plant (AOX-OE) under thallium stress grows better than the wild type (WT) is known. AOX-OE and WT are treated with 10 μM Tl(I) for 24 hours and collected its RNA for transcriptome analysis. The results show that 24 H thallium treatment can cause ubiquitination, and inhibit the expression of photosynthesis-related genes, and induce the expression of antioxidant enzymes such as glutathione reductase (GR3) and ascorbate peroxidase (APX7). The type and amount of GST genes expressed under thallium in AOX-OE are much more than that of WT. In terms of hormones, thallium inhibits ABA biosynthesis and promotes the expression of GA and ethylene biosynthesis related genes. This trend can also be verified through the GA/ABA dual report transgenic rice system. High-affinity potassium transporter gene is an important for potassium ion uptake and transport. The differentially expressed genes (DEGs) show that OsHAK5 is induced by AOX-OE. 3-leaf-stage of OE and WT are treated with 10 μM thallium for a week, it can be observed that accumulation of thallium in roots of AOX-OE is significantly less than that of WT, therefore, this may be one of the reasons why AOX-OE is more resistant to thallium stress than WT, and further verification is needed. The results of this study show that absorption competition between potassium and thallium is present, and thallium stress does induce the expression of antioxidant enzymes such as GR3 and APX7. While under thallium stress, AOX-OE can induce more GST genes expression, and AOX-OE itself can induce OsHAK5 expression, which may be the reason why AOX-OE is more resistant to thallium stress than WT. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:13:47Z (GMT). No. of bitstreams: 1 U0001-0402202102301800.pdf: 12553676 bytes, checksum: 4d60d658a558aead903597e845e19303 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 摘要 i 目錄 iv 圖目錄 vii 表目錄 ix 壹、 前人研究 - 1 - 第一節 環境中鉈的來源 - 1 - 第二節 鉈的化學特性 - 1 - 第三節 鉈的毒性 - 1 - 第四節 活性氧化物質 - 2 - 第五節 植物的抗氧化機制 - 3 - 1. 超氧化物歧化酶 (Superoxide dismutases, SOD, EC 1.15.1.1) - 3 - 2. 抗壞血酸過氧化酶 (Ascorbate peroxidase, APX, EC 1.11.1.11) - 4 - 3. 過氧化氫酶 (Catalase, CAT, EC 1.11.1.6) - 4 - 4. 穀胱甘肽還原酶 (Glutathione reductase, GR, EC 1.6.4.2) - 4 - 第六節 交替氧化酶 - 4 - 第七節 鉈與鉀離子 - 5 - 第八節 植物荷爾蒙的作用 - 6 - 1. 離層素 (abscisic acid, ABA) - 7 - 2. 水楊酸 (salicylic acid, SA) - 7 - 3. 茉莉酸 (jasmonates, JA) - 8 - 4. 乙烯 (ethylene, ET) - 9 - 5. 吉貝素 (gibberellins, GA) - 10 - 6. GA和ABA交互作用 - 10 - 第九節 RNA定序方法 - 11 - 貳、 研究目的 - 12 - 參、 材料與方法 - 13 - 第一節 植物材料及生長條件 - 13 - 1. 水稻品種 - 13 - 2. 水耕液配置 - 13 - 3. 水稻種植與生長條件 - 13 - 第二節 鉈鉀離子競爭試驗 - 13 - 1. 過量不同種鉀化合物與鉈競爭吸收試驗 - 14 - 2. 過量不同濃度鉀與鉈競爭吸收試驗 - 14 - 3. 全株水稻過量鉀與鉈競爭吸收試驗 - 14 - 4. 鉈含量分析 - 14 - 第三節 RNA定序資料分析 - 15 - 1. 材料處理 - 15 - 2. RNA萃取 - 15 - 3. RNA瓊脂膠體電泳分析 - 15 - 4. RNA濃度分析 - 16 - 5. RNA定序 - 16 - 第四節 DUAL-LUCIFERASE® REPORTER (DLR™) ASSAY SYSTEM - 17 - 1. 蛋白質含量檢測 - 17 - 2. Dual-Luciferase® Reporter測定 - 17 - 第五節 統計分析 - 17 - 肆、 結果 - 19 - 第一節 過量鉀處理對於鉈在植體累積之影響 - 19 - 1. 過量不同種鉀化合物與鉈競爭吸收試驗 - 19 - 2. 過量不同濃度鉀與鉈競爭吸收試驗 - 19 - 3. 過量鉀與鉈競爭吸收試驗 - 20 - 第二節 利用RNA定序分析AOX-OE和WT在鉈處理下之轉錄體 - 21 - 1. Illumina定序結果 - 21 - 2. AOX-OE和WT在鉈逆境下DEGs數量及基因表現趨勢分群 - 21 - 3. OE.C_WT.C之GO和KEGG pathway - 22 - 4. OE.Tl_WT.Tl之基因功能註解與分析 - 22 - 5. OE.Tl_OE.C之基因功能註解與分析 - 23 - 6. WT.Tl_WT.C之基因功能註解與分析 - 24 - 7. 電子傳遞鏈相關基因之基因表現情形 - 24 - 8. 光合作用相關基因之基因表現情形 - 25 - 9. 泛素化作用相關基因之基因表現情形 - 25 - 10. 抗氧化酵素相關基因之基因表現情形 - 25 - 11. 穀胱甘肽轉移酶相關基因之基因表現情形 - 25 - 12. 高親和鉀離子轉運蛋白相關基因之基因表現情形 - 25 - 13. GA和ABA生合成與代謝相關基因之基因表現情形 - 26 - 第三節 鉈處理下GA和ABA活性變化 - 26 - 第四節 WT與OE鉈含量分析 - 26 - 伍、 討論 - 27 - 第一節 過量鉀處理能顯著抑制鉈在植體內的累積 - 27 - 1. 過量不同種鉀化合物與鉈競爭吸收試驗 - 27 - 2. 過量之KCl與鉈競爭吸收試驗 - 27 - 第二節 鉈處理下AOX-OE和WT之差異 - 28 - 1. 鉈處理下電子傳遞鏈的差異表現基因 - 28 - 2. 鉈所造成的損害指標 - 28 - 3. 鉈處理下水稻之抗氧化機制 - 29 - 4. 鉈處理下之高親和性鉀轉運蛋白表現差異 - 29 - 5. 鉈逆境下植物荷爾蒙的調控 - 29 - 陸、 結論 - 30 - 柒、 參考文獻 - 55 - | |
| dc.language.iso | zh-TW | |
| dc.subject | 累積 | zh_TW |
| dc.subject | 鉈 | zh_TW |
| dc.subject | 水稻 | zh_TW |
| dc.subject | 交替氧化酶 | zh_TW |
| dc.subject | 轉錄體分析 | zh_TW |
| dc.subject | 鉀 | zh_TW |
| dc.subject | 離子吸收 | zh_TW |
| dc.subject | thallium | en |
| dc.subject | accumulation | en |
| dc.subject | ion uptake | en |
| dc.subject | potassium | en |
| dc.subject | transcriptomic analysis | en |
| dc.subject | alternative oxidase | en |
| dc.subject | Oryza sativa L. | en |
| dc.title | 水稻鉈逆境下鉀離子競爭效應與轉錄體分析之研究 | zh_TW |
| dc.title | Effect of Potassium Competition on Thallium Accumulation and Transcriptomic Analysis of Rice under Thallium Stress | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃文理(Wen-Lii Huang),張孟基(Men-Chi Chang),林雅芬(Ya-Fen Lin),葉顓銘(Chuan-Ming Yeh) | |
| dc.subject.keyword | 鉈,水稻,交替氧化酶,轉錄體分析,鉀,離子吸收,累積, | zh_TW |
| dc.subject.keyword | thallium,Oryza sativa L.,alternative oxidase,transcriptomic analysis,potassium,ion uptake,accumulation, | en |
| dc.relation.page | 63 | |
| dc.identifier.doi | 10.6342/NTU202100491 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-02-08 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0402202102301800.pdf 未授權公開取用 | 12.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
