請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16295完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林敏聰 | |
| dc.contributor.author | Shu-Ju Yang | en |
| dc.contributor.author | 楊淑如 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:08:36Z | - |
| dc.date.copyright | 2012-07-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-16 | |
| dc.identifier.citation | [1] A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004)
[2] G. Herranz, M. Basleti, M. Bibes, C. Carrtro, E. Tafra, E. Jacquet, K. Bouze- houane, C. Deranlot, A. Hamzi, J. M. Broto, A. Barthlmy and A. Fert, Phys. Rev. Lett. 98, 216803 (2007) [3] H. Yamada and G. R. Miller, J. Solid State Chem. 6, 169 (1973) [4] C. S. Koonce and M. L. Cohen, Phys. Rev. 163, 380 (1967) [5] H. Akoh, C. Camerlingo, and S. Takada, Appl. Phys. Lett. 56, 1487 (1990) [6] Y. Suzuki, H. Y. Hwang, S.-W. Cheong, and R. B. van Dover, Appl. Phys. Lett. 71, 140 (1997) [7] I. C. Infante, F. Sanchez, J. Fontcuberta, S. Fusil, K. Bouzehouane, G. Her- ranz, A. Barthelemy, S. Estrade, J. Arbiol, F. Peiro, R. J. O. Mossanek, M. Abbate and M. Wojcik, J. Appl. Phys. 101, 093902 (2007) [8] Y. Mukunoki, N. Nakagawa, T. Susaki and H. Y. Hwang, Appl. Phys. Lett. 86, 171908 (2005) [9] S. Gwo, K. J. Chao, C. K. Shih, K. Sadra and B. G. Streetman, Phys. Rev. Lett. 71, 1883 (1993) [10] B. C. Huang, Y. T. Chen, Y. P. Chiu, Y. C. Huang, J. C. Yang, Y. C. Chen and Y. H. Chu, Appl. Phys. Lett. 100, 122903 (2012) [11] T. Chien, N. P. Guisinger and J. W. Freeland, J. Vac. Sci. Technol. B 28, C5A11 (2010) [12] Y. H. Chu, M. P. Cruz, C. H. Yang, L. W. Martin, P. L. Yang, J. X. Zhang, K. Lee, P. Yu, L. Q. Chen and R. Ramesh, Adv. Mater. 19, 2662 (2007) [13] I.Sosnowska, J.Phys.C. 15, 4835(1982) [14] R. Ramesh and N. A. Spaldin, Nature Mater. 6, 21(2007) [15] G. H. Vurens, M. Salmeron and G. A. Somorjai, Prog. Surf. Sci. 32, 333 (1989) [16] H. J. Freund, H. Kuhlenbeck and V. Staemmler, Rep. Prog. Phys. 59, 283 (1996) [17] N. Bickel, G. Schmidt, K. Heinz and K. Mller, Phys. Rev. Lett. 62, 2009 (1989) [18] P. Mller, S. Komolov and E. Lazneva, J. Phys. Condens. Matt. 12, 7705 (2000) [19] A. Pojani, F. Finocchi and C. Noguera, Surf. Sci. 442 179 (1999). [20] C. Noguera, J. Phys. Condens. Matt. 12 R367 (2000). [21] D. Deak, Mater. Sci. Technol. 23 127 (2007). [22] Lytle, F. W., J. Appl. Phys. 35 2212 (1964). [23] T. Y. Chien, N. P. Guisinger and J. W. Freeland, Proc. SPIE 7940 79400T-1 (2011). [24] M. R. Castell, Surf. Sci. 505 1 (2002). [25] F. Bottin, F. Finocchi and C. Noguera, Phys. Rev. B 68,035418 (2003) [26] G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Phys. Rev. Lett. 50, 120 (1983) [27] Q. Zhong, J. M. Vohs and D. A. Bonnell, Surf. Sci. 274, 35 (1992) [28] M. P. Nikiforov, A. F. Isakovic and D. A. Bonnell, Phys. Rev. B 76, 033104 (2007) [29] G. A. D. Briggs and A. J. Fisher, Surf. Sci. Rep. 33, 1 (1999) [30] W. A. Hofer, A. S. Foster, A. L. Shluger, Rev. Mod. Phys. 75, 1287 (2003) [31] Y. Mukunoki, N. Nakagawa, T. Susaki and H. Y. Hwang, Appl. Phys. Lett. 86, 171908 (2005) [32] A. Oreshkin, D. Muzychenko, I. Radchenko, V. Mancevich, V. Panov and S. Oreshkin, Rev. Sci. Instrum. 77, 116116 (2006) [33] G. B. Cho, M. Yamamoto and Y. Endo, Thin solid films 464, 80 (2004) [34] N. P. Guisinger, T. S. Santos, J. R. Guest, T. Y. Chien, A. Bhattacharya, J. W. Freeland and M. Bode, ACS nano 3, 4132(2009) [35] M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto and H. Koinuma, Sci. 266, 1540(1994) [36] N. Erdman, K. R. Poeppelmeier, M. Asta, O. Warschkow, D. E. Ellis and L. D. Marks, Nature 419, 55 (2002). [37] C. Cheng, K. Kunc and M. H. Lee, Phys. Rev. B 62 10409 (2000). [38] E. Heifets, R. Eglitis, E. Kotomin, J. Maier, and G. Borstel, Surf. Sci. 513 211 (2002). [39] K. Iwaya, R. Shimizu, T. Ohsawa, T. Hashizume, and T. Hitosugi, Phys. Rev. B 83 25117 (2011). [40] R. Bachelet, F. Valle, I. Infante, F. Snchez and J. Fontcuberta, Appl. Phys. Lett. 91, 251904 (2007) [41] Z.G. Mao, R.E. Dunin-Borkowski, C.B. Boothroyd, K.M. Knowles, J. Am. Ceram. Soc. 81 2917 (1998). [42] R. Lacmann, Colloq. Int. CNRS 152 195 (1965). [43] J. W. Tasker, J. Phys. C: Solid State Phys. 12 4977 (1979). [44] X. Q. Gong, A. Selloni, M. Batzill, and U. Diebold, Nature Mater. 5 665 (2006). [45] Y. Pennec, N. Ingle, I. Elfimov, E. Varene, Y. Maeno, A. Damascelli and J. Barth, Phys. Rev. Lett. 101 216103 (2008). [46] V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides (1994). [47] O. Dulub and U. Diebold, J. Phys. C: Cond. Matt. 22 084014 (2010). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16295 | - |
| dc.description.abstract | 氧化晶成鈣鈦礦 ( perovskite oxides ) 結構,相較於塊材,其薄膜系統更能展現有趣的物理現象,譬如多鐵性磁電薄膜材料,典型的例子便是室溫鐵電反鐵磁體 BiFeO3 ( 以下縮寫為BFO ) 的磁電效應。特殊面向的晶成鈣鈦礦表面 ( 例如,BFO(111) ) 的製程方式,像是雷射沉積法 ( PLD ),無法提供掃描穿隧式顯微鏡 ( scanning tunneling microcopy, STM ) 合適的研究表面,卻可利用在超真空環境橫切晶體的方式達成。此論文以最常見的基體SrTiO3 ( 以下縮寫為STO ) 做為實驗模型,成功於室溫中利用橫截面掃描穿隧式顯微鏡 ( cross-sectional scanning tunneling microcopy, XSTM ) 量測STO在極化(110)斷面,發現多樣性的表面結構,雖少數可被定性描述。但我們依然於 STO(110) 斷面上發現二個單位晶格高的檯階式表面結構。相較於擁有原子尺度平整檯階的非極化 STO(100) 斷面,STO(110) 在在顯示因為表面極化特性所造成的不穩性,並於理論預測相符。未來可嘗試於低溫下進行斷面實驗。 | zh_TW |
| dc.description.abstract | Aside from the bulk properties, interesting phenomena can be revealed in thin films of perovskite oxides, such as magnetoelectric switching effects in multiferroic BiFeO3 (BFO) films. Certain interesting perovskite surfaces (e.g., BFO(111)) normally pre- pared by methods such as pulsed laser deposition, but with a resulting morphology unsuitable for STM studies, can be made accessible by crystal cleavage. Instead of taking bottom-up way to get a surface, in this work, using the common substrate as our model system, we demonstrate the first observation of (110) polar surfaces of fractured Nb-doped SrTiO3 (Nb:STO) utilizing cross-sectional scanning tunneling microscopy (XSTM) at room temperature. A rich variety of surface morphologies have been observevd, but few are well characterised. Terraced STO(110) surfaces with two unit-cell height could be found by in situ cleaving. Comparing the results of atomically flat terraces with STO(100) non-polar surfaces, indicates the existence of polar instability on fractured STO(110) surfaces, in agreement with theoretical predictions. Future advances in understanding these surfaces will be accompanied by fracturing at low temperature. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:08:36Z (GMT). No. of bitstreams: 1 ntu-101-R99245009-1.pdf: 15892688 bytes, checksum: 0492420af262d18a69af2a7c06e9961b (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Declaration 3
1 Introduction 1 2 STM on oxide surfaces 4 2.1 Strontium Titanate(SrTiO3,STO) ................... 4 2.2 Non-Polar versus Polar Surfaces..................... 6 2.3 Theory of STM .............................. 7 2.3.1 Scanning Tunneling Spectroscopy ................ 10 3 Experimental Techniques 13 3.1 Ultra-HighVacuum(UHV)System ................... 13 3.1.1 Apparatus............................. 15 3.1.2 CrystalCleavageDevice ..................... 16 3.2 Cross-sectional scanning tunneling microscopy (XSTM) . . . . . . . . 17 3.3 SamplePreparationProcedure...................... 20 4 Topography of Fractured STO Surfaces and Analysis..... 22 4.1 STMStudiesonfracturedSrTiO3(001)Surfaces . . . . . . . . . . . . 23 4.1.1 Fractured STO(001) Surfaces of Commercial Sample . . . . . 25 4.2 STMStudiesonfracturedSrTiO3(110)Surfaces . . . . . . . . . . . . 27 5 Discussion and Conclusion......32 Bibliography ......36 | |
| dc.language.iso | en | |
| dc.subject | 極化 | zh_TW |
| dc.subject | 掃描式電子顯微鏡 | zh_TW |
| dc.subject | 橫截式 | zh_TW |
| dc.subject | 氧化鍶鈦(110) | zh_TW |
| dc.subject | 氧化晶成鈣鈦礦 | zh_TW |
| dc.subject | scanning tunneling microscopy | en |
| dc.subject | polar surface | en |
| dc.subject | SrTiO3 | en |
| dc.subject | perovskite oxides | en |
| dc.subject | cross-sectional | en |
| dc.title | 利用橫截面掃描穿隧式顯微鏡解析氧化鍶鈦極化表面構造 | zh_TW |
| dc.title | cross-sectional scanning tunneling microscopy studies of polar surfaces of SrTiO3 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林昭吟,江文中 | |
| dc.subject.keyword | 掃描式電子顯微鏡,橫截式,氧化鍶鈦(110),氧化晶成鈣鈦礦,極化, | zh_TW |
| dc.subject.keyword | scanning tunneling microscopy,cross-sectional,perovskite oxides,SrTiO3,polar surface, | en |
| dc.relation.page | 39 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-07-17 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 15.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
