Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16341
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor廖中明
dc.contributor.authorTang-Luen Huangen
dc.contributor.author黃堂倫zh_TW
dc.date.accessioned2021-06-07T18:10:33Z-
dc.date.copyright2012-07-16
dc.date.issued2012
dc.date.submitted2012-07-06
dc.identifier.citationAdams B, Boots M. 2010. How important is vertical transmission in mosquitoes for the persistence of dengue ? Insights from a mathematical model. Epidemics 2:1–10.
Anderson RM, May RM. 1991. Infectious Diseases of Human: Dynamics and Control. United Kingdom: Oxford University Press.
Ashburn PM, Craig CF. 1907. Experimental investigations regarding the etiology of dengue fever. Journal of Infectious Diseases 4:440–475.
Bancroft TL. 1906. On the aetiology of dengue fever. Australian Medical Gazette 25:17–18.
Barbazan P, Guiserix M, Boonyuan W, Tuntaprasart W, Pontier D, Gonzalez JP. 2010. Modelling the effect of temperature on transmission of dengue. Medical and Veterinary Entomology 24:66–73.
Barclay E. 2008. Is climate change affecting dengue in the Americas? Lancet 371:973–974.
Barrea R, Amador M, MacKay AJ. 2011. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico. PLoS Neglected Tropical Diseases 5: e1378.
Bartley LM, Donnelly CA, Garnett GP. 2002. The seasonal pattern of dengue in endemic areas: Mathematical models of mechanisms. Transactions of the Royal Society of Tropical Medicine and Hygiene 96:387–397.
Bi P, Zhang Y, Parton KA. 2007. Weather variables and Japanese encephalitis in metropolitan area of Jinan City, China. Journal of Infection 55 :551–556.
Bjerknes J. 1969. Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review 97:163–172.
Black WC, Bennett KE, Gorrochotegui-Escalante N, Barillas-Mury CV, Fernandez-Salas I, Munoz MD, Farfan-Ale JA, Olson KE, Beaty BJ. 2002. Flavivirus susceptibility in Aedes aegypti. Archives of Medical Research 33:379–388.
Bosio CF, Beaty BJ, Black WC. 1998. Quantitative genetics of vector competence for dengue-2 virus in Aedes aegypti. American Journal of Tropical Medicine and Hygiene 59: 965–970.
Braks MAH, Honorio NA, Lourenco-De-Oliveira R, Juliano SA, Lounibos LP. 2003. Convergent habitat segregation of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in southeastern Brazil and Florida. Journal of Medical Entomology 40:785–794.
Burattini MN, Chen M, Chow A, Coutinho FAB, Goh KT, Lopez LF, Ma S, Massad E. 2008. Modelling the control strategies against dengue in Singapore. Epidemiology and Infection 136:309–319.
Calisher CH, Karabatsos N, Dalrymple JM, Shope R, Porterfield JS, Westaway EG, Brandt WE. 1989. Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. Journal of General Virology 70:37–43.
Cameron A, Trivedi P. 1998. Regression Analysis of Count Data. United Kingdom: Cambridge University Press.
Cazelles B, Chavez M, McMichael AJ, Hales S. 2005. Nonstationary influence of El Niño on the synchronous dengue epidemics in Thailand. PLoS Medicine 2:313–318.
Centers for Disease Control, Department of Health, R.O.C. (Taiwan). 2010. Residents Urged to Take Measures to Ward off Threats of Infectious Disease as Typhoon Fanapi Passes through Taiwan. Available at: http://61.57.41.153/.
Centers for Disease Control, Department of Health, R.O.C. (Taiwan). 2011. Guidelines for Dengue Control. Available at: http://www2.cdc.gov.tw/public/Data/16159141271.pdf
Centers for Disease Control, Department of Health, R.O.C. (Taiwan). 2009. Combat Manual for Dengue Fever/Chikungunya Fever. (In Chinese). Available at: http://www2.cdc.gov.tw/public/Data/141315173071.pdf.
Chang LH, Hsu EL, Teng HJ, Ho CM. 2007. Differential survival of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) larvae exposed to low temperature in Taiwan. Journal of Medical Entomology 44:205–210.
Chen CS, Huang CC. 1988. Ecological studies on Aedes aegypti and Ae. albopictus I. Comparison of development threshold and life tables. Yushania 5:1–15.
Chen GTJ, Jiang Z, Wu MC. 2003. Spring heavy rain events in Taiwan during warm episode and the associated large-scale conditions. Monthly Weather Review 131:1173–1188.
Chen SC, Liao CM, Chio CP, Chou HH, You SH, Cheng YH. 2010. Lagged temperature effect with mosquito transmission potential explains dengue variability in southern Taiwan: Insights from a statistical analysis. Science of the Total Environment 408:4069–4075.
Chowell G, Cazelles B, Broutin H, Munayco CV. 2011. The influence of geographic and climate factors on the timing of dengue epidemics in Peru, 1994–2008. BMC Infectious Diseases 1:164–178.
Cleland JB, Bradley B, McDonald W. 1919. Further experiments in the etiology of dengue fever. Journal of Hygiene 18:217–254.
Codeco CT, Luz PM, Coelho F, Galvani AP, Struchiner C. 2007. Vaccinating in disease-free regions: A vaccine model with application to yellow fever. Journal of the Royal Society Interface 4:1119–1125.
Coelho GE, Burattini MN, Teixeira MD, Coutinho FAB, Massad E. 2008. Dynamics of the 2006/2007 dengue outbreak in Brazil. Memorias Do Instituto Oswaldo Cruz 103:535–539.
Corwin AL, Larasati RP, Bangs MJ. 2001. Epidemic dengue transmission in southern Sumatra, Indonesia. Transcations of the Royal Society of Tropical Medicine and Hygiene 95:257–265.
Cottrell G, Kouwaye B, Pierrat C, le Port A, Bouraima A, Fonton N, Hounkonnou MN, Massougbodji A, Corbel V, Garcia A. 2012. Modeling the influence of local environmental factors on malaria transmission in Benin and its implications for cohort study. PLoS One 7:e28812.
Dalrymple NA, Mackow ER. 2012. Endothelial cells elicit immune-enhancing responses to dengue virus infection. Journal of Virology 86:6408–6415.
Descloux E, Mangeas M, Menkes CE, Lengaigne M, Leroy A, Tehei T, Guillaumot L, Pfannstiel A, Grangeon JP, Degallier N, de Lamballerie X. 2012. Climate-based models for understanding and forecasting dengue epidemics. PLoS Neglected Tropical Diseases 6:e1470.
Diamond. 2003. Evasion of innate and adaptive immunity by flaviviruses. Immunology and Cell Biology 81 :196–206.
Dumont Y, Chiroleu F, Domerg C. 2008. On a temporal model for the Chikungunya disease: Modeling, theory, and numerics. Mathematical Biosciences 213:80–91.
Dye C. 1992. The analysis of parasite transmission by blood-sucking insects. Annual Review of Entomology 37:1–20.
Earnest A, Tan SB, Wilder-Smith A. 2012. Meteorological factors and El Niño Southern Oscillation are independently associated with dengue infections. Epidemiology and Infection 140:1244–1251.
Erlanger TE, Keiser J, Utainger J. 2008. Effect of dengue vector control interventions on entomological parameters in developing countries: A systematic review and meta-analysis. Medical and Veterinary Entomology. 22:203–221.
Ferguson NM, Donnelly CA, Anderson RM. 1999. Transmission dynamics and epidemiology of dengue: Insights from age-stratified sero-prevalence surveys. Philosophical Transactions of the Royal Sociey of London Series B-Biological Sciences 354:757–768.
Flanders WD, Kleinbaum DG. 1995. Basic models for disease occurrence in epidemiology. International Journal of Epidemiology. 24:1–7.
Focks DA, Barrea R. 2007. Dengue transmission dynamics: Assessment and implications for control. Scientific Working Group, Report on Dengue, 1–5 October 2006, Geneva, Switzerland, Copyright World Health Organization on behalf of the Special Programme for Research and Training in Tropical Disease.
Focks DA, Brenner RJ, Hayes J, Daniels E. 2000. Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts. American Journal of Tropical Medicine and Hygiene 62:11–18.
Focks DA, Daniels E, Haile DG, Keesling JE. 1995. A simulation model of the epidemiology of urban dengue fever: Literature analysis, model development, preliminary validation, and samples of simulation results. American Journal of Tropical Medicine and Hygiene 53:489–506.
Focks DA, Haile DG, Daniels E, Mount GA. 1993. Dynamic life table model of Aedes aegypti (Diptera: Culicidae): Analysis of the literature and model development. Journal of Medical Entomology 30:1003–1017.
Gagnon AS, Bush ABG, Smoyer-Tomic KE. 2001. Dengue epidemics and the El Niño Southern Oscillation. Climate Research 19:35–43.
Gibbons RV, Vaughn DW. 2002. Dengue: An escalating problem. British Medical Journal 324:1563–1566.
Githeko AK, Lindsay SW, Confalonieri UE, Patz JA. 2000. Climate change and vector-borne diseases: A regional analysis. Bulletin of the World Health Organization 78:1136–1147.
Glantz MH. 1984. Floods, fires, and famine: Is El Niño to blame? Oceanus 27:14–19.
Gubler DJ, Reiter P, Ebi KL, Yap W, Nasci R, Patz JA. 2001. Climate variability and change in the United States: Potential impacts on vector- and rodent-borne diseases. Environmental Health Perspectives 109:223–233.
Gubler DJ. 2002. The global emergence/resurgence of arboviral diseases as public health problems. Archives of Medical Reserch 33:330–342.
Gullberg J. 1997. Mathematics: From the Birth of Numbers. New York: WW Norton & Company.
Guzman MG, Halstead SB, Artsob H, Buchy P, Jerermy F, Gubler DJ, Hunsperger E, Kroeger A, Margolis HS, Martinez E, Nathan MB, Pelegrino JL, Cameron S, Yoksan S, Peeling RW. 2010. Dengue: A continuing global threat. Nature Reviews Microbiology 8:S7–16.
Guzman MG, Kouri G. 2002. Dengue: An update. Lancet Infectious Diseases 2:33–42.
Guzman MG, Kouri G. 2003. Dengue and dengue hemorrhagic fever in the Americas: Lessons and challenges. Journal of Clinical Virology 27:1–13.
Haight FA. 1967. Handbook of the Poisson Distribution. New York: John Wiley & Sons Lid.
Hales S, Weinstein P, Souares Y, Woodward A. 1999. El Niño and the dynamics of vectorborne disease transmission. Environmental Health Perspectives 107:99–102.
Halstead SB, Orourke EJ. 1977. Antibody-enhanced dengue virus-infection in primate leukocytes. Nature 265:739–741.
Halstead SB. 2007. Dengue. Lancet 370:1644–1652.
Harn MR. 1989. Clinical study on dengue fever during 1987–1988 epidemic at Kaohsiung City, southern Taiwan. Kaohsiung Journal of Medical Sciences 5:58 –65. (In Chinese).
Hashizume M, Chaves LF, Minakawa N. 2012. Indian Ocean Dipole drives malaria resurgence in east African highlands. Scientific Reports 2:269.
Heukelbach J, de Oliveira FAS, Kerr-Pontes LRS, Feldmeier H. 2001. Risk factors associated with an outbreak of dengue fever in a favela in Fortaleza, north-east Brazil. Tropical Medicine and International Health 6:635–642.
Ho LJ, Wang JJ, Shaio MF, Kao CL, Chang DM, Han SW, Lai JH. 2001. Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. Journal of Immunology 166:1499–1506.
Hopp MJ, Foley JA. 2001. Global-scale relationships between climate and the dengue fever vector, Aedes aegypti. Cliamte Change 48:441–463.
Hsieh YH, Chen CWS. 2009. Turning points, reproduction number, and impact of climatological events for multi-wave dengue outbreaks. Tropical Medicine and International Health 14:628–638.
Hsieh YH, Ma S. 2009. Intervention measures, turning point, and reproduction number for dengue, Singapore, 2005. American Journal of Tropical Medicine and Hygiene 80:66–71.
Huang JJ, Chen CP, Ai CR. 2009. Simulation and evaluating epidemic intervention policies with system dynamics: A case study of dengue fever in Tainan. Taiwan Journal of Public Health 28:541–551. (In Chinese).
Hwang JS. 1991. Ecology of Aedes mosquitoes and their relationship with dengue epidemic in Taiwan area. Chinese Journal of Entomology, Speical Pubciation 6:105–107. (In Chinese).
Jiang Z, Chen GTJ, Wu MC. 2003. Large-scale circulation patterns associated with heavy spring rain events over Taiwan in strong and non-ENSO years. Monthly Weather Review 131:1769–1782.
Johansson MA, Dominici F, Glass GE. 2009. Local and global effects of climate on dengue transmission in Puerto Rico. PLoS Neglected Tropical Diseases 3:e382.
Johnston LJ, Halliday GM, King NJC. 2000. Langerhans cells migrate to local lymph nodes following cutaneous infection with an arbovirus. Journal of Investigative Dermatology 114:560–568.
Kanchanapairoj K, Don MN, Thammapalo S. 2000. Climatic factors influencing the incidence of dengue haemorrhagic fever in southern Thailand. Songklanagarind Medical Journal 18:77–83.
Keeling MJ, Rohani P. 2008. Modeling Infectious Diseases: In Humans and Animals. New Jersey: Princeton University Press.
King CC, Wu YC, Chao DY, Lin TH, Chow L, Wang HT, Ku CC, Kao CL, Chien LJ, Chang HJ, Huang JH, Twu SJ, Huang KP, Lam SK, Gubler DJ. 2000. Major epidemics of dengue in Taiwan in 1981–2000: Related to intensive virus activities in Asia. Dengue Bulletin 24:1–10.
Ko YC. 1989. Epidemiology of dengue fever in Taiwan. Kaohsiung Journal of Medical Sciences 5:1–11. (In Chinese).
Kovats RS, Bouma MJ, Hajat S, Worrall E, Haines A. 2003. El Niño and health. Lancet 362:1481–1489.
Kovats RS, Edwards SJ, Hajat S, Armstrong BG, Ebi KL, Menne B. 2004. The effect of temperature on food poisoning: A time-series analysis of salmonellosis in ten European countries. Epidemiology and Infection 132:443–453.
Kow CY, Koon LL, Pang FY. 2001. Detection of dengue viruses in field caught male Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Singapore by type-specific. Journal of Medical Entomology 38:475–479.
Kramer LD, Ebel GD. 2003. Dynamics of flavivirus infection in mosquitoes. Flaviviruses: Pathogenesis and Immunity 60: 187–232.
Kyle JL, Harris E. 2008. Global spread and persistence of dengue. Annual Review of Microbiology 26:14–23.
Lai LW. 2011. Influence of environmental conditions on asynchronous outbreaks of dengue disease and increasing vector population in Kaohsiung, Taiwan. International Journal of Environmental Health Reserch 21:133–146.
Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW. 2011. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America 108:7460–7465.
Lansdowne C, Hacker CS. 1975. The effect of fluctuating temperature and humidity on the adult life table characteristics of five strains of Aedes aegypti. Journal of Medical Entomology 11:723–733.
Legros M, Lloyd AL, Huang Yunxin, Gould F. 2009. Density-dependent intraspecific competition in the larval stage of Aedes aegypti (Diptera: Culicidae): Revisiting the current paradigm. Journal of Medical Entomology 46:409–419.
Lester RR, Green LC, Linkov I. 2007. Site-specific applications of probabilistic health risk assessment: Review of the literature since 2000. Risk Analysis 27:635 –6573.
Liao CM, Hsieh NH, Huang TL, Cheng YH, Chio CP, Chen SC, Ling MP. 2012. Assessing trends and predictors of tuberculosis in Taiwan. BMC Public Health 12:29.
Libraty DH, Pichyangkul S, Ajariyakhajorn C, Endy TP, Ennis FA. 2001. Human dendritic cells are activated by dengue virus infection: Enhancement by gamma interferon and implications for disease pathogenesis. Journal of Virology 75:3501–3508.
Lin CC, Huang YH, Shu PY, Wu HS, Lin YS. 2010. Characteristic of dengue disease in Taiwan: 2002 – 2007. American Journal of Tropical Medicine and Hygiene 82:731–739.
Liu CM. 2010. Decipher Taiwan’s Environmental Change. Heliopolis Culture Group. (In Chinese).
Lu MM. 2000. Taiwan abnormal climate and ENSO. Atmospheric Sciences 28:91–114. (In Chinses).
Luo JJ, Zhang RC, Behera SK, Masumoto Y, Jin FF, Lukas R, Yamagata T. 2010. Interaction between El Niño and extreme Indian Ocean Dipole. Journal of Climte 23:726–742.
Luz PM, Codeco CT, Massad E, Struchiner CJ. 2003. Uncertainties regarding dengue modeling in Rio de Janeiro, Brazil. Memorias Do Instituto Oswaldo Cruz 98:871–878.
MacDonald, G. 1957. The Epidemiology and Control of Malaria. London: Oxford University Press.
Mann ME, Bradley RS, Hughes MK. 1998. Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787.
Mann ME, Bradley RS, Hughes MK. 1999. Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations. Geophysical Research Letters 26:759–762.
Marovich M, Grouard-Vogel, Louder M, Eller M, Sun W, Wu SJ, Putvatana R, Murphy G, Tassaneetrithep B, Burgess T, Birx D, Hayes C, Schiesinger-Frankel S, Mascoia J. 20001. Human dendritic cells as targets of dengue virus infection. Journal of Investigative Dermatology Symposium Proceedings 6:219–224.
Martens WJM, Jetten TH, Focks DA. 1997. Sensitivity of malaria, schistosomiasis and dengue to global warming. Climatic Change 35:145–156.
Massad E, Coutinho FAB, Burattini MN, Lopez LF. 2001. The risk of yellow fever in a dengue-infested area. Transactions of the Royal Society of Tropical Medicine and Hygiene 95:370–374.
Massad E, Coutinho FAB. 2011. The cost of dengue control. Lancet 377:1630–1631.
McCarthy JJ, Canaiani OF, Leary NA, Dokken DJ, White KS. 2001. Climate change 2001: Impacts, adapation and vulnerability, Intergovermental Panel on Climate Change. United Kingdom: Cambridge University Press.
Medeiros LCD, Castilho CAR, Braga C, de Souza WV, Regis L, Monteiro AMV. 2011. Modeling the dynamic transmission of dengue fever: Investigating disease persistence. PLoS Neglected Tropical Diseases 5:e942.
Mukhopadhyay S, Kuhn RJ, Rossmann MG. 2005. A structural perspective of the flavivirus life cycle. Nature Reviews Microbiology 3:13–22.
National Research Council (NRC). 1983. Risk Assessment in the Fderal Government: Managing the Process. Washington District of Columbia: NAS press.
Newton EAC, Reiter P. 1992. A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ULV) insecticide applications on dengue epidemics. American Journal of Tropical Medicine and Hygiene 47:709–720.
Noisakran S, Perng GC. 2007. Alternate hypothesis on the pathogenesis of dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS) in dengue virus infection. The Journal of Experimental Biology and Medicine 233:401–408.
Norris DO, Carr JA. 2006. Endocrine Disruption: Biological Bases for Health Effects in Wildlife and Humans. New York: Oxford University Press.
Paker AH. 1952. The effect of a difference in temperature and humidity on certain reactions of female Aedes aegypti. Bulletin of Entomological Resaerch 43:221–229.
Pinho STR, Ferreira CP, Esteva L, Barreto FR, Silva VCME, Teixeira MGL. 2010. Modelling the dynamics of dengue real epidemics. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences 368:5679–93.
Pongsumpun P, Tang IM. 2003. Transmission of dengue hemorrhagic fever in an age structured population. Mathematical and Computer Modeling 37:949–961.
Promprou S, Jaroensutasinee M, Jaroensutasinee K. 2005. Impact of climatic factors on dengue haemorrhagic fever incidence in southern Thailand. Walailak Journal of Science and Technology 2:59–70.
Reed W, Carroll J, Agramonte A. 2001. Experimental yellow fever. Military Medicine 166:S55–60.
Rigau-Perez JG, Clark GG, Gubler LJ, Reiter P, Sanders RJ, Vorndam AV. 1998. Dengue and dengue haemorrhagic fever. Lancet 352:971–977.
Rogers DJ, Randolph SE. 2006. Climate change and vector-borne diseases. Advances in Parasitology 62:345–381.
Rohani A, Wong YC, Zamre I, Lee HL, Zurainee MN. 2009. The effect of extrinsic incubation temperature on development of dengue serotype 2 and 4 viruses in Aedes aegypti (L.). Southeast Asian Journal of Tropical Medicine and Public Health 40:942–950.
Rowley WA, Graham CL. 1968. The effect of temperature and relative humidity on the flight performance of female Aedes aegypti. Journal of Insect Physiology 14:1251–1257.
Rush AB. 1789. An account of the bilious remitting fever, as it appeared in Philadelphia in the summer and autumn of the year 1780 – 1789. Medical Inquires and Observations Philadelphia 1:104–117.
Saji NH, Goswami BN, Vinayachandran PN, Yamagata T. 1999. A dipole mode in the tropical Indian Ocean. Nature 401:360–363.
Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Edman JD. 2000. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: Blood feeding frequency. Journal of Medical Entomology 37:89–101.
Scroxton N, Bonham SG, Rickaby REM, Lawrence SHF, Hermoso M, Haywood AM. 2011. Persistent El Niño Oscillation variation during the Pliocene epoch. Paleoceanography 26:PA2215.
Sharpe PJH, DeMichele DW. 1977. Reaction kinectics of poikilotherm development. Journal of Theoretical Biology 64:649–670.
Siler JF, Hall MW, Hitchens AP. 1926. Dengue: Its history, epidemiology, mechanism of transmission, etiology, clinical manifestations, immunity and prevention. Philippine Journal of Science 29:1–304.
Simmons JS, St John JH, Reynolds FHK. 1931. Experimental studies of dengue. Philippine Journal of Science 44:1–247.
Tapaswi PK, Ghosh AK, Mukhopadhyay BB. 1995. Transmission of Japanese encephalitis in a 3-population model. Ecological Modelling 83:295–309.
Thai KTD, Binh TQ, Giao PT, Phuong HL, Hung LQ, Van Nam N, Nga TT, Nagelkerke N, de Vries PJ. 2005. Seroprevalence of dengue antibodies, annual incidence and risk factors among children in southern Vietnam. Tropical Medicine and International Health 10:379–386.
Thai KTD, Cazelles B,Nam VN, Long TV, Boni MF, Farrar J, Simmons CP, van Doorn HR, de Vries PJ. 2010. Dengue dynamics in Binh Thuan Province, southern Vietnam: Periodicity, synchronicity and climate variability. PLoS Neglected Tropical Diseases 4:e747.
Thu HM, Aye KM, Thein S. 1998. The effect of temperature and humidity on dengue virus propagation in Aedes aegypti mosquitos. Southeast Asian Journal of Tropical Medicine and Public Health 29:280–284.
Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E. 1999. Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398:694–697.
Tipayamongkholgul M, Fang CT, Klinchan S, Liu CM, King CC. 2009. Effects of the El Niño-Southern Oscillation on dengue epidemics in Thailand, 1995 – 2005. BMC Public Health 9:422.
Tsuda Y, Takagi M, Wang S, Wang Z, Tang L. 2001. Movement of Aedes aegypti (Diptera: Culicidae) released in a small isolated village on Hainan Island, China. Journal of Medical Entomology 38:93–98.
Tun-Lin W, Burkot TR, Kay BH. 2000. Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Medical and Veterinary Entomology 14:31–37.
United Sates Environmental Protection Agency (USEPA) 1998. Guidelines for Ecological Risk Assessment. United States Environmental Protection Agency. Washington District of Columbia. EPA–630–R–95–002F.
United States Environmental Protection Agency (USEPA). 1989. Guidance Manual for Assessing Human Health Risks from Chemically Contaminated, Fish and Shellfish. United States Environmental Protection Agency. Washington District of Columbia.
Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, Endy TP, Raengsakulrach B, Rothman AL, Ennis FA, Nisalak A. 2000. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. Journal of Infectious Disease 181:2–9.
von der Heydt AS, Dijkstra HA. 2011. Palaeoclimate El Niño in the Pliocene. Nature Geoscience 4:502–503.
Wang B, Wu R, Fu X. 2000. Pacific-east Asian teleconnection: How dose ENSO affect east Asian climate. Jouranl of Climate 13:1517–1536.
Wang CH, Chen WH. 1997. Effect of warming climate on the epidemic of dengue fever in Taiwan. Chinese Journal of Public Health 16:455–465. (In Chinese).
Watts DM, Burke DS, Harrison BA, Whitmier RE, Nisalak A. 1987. Effect of temperature on the vector efficiency of Aedes aegypti for dengue-2 virus. American Journal of Tropical Medicine and Hygiene 36:143–152.
Woodruff RE, Guest CS, Garner MG, Becker N, Lindesay J, Carvan T, Ebi K. 2002. Predicting Ross River virus epidemics from regional weather data. Epidemiology 13:384–393.
World Health Organization (WHO). 1995. Prevention and Control of Dengue and Dengue Haemorrhagic Fever. Available at: http://203.90.70.117/PDS_DOCS/B0109.pdf.
World Health Organization (WHO). 1999. Guidelines for Treatment of Dengue Fever/Dengue Haemorrhagic Fever in Small Hospitals. Available at: http://www.searo.who.int/linkfiles/dengue_guideline-dengue.pdf.
Wu PC, Guo HR, Lung SC, Lin CY, Su HJ. 2007. Weather as an effective predictor for occurrence of dengue fever in Taiwan. Acta Tropica 103:50–57.
Wu SJL, Grouard-Vogel G, Sun W, Mascola JR, Brachtel E, Putvatana R, Louder MK, Figueira L, Marovich MA, Wong HK, Blauvelt A, Murphy GS, Robb ML, Innes BL, Birx DL, Hayes CG, Frankel SS. 2000. Human skin Langerhans cells are targets of dengue virus infection. Nature Medicine 6:816–820.
Wu YC. 1986. Epidemic dengue 2 on Liouchyou Shiang, Pingtung County in 1981. Chinese Journal of Microbiology and Immunology 19:203–211. (In Chinese).
Xiao SY, Zhang H, Guzman H, Tesh RB. 2001. Experimental yellow fever virus infection in the golden hamster (Mesociricetus auratus). II. Pathology. Journal of Infection Diseases 183:1437–1444.
Yanagimoto T, Yamamoto E. 1979. Estimation of safe doses: Critical review of the hockey stick regression method. Environmental Health Perspectives 32:193–199.
Yang HM, Macoris MLG, Galvani KC, Andrighetti MTM, Wanderley DMV. 2009. Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiology and Infection 137:1188–1202.
Yang YS. 2008. The Risk and Related Factors of Dengue Outbreak. Master Thesis. National Pingtung University of Science and Technology. (In Chinese).
Zhang CD. 1996. Atmospheric intraseasonal variability at the surface in the tropical western Pacific Ocean. Journal of the Atmospheric Sciences 53:739–758.
Zhang Y, Bi P, Hiller J, Sun YW, Ryan P. 2007. Climate variations and bacillary dysentery in northern and southern cities of China. Journal of Infection 55:194–200.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16341-
dc.description.abstract登革熱 (Dengue fever)為近年主要流行之傳染性病媒蚊疾病。而其登革熱病毒之傳染途徑最主要經由埃及斑蚊 (Aedes aegypti)傳輸至人體,且氣象條件為影響埃及斑蚊族群豐量及登革熱病毒傳輸之顯著因子。然而位於台灣南部之高雄為登革熱發生率最嚴重之地區。因此,本研究主要目的為特性化2005至2010年高雄地區登革熱感染風險,並評估氣象因子變動下之登革熱疾病趨勢。本研究建立宿主-病媒蚊 (Host – vector)模式以描述人類與蚊蟲族群之登革熱傳輸動態。推導出之模式參數可進一步量化不同溫度下之基本再生數 (Basic reproduction number, R0),藉此發展以R0為基礎之機率風險模式 (Probabilistic risk model)以推估登革熱增率風險。本研究亦發展以統計指標為基礎之卜瓦松迴歸模式 (Poisson regression model)評估影響登革熱每月發生率之潛在因子,最後並以曲棍球桿模式 (Hockey stick model)推估潛在溫度閾值。本研究發現遲滯2個月溫度之算術平均 (斯皮曼相關係數ρ = 0.75)與變異數 (ρ =–0.73)、相對溼度之算術平均 (ρ = 0.58)及降雨量之算術平均 (ρ = 0.65)與變異數 (ρ = 0.63)等氣象統計指標與登革熱之相關性最為顯著。而針對聖嬰現象指標則以遲滯1個月Nino3 (ρ = 0.35)對於登革熱之趨勢最為相關。本研究亦指出高雄於均溫情境 (25.52 ± 3.63oC)之R0為3.47 (95%信賴區間:1.60 – 7.51),顯示其登革熱疫情有爆發之趨勢。針對風險推估,本研究指出在50%之超越風險 (ER = 0.5)下,均溫之登革熱增率為0.35 (95%信賴區間:0.29 – 0.42) wk-1。最後本研究推估登革熱遲滯2個月之潛在均溫閾值為25.92oC (95% 信賴區間:24.78 – 27.07oC),其結果亦可作為高雄評估登革熱疫情之預警指標。本研究建立之宿主-病媒蚊模式將有助於增進對登革熱疾病傳輸之認知,並以統計迴歸模式提供評估南台灣登革熱顯著因子之方法。因此本研究將有利於進一步應用於未來登革熱疾病之控制策略評估成效。zh_TW
dc.description.abstractIn recent years, dengue fever (DF) is a major vector-borne disease. DF virus in humans are transmitted predominantly by the mosquito Aedes aegypti. The abundance and the transmission potential of A. aegypti are influenced by climate variables. Kaohsiung situated at south Taiwan, was a major dengue epidemic region. The purpose of this study was to characterize the risk of dengue infection based on a probabilistic transmission dynamic model and to examine the effects of climate variations on dengue patterns in Kaohsiung during 2005 – 2010. This study developed a host-vector population dynamic model to describe the disease transmission dynamics between the human and mosquito. Derived model parameters can further quantify the temperature-specific basic reproduction number (R0) for deriving a R0-based probabilistic risk model to estimate the risk of dengue increasing rate. This study also employed Poisson regression models based on statistic indicators to examine the potential predictors based on the monthly DF incidence rate. A hockey stick model was used to detect the potential temperature threshold. The results indicated that lagged 2 month mean (ρ = 0.75) and variance (ρ = –0.73) of temperature, mean (ρ = 0.58) of relative humidity, and mean (ρ = 0.65) and variance (ρ = 0.63) of rainfall were the significant predictors of dengue incidence rate in Kaohsiung. Sea surface temperature anomaly (SSTA) Nino3 with 1-month lag had better correlation with dengue incidence rate (ρ=0.35). Under the mean temperature regime (25.52 ± 3.63oC), R0 estimate was 3.47 (95% CI: 1.60 – 7.51), implicating that there had an epidemic outbreak of dengue fever in Kaohsiung. The 50% exceedance risk of dengue case increasing rate can exceed 0.35 (95% CI: 0.29 – 0.42) wk-1 in the mean temperature scenario. This study showed that potential threshold for mean temperature with 2-month lag was 25.92 (95%CI: 24.78 – 27.07) oC. The detected lagged temperature threshold can be an early warning indicator to assess dengue epidemic in Kaohsiung. The host-vector model established in this study could enhance the understanding of the DF population dynamics in the tropical Taiwan. This study provided a method to determine the dominant factors in the DF trends in Kaohsiung. The research schemes could be further applied in the future to help quantify the control measure effects to contain dengue virus infection.en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:10:33Z (GMT). No. of bitstreams: 1
ntu-101-R99622038-1.pdf: 880607 bytes, checksum: 3d8dda17c0c7aac9d7bb22110ee864c8 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要 I
英文摘要 III
目錄 V
表目錄 VIII
圖目錄 IX
符號說明 XI
壹、前言 1
貳、機與目的 3
2.1. 研究動機 3
2.2. 研究目的 4
參、文獻回顧 5
3.1. 登革熱 5
3.1.1. 致病原 5
3.1.2. 病媒蚊分佈 6
3.1.3. 自然史 9
3.2. 區域性氣象因子 12
3.3. 聖嬰現象與登革熱之關係 13
3.4. 數理模式 15
3.4.1. 病媒蚊傳輸動態模式 15
3.4.2. 卜瓦松迴歸模式 18
3.4.3. 曲棍球桿模式 20
3.5. 風險評估 22
肆、材料與方法 24
4.1. 研究架構 24
4.2. 流行病學資料 26
4.2.1. 人體實驗數據 26
4.2.2. 發生率 28
4.2.3. 病媒蚊資料 30
4.3. 氣象監測資料 32
4.3.1. 地方性氣象資料 32
4.3.2. 聖嬰現象指標 34
4.4. 模式發展 36
4.4.1. 宿主-病媒蚊模式 36
4.4.2. 全球性迴歸模式 41
4.4.3. 機率風險模式 42
4.4.4. 溫度閾值模式 43
4.5. 不確定性及資料分析 44
伍、結果與討論 46
5.1. 登革熱與氣象因子之相關性 46
5.2. 登革熱傳輸動態 52
5.2.1. 基本再生數推估 52
5.2.2. 族群動態模擬 55
5.3. 全球性趨勢 61
5.4. 登革熱增率風險 67
5.5. 潛在溫度閾值 73
5.6. 控制策略應用 76
陸、結論 78
柒、未來研究建議 80
參考文獻 81
dc.language.isozh-TW
dc.subject埃及斑蚊zh_TW
dc.subject登革熱zh_TW
dc.subject聖嬰-南方震盪zh_TW
dc.subject卜瓦松迴歸模式zh_TW
dc.subject宿主-病媒蚊模式zh_TW
dc.subject機率風險評估zh_TW
dc.subjectEl Ninen
dc.subjectProbabilistic risk analysisen
dc.subjectHost-vector modelen
dc.subjectPoisson regression modelen
dc.subjectDengue feveren
dc.subjectAedes aegyptien
dc.title南台灣登革熱族群傳輸動態及感染風險評估zh_TW
dc.titlePopulation transmission dynamics of dengue fever and infection risk assessment in south Taiwanen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱嘉斌,蔡正偉,陳詩潔
dc.subject.keyword登革熱,埃及斑蚊,聖嬰-南方震盪,卜瓦松迴歸模式,宿主-病媒蚊模式,機率風險評估,zh_TW
dc.subject.keywordDengue fever,Aedes aegypti,El Nin,Poisson regression model,Host-vector model,Probabilistic risk analysis,en
dc.relation.page97
dc.rights.note未授權
dc.date.accepted2012-07-06
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
Appears in Collections:生物環境系統工程學系

Files in This Item:
File SizeFormat 
ntu-101-1.pdf
  Restricted Access
859.97 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved