Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16294
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王偉仲
dc.contributor.authorSung-feng Tsaien
dc.contributor.author蔡松峰zh_TW
dc.date.accessioned2021-06-07T18:08:34Z-
dc.date.copyright2012-07-27
dc.date.issued2012
dc.date.submitted2012-07-16
dc.identifier.citation[1] W.C. Davidon. Variable metric method for minimization. SIAM Journal on Optimization, 1(1):1–17, 1991.
[2] R. Hooke and T.A. Jeeves. “direct search”solution of numerical and statistical problems. Journal of the ACM (JACM), 8(2):212–229, 1961.
[3] T.M. Huang, W. Wang, and C.T. Lee. An efficiency study of polynomial eigenvalue problem solvers for quantum dot simulations. Taiwanese Journal of Mathematics, 14(3A):pp–999, 2010.
[4] T.G. Kolda, R.M. Lewis, and V. Torczon. Optimization by direct search: New perspectives on some classical and modern methods. SIAM review, pages 385–482, 2003.
[5] G.L.G. Sleijpen and H.A. Van der Vorst. A jacobi-davidson iteration method for linear eigenvalue problems. SIAM Review, pages 267–293, 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16294-
dc.description.abstract在大型矩陣的特徵值求解程式中,適當地選擇參數將使得特徵值求解程式的效能明顯提升。特徵值求解程式的執行時間與其參數之間並沒有明確的函數關係,故採用直接搜尋法為其最佳化工具。然而,在許多直接搜尋法中,大量的函數計算往往耗費許多時間。為了提升效能,我們提出一個想法:若在某點上其函數值已不可能是最佳值,則暫停該函數值之計算。在特徵值求解程式的疊代過程中,我們獲取資訊:根據資訊以動態地決定是否暫停或繼續特徵值求解程式的執行。然後我們根據低準確度以及高準確度之函數值,分別對應於暫停點以及收斂點,以建構代理曲面。而在我們的計算機實驗中,的確顯示了以動態代理曲面輔助搜尋法,可以降低傳統代理曲面輔助搜尋法的執行時間,並以其搜尋到的最佳化參數提升特徵值求解程式的效能。zh_TW
dc.description.abstractFor using an iterative eigensolver to solve an eigenvalue problem with a large-scale matrix, adaptively choosing parameters will significantly improve its performance. Since there is no obvious relation between the execution time and parameters of an eigensolver, it is reasonable that using direct search method to optimize the parameters. In many direct search methods, however, it is likely that evaluating much number of function values is limited by time or cost. For reducing time or cost, one idea we present here is that we pause some function evaluations that have no chance to be optimal ones. During iterative process of an eigensolver, we monitor the information produced after each iteration to decide how we control iterative process dynamically: we determine whether iterations should be kept paused or restarted. We then construct a surrogate by using the function values with low accuracy and high one corresponding to paused points and convergent points, respectively. In our computer experiments, we show that the Dynamic Surrogate-Assisted Search (DSAS) Algorithm reduces the cost significantly. Hence, then we can tune the performance of an eigensolver efficiently.en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:08:34Z (GMT). No. of bitstreams: 1
ntu-101-R97221045-1.pdf: 1311693 bytes, checksum: b393b0bb97e0c10d180cbc181903d391 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目 錄
口試委員會審定書……………………………………………………………… i
誌謝 ………………………………………………………………………………. ii
中文摘要 ………………………………………………………………………… iii
英文摘要 …………………………………………………………………………. iv
1. Introduction ………………………………………………………………….. 1
2. Eigensolver ………………………………………………………………….. 3
2.1 Jocabi-Davidson Algorithm ……………………………………………... 3
2.2 Polynomial Jocabi-Davidson Algorithm ......... 5
2.3 Performance Tuning ........................... 7
3. Dynamic Surrogate .......………………………………………………………….. 7
3.1 Initialization ............................... 8
3.2 Function Predictions or Evaluations .......... 9
3.2.1 Choosing Initial Parameters and Executing Eigensolver ........................................ 9
3.2.2 Predicting Function Values and Restarting Eigensolver ....................................... 10
3.3 Searching an Optimal Point .................. 12
3.3.1 Constructing Surrogate .................. 12
3.4 Defining New Search Region .................. 15
3.5 Dynamic Surrogate-Assisted Search Algorithm . 17
4. Convergence Theory ………………………………………………………….. 19
5. Numerical Experiments .......................... 24
5.1 Cylinder Quantum Dot Problem ................ 24
5.1.1 Matrix size 1848x1848 ................... 25
5.1.2 Matrix size 31209x31209 ................. 29
5.2 Pyramid Quantum Dot Problem ................. 33
6. Conclusions .................................... 38
References…………………………………………………………………......... 38
dc.language.isoen
dc.subject特徵值求解程式zh_TW
dc.subject動態代理曲面zh_TW
dc.subject最佳化zh_TW
dc.subject直接搜尋法zh_TW
dc.subjectDACEzh_TW
dc.subjectdirect search methoden
dc.subjectDACEen
dc.subjecteigensolveren
dc.subjectdynamic surrogateen
dc.subjectoptimizationen
dc.title以動態代理曲面輔助搜尋特徵值求解程式之最佳效能參數zh_TW
dc.titlePerformance Tuning of Eigensolver via Dynamic Surrogateen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳瑞彬,蔡碧紋
dc.subject.keyword特徵值求解程式,動態代理曲面,最佳化,直接搜尋法,DACE,zh_TW
dc.subject.keywordoptimization,direct search method,dynamic surrogate,eigensolver,DACE,en
dc.relation.page39
dc.rights.note未授權
dc.date.accepted2012-07-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved