請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16311完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄧哲明 | |
| dc.contributor.author | Ya-Chi Li | en |
| dc.contributor.author | 李雅琪 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:09:15Z | - |
| dc.date.copyright | 2012-09-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-12 | |
| dc.identifier.citation | Bayani J, Paderova J, Murphy J, Rosen B, Zielenska M, Squire JA (2008). Distinct patterns of structural and numerical chromosomal instability characterize sporadic ovarian cancer. Neoplasia 10: 1057-1065.
Bolanos-Garcia VM (2005). Aurora kinases. The International Journal of Biochemistry & Cell Biology 37: 1572-1577. Bortner CD, Cidlowski JA (1998). A necessary role for cell shrinkage in apoptosis. Biochemical Pharmacology 56: 1549–1559. Bouchier-Hayes L, Lartigue L, Newmeyer DD (2005). Mitochondria: pharmacological manipulation of cell death. The Journal of Clinical Investigation 115: 2640-2647. Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G (2004). Cell death by mitotic catastrophe a molecular definition. Oncogene 23: 2825-2837. Chner NB, Altschmied J, Jakob S, Saretzki G, Haendeler J (2010). Well-known signaling proteins exert new functions in the nucleus and mitochondria. Antioxidants & Redox Signaling. 13: 551–558. Chou TC (2010). Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Research 70: 440-446. Dhanasekaran DN, Reddy EP (2008). JNK signaling in apoptosis. Oncogene 27: 6245-6251. Draetta GF (1997). Cell cycle : Will the real Cdk-activating kinase please stand up. Current Biology 7: 50-52. Dumontet C, Jordan MA (2010). Microtubule-binding agents: a dynamic field of cancer therapeutics. Nature reviews. Drug Discovery 9: 790-803. Elmore S (2007). Apoptosis: a review of programmed cell death. Toxicologic Pathology 35: 495-516. Friis MB, Friborg CR, Schneider L, Nielsen MB, Lambert IH, Christensen ST, Hoffmann EK (2005). Cell shrinkage as a signal to apoptosis in NIH 3T3 fibroblasts. The Journal of Physiology 567: 427-443. Fuster JJ, Fernandez P, Gonzalez-Navarro H, Silvestre C, Nabah YN, Andres V (2010). Control of cell proliferation in atherosclerosis: insights from animal models and human studies. Cardiovascular Research 86: 254-264. Gao SP, Bromberg JF (2006). Touched and moved by STAT3. Science's Signaling 343: pe30. Germain D, Frank DA (2007). Targeting the cytoplasmic and nuclear functions of signal transducers and activators of transcription 3 for cancer therapy. Clinical Cancer Research 13: 5665-5669. Herr I (2001). Cellular stress response and apoptosis in cancer therapy. Blood 98: 2603-2614. Ito D, Matsumoto T (2010). Molecular mechanisms and function of the spindle checkpoint, a guardian of the chromosome stability. Biomedical and Life Sciences 676: 15-26. Jackson JR, Patrick DR, Dar MM, Huang PS (2007). Targeted anti-mitotic therapies: can we improve on tubulin agents? Nature reviews. Cancer 7: 107-117. Jinga N, Tweardya DJ (2005). Targeting Stat3 in cancer therapy. Anti-Cancer Drugs 16: 601–607. John PCL, Mews M, Moore R (2001). Cyclin/Cdk complexes their involvement in cell cycle progression and mitotic division. Protoplasma 216: 119-142. Johnson DG, Walker CL (1999). Cyclins and cell cycle checkpoints. Annual Review of Pharmacology and Toxicology. 39: 295-312. Jordan MA, Wilson L (2004). Microtubules as a target for anticancer drugs. Nature reviews. Cancer 4: 253-266. Lacey JV Jr, Greene MH, Buys SS, Reding D, Riley TL, Berg CD, Fagerstrom RM, Hartge P (2006). Ovarian cancer screening in women with a family history of breast or ovarian cancer. Obstetrics & Gynaecology 108: 1176-1184. Kavallaris M (2010). Microtubules and resistance to tubulin-binding agents. Nature reviews. Cancer 10: 194-204. Kavallaris M, Kuo DY-S, Burkhart CA, Regl DL, Norris MD, Haber M, Horwitz SB. (1997). Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific Kaye SB (2008). Reversal of drug resistance in ovarian cancer: where do we go from here? Journal of Clinical Oncology 26: 2616-2618. Kim JA, Lee J, Margolis RL, Fotedar R (2010). SP600125 suppresses Cdk1 and induces endoreplication directly from G2 phase, independent of JNK inhibition. Oncogene 29: 1702-1716. Kitagawa K, Hieter P (2001). Evolutionary conservation between budding yeast and human kinetochores. Nature reviews. Molecular Cell Biology 2: 678-687. Lavrik IN, Eils R, Fricker N, Pforr C, Krammer PH (2009). Understanding apoptosis by systems biology approaches. Molecular BioSystems 5: 1105-1111. Lavrik I, Golks A, Krammer PH (2005a). Death receptor signaling. Journal of Cell Science 118: 265-267. Lavrik IN (2010). Systems biology of apoptosis signaling networks. Current opinion in Biotechnology 21: 551-555. Lavrik IN, Golks A, Krammer PH (2005b). Caspases: pharmacological manipulation of cell death. The Journal of Clinical Investigation 115: 2665-2672. Lew DJ, Burke DJ (2003). The spindle assembly and spindle position checkpoints. Annual review of Genetics 37: 251-282. Lin A, Dibling B (2002). The true face of JNK activation in apoptosis. Aging Cell 1: 112–116. Liu J, Matulonis UA (2010). New Advances in Ovarian Cancer. Oncology 24: 1-11. Lo CW, Chen MW, Hsiao M, Wang S, Chen CA, Hsiao SM, Chang JS, Lai TC, Stefan RJ, Kuo ML, Wei LH (2011). IL-6 trans-signaling in formation and progression of malignant ascites in ovarian cancer. Cancer Research 71: 424-434. Lowery DM, Lim D, Yaffe MB (2005). Structure and function of Polo-like kinases. Oncogene 24: 248-259. Macurek L, Lindqvist A, Medema RH (2009). Aurora-A and hBora join the game of Polo. Cancer Research 69: 4555-4558. Malumbres M, Barbacid M (2009). Cell cycle, CDKs and cancer: a changing paradigm. Nature reviews. Cancer 9: 153-166. McGrogan BT, Gilmartin B, Carney DN, McCann A (2008). Taxanes, microtubules and chemoresistant breast cancer. Biochimica et biophysica acta 1785: 96-132. Miyamoto-Yamasaki Y, Yamasaki M, Tachibana H, Yamada K (2007). Induction of endoreduplication by a JNK inhibitor SP600125 in human lung carcinoma A 549 cells. Cell Biology International 31: 1501-1506. Mollinedo F, Gajate C (2003). Microtubules, microtubule-interfering agents and apoptosis. Apoptosis 8: 413–450. Moon DO, Kim MO, Kang CH, Lee JD, Choi YH, Kim GY (2009). JNK inhibitor SP600125 promotes the formation of polymerized tubulin, leading to G2/M phase arrest, endoreduplication, and delayed apoptosis. Experimental & Molecular Medicine 41: 665-677. Muller CY (2010). Doctor, should I get this new ovarian cancer test-OVA1? Obstetrics & Gynecology 116: 246-247. Musacchio A (2011). Spindle assembly checkpoint: the third decade. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences 366(1584): 3595-3604. Musacchio A, Salmon ED (2007). The spindle-assembly checkpoint in space and time. Nature reviews. Molecular Cell Biology 8(5): 379-393. Ng DCH, Lin BH, Lim CP, Huang G, Zhang T, Poli V, et al. (2006). Stat3 regulates microtubules by antagonizing the depolymerization activity of stathmin. Journal of Cell Biology 172: 245–257. Nossov V, Amneus M, Su F, Lang J, Janco JM, Reddy ST, Farias-Eisner R (2008). The early detection of ovarian cancer: from traditional methods to proteomics. Can we really do better than serum CA-125? American Journal of Obstetrics and Gynecology 199: 215-223. Orr GA, Verdier-Pinard P, McDaid H, Horwitz SB (2003). Mechanisms of Taxol resistance related to microtubules. Oncogene 22: 7280-7295. Ozols RF, Bookman MA, Connolly DC, Daly MB, Godwin AK, Schilder RJ, Xu X, Hamilton TC (2004). Focus on epithelial ovarian. Cancer Cell 5: 19-24. Riedl SJ, Shi Y (2004). Molecular mechanisms of caspase regulation during apoptosis. Nature reviews. Molecular Cell Biology 5: 897-907. Roett MA, Evans P (2009). Ovarian cancer : an overview. American Family Physician 80: 609-616. Rubin SC, Sabbatini P, Viswanathan AN (2011). Ovarian cancer. Oncology 14: 1-22. Shuai K, Liu B (2003). Regulation of JAK-STAT signalling in the immune system. Nature reviews. Immunology 3: 900-911. Strebhardt K, Ullrich A (2006). Targeting polo-like kinase 1 for cancer therapy. Nature reviews. Cancer 6: 321-330. Ueland FR, Desimone CP, Seamon LG, Miller RA, Goodrich S, Podzielinski I, et al. (2011). Effectiveness of a multivariate index assay in the preoperative assessment of ovarian tumors. Obstetrics & gynecology 117: 1289-1297. Sander VDH (2005). Cell-cycle regulation. WormBook 21: 1-16. Vasey PA (2003). Resistance to chemotherapy in advanced ovarian cancer: mechanisms and current strategies. British Journal of Cancer 89 : 23-28. Vaughan S, Coward JI, Bast RC, Jr., Berchuck A, Berek JS, Brenton JD, Coukos G, Crum CC, Drapkin R, Etemadmoghadam D, Friedlander M, Gabra H, Kaye SB, Lord CJ, Lengyel E, Levine DA, McNeish IA, Menon U, Mills GB, Nephew KP, Oza AM, Sood AK, Stronach EA, Walczak H, Bowtell DD, Balkwill FR (2011). Rethinking ovarian cancer: recommendations for improving outcomes. Nature reviews. Cancer 11: 719-725. Verma NK, Dourlat J, Davies AM, Long A, Liu WQ, Garbay C, Kelleher D, Volkov Y (2009). STAT3-stathmin interactions control microtubule dynamics in migrating T-cells. The Journal of Biological Chemistry 284: 12349-12362. Vermeulen K, Bockstaele DRV, Berneman ZN (2003). The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Proliferation 36: 131-149. Walker SR, Chaudhury M, Nelson EA, Frank DA (2010). Microtubule-targeted chemotherapeutic agents inhibit signal transducer and activator of transcription 3 (STAT3) Signaling. Molecular and Cellular Pharmacology 78:903-908. Walker SR, Chaudhury M, Frank DA (2011). STAT3 inhibition by microtubule-targeted drugs: dual molecular Effects of chemotherapeutic agents. Molecular and Cellular Pharmacology 3: 13-19. Yamamoto K, Ichijo H, J.Korsmeyer S (1999). Bcl-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G2/M. Molecular and Cellular Biology 19: 8469–8478. Yap TA, Carden CP, Kaye SB (2009). Beyond chemotherapy: targeted therapies in ovarian cancer. Nature reviews. Cancer 9: 167-181. Youle RJ, Strasser A (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nature reviews. Molecular Cell Biology 9: 47-59. Yu H, Jove R (2004). The STATs of cancer--new molecular targets come of age. Nature reviews. Cancer 4: 97-105. Yu H, Pardoll D, Jove R (2009). STATs in cancer inflammation and immunity: a leading role for STAT3. Nature reviews. Cancer 9: 798-809. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16311 | - |
| dc.description.abstract | 卵巢癌在台灣婦女的婦科惡性腫瘤中是好發率很高的癌症,由於此癌症不容易在早期診斷出來,所以患者的存活率極低。本研究發現一個化學合成具有arylsulfonamide 之結構的新藥物 MPT0G066 ,在 SRB 和 MTT 實驗中能夠有效抑制卵巢癌細胞的生長與存活;接著利用流式細胞儀分析發現 MPT0G066 能讓卵巢癌細胞 SKOV3 以及 A2780 分別停滯在 multipolyploidy (MP) 以及 G2/M 期,並且伴隨明顯的 Sub G1 增加。由於 SKOV3 是 p53 null 的癌細胞株,A2780 則具有 wild type p53,所以在藥物處理過後細胞易行成多倍體 (polyploidy) 進入 MP 期而非 G2/M 期。透過細胞外微管聚合�去聚合作用測定搭配細胞免疫螢光染色發現 MPT0G066 的作用類似 colchicine 和 vincristine 也會抑制微管聚合,並使 M 期指標蛋白 MPM2 磷酸化增加。同時發現 MPT0G066 在卵巢癌細胞中會抑制 STAT3 的磷酸化,但此作用對於 MPT0G066 造成的細胞週期停留與細胞凋亡並無相關。另MPT0G066 也會活化 JNK造成 bcl-2 family 蛋白改變,如:p-Bcl-2、Bax、Bim、PUMA 增加,Bcl-2、Mcl-1減少,因此改變粒線體通透性促進內生性細胞凋亡路徑活化,透過 caspase-3、-7、-9 以及 PARP 引起細胞凋亡。使用JNK抑制劑SP600125 會使細胞停留在 G2 期不進入 mitosis,並且反轉 MPT0G066 造成的細胞凋亡現象。此外,在 rhodamine 123 搭配流式細胞儀分析 p-glycoprotein 的功能中發現 MPT0G066 並非 p-glycoprotein 的受質,因此可以作用在多重抗藥性的卵巢癌細胞 NCI/ADR-RES。最後,在小鼠腫瘤移植實驗中證實 MPT0G066 能抑制人類卵巢癌細胞 A2780 的生長;並且於體外和體內都能加強抗癌藥物 cisplatin 於人類卵巢癌的作用。另外,我們在腫瘤組織的蛋白分析發現 MPT0G066 在 in vivo 也能抑制 STAT3、活化 JNK 及 caspase-9,這些作用和 in vitro 結果符合。因 MPT0G066 造成的細胞凋亡過程中 JNK 扮演重要的角色,因此我們利用免疫組織化學染色確認在腫瘤組織切片中,證明 JNK 確實有活化參與了細胞凋亡的過程。綜合以上結果,本研究發現 MPT0G066 能夠改變微管動態使細胞週期停留在 MP 以及 G2/M 期,活化JNK且影響Bcl-2 family 蛋白,最後經由內生性凋亡路徑造成細胞凋亡。因此 MPT0G066 為具有潛力發展成為新的抗癌藥物。 | zh_TW |
| dc.description.abstract | Ovarian cancer is a well-known increase of incidence in gynecological malignancy among women in Taiwan. Ovarian cancer patients are always diagnosed at an advanced stage resulting in poor survival rate. This study showed that MPT0G066, a novel synthetic arylsulfonamide compound, inhibited cell growth and viability in human ovarian cancer SKOV3 and A2780 cells using sulphorodamine B (SRB) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Cell cycle distribution was determined by flow cytometry, we demonstrated that MPT0G066 induced arrest of cell cycle at multipolyploidy (MP) in SKOV3 cells and at G2/M phase in A2780 cells, with increase of cell proportion at Sub G1 phase which may be caused by tubulin depolymerization effects of MPT0G066. Since SKOV3 cells were homozygous deleted p53 and A2780 cells have wild type p53, cell cycle arrest occured at MP instead of G2/M phase in SKOV3 cells. Then, tubulin binding assay and immunofluorescence stain showed that MPT0G066 was similar to colchicine and vincristine in causing depolymerization of tubulin. These results showed that MPT0G066 could disrupt microtubule dynamics and induce mitotic marker, MPM2. Furthermore, MPT0G066 inhibited STAT-3 tyrosine phosphorylation, but the effect was not related to cycle arrest and apoptosis. MPT0G066 induced JNK activation and influenced bcl-2 family proteins by increasing p-Bcl-2, BAX, Bim, PUMA and decreasing Bcl-2 and Mcl-1. Disruption of mitochondrial proteins caused intrinsic apoptotic pathways through the cleavage of caspase-3, -7, -9, and poly (ADP-ribose) polymerase (PARP). Treatment with SP600125, a JNK inhibitor, could prevent the entry of cells into mitosis and led to endoreplication from G2 phase, and then reversed MPT0G066-induced apoptosis. Flow cytometric analysis of p-glycoprotein function using rhodamine 123 showed that MPT0G066 was not a substrate of p-glycoprotein. Accordingly, MPT0G066 could inhibited cell viability in multiple-drug resistant human ovarian cancer cells. Finally, we used xenograft mouse models to demonstrate that MPT0G066 supressed ovarian carcinoma A2780 growth and potentiated antineoplastic effects of cisplatin in vivo. Protein analysis of tumor tissue discovered that MPT0G066 inhibited p-STAT3 and activated JNK and caspase-9 in vivo. Immunohistochemitry data confirmed MPT0G066-induced JNK activation in tumor sections. In summary, the results suggested that MPT0G066 could change microtubule dynamics, and lead to MP or G2/M arrest of the cell cycle. MPT0G066 induced JNK activation and altered bcl-2 family proteins which ultimately caused apoptosis through the intrinsic apoptotic pathways. These finding indicated that MPT0G066 can be a potential anticancer agent worthy for further development. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:09:15Z (GMT). No. of bitstreams: 1 ntu-101-R99443010-1.pdf: 5579274 bytes, checksum: 904499ffa32189b617cd1aac4ee174eb (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員審定書................................I
誌謝..........................................II 縮寫表........................................III 中文摘要......................................IV 英文摘要......................................V 第一章 緒論...................................1 第二章 文獻回顧...............................3 第三章 實驗材料與方法 第一節 實驗材料 ...........................25 第二節 實驗方法 ...........................26 第四章 結果...................................33 第五章 討論...................................40 第六章 結論與展望.............................45 參考文獻......................................66 | |
| dc.language.iso | zh-TW | |
| dc.subject | 抗細胞分裂藥物 | zh_TW |
| dc.subject | 卵巢癌 | zh_TW |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | anti-mitotic agent | en |
| dc.subject | ovarian cancer | en |
| dc.subject | apoptosis | en |
| dc.subject | JNK | en |
| dc.title | 探討新合成 arylsulfonamide 類的抗細胞分裂藥物 MPT0G066 誘發細胞凋亡與加強抗癌藥物 cisplatin 於人類卵巢癌細胞之體外和體內的作用機轉 | zh_TW |
| dc.title | MPT0G066, a novel synthetic arylsulfonamide antimitotic agent, induces cell apoptosis and potentiates antineoplastic effects of cisplatin in human ovarian cancer cells in vitro and in vivo | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃德富,潘秀玲,顏茂雄,楊春茂 | |
| dc.subject.keyword | 抗細胞分裂藥物,細胞凋亡,卵巢癌, | zh_TW |
| dc.subject.keyword | anti-mitotic agent,apoptosis,ovarian cancer,JNK, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-07-12 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 5.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
