請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16272完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林敏聰 | |
| dc.contributor.author | Tsung-Han Yang | en |
| dc.contributor.author | 楊宗翰 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:07:38Z | - |
| dc.date.copyright | 2012-07-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-20 | |
| dc.identifier.citation | [1] S. Sanvito, Nature 467, 664 (2010).
[2] S. Sanvito, Nature Phys. 6, 562 (2010). [3] J. Brede, N. Atodiresei, S. Kuck, P. Lazi c, V. Caciuc, Y. Morikawa, G. Ho mann, S. Bl ugel and R. Wiesendanger, Phys. Rev. Lett. 105, 047204 (2010). [4] G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982). [5] J. Bardeen, Phys. Rev. Lett. 6, 57 (1961). [6] J. Terso , D. R. Hamann, Phys. Rev. B 31, 805 (1985). [7] C. J. Chen, Introduction to Scanning Tunneling Microscopy, Oxford University Press (1993). [8] J. A. Stroscio and D. M. Eigler, Science 254, 1319 (1991). [9] R. Wiesendanger, Rev. Mod. Phys. 81, 1495 (2009). [10] C. Weiss, C. Wagner, C. Kleimann, M. Rohl ng, F. S. Tautz and R. Temirov, Phys. Rev. Lett. 105, 086103 (2010). [11] P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964). [12] W. Kohn and L. J. Sham, Phys. Rev. 140, 1133 (1965). [13] D. C. Langreth and M. J. Mehl, Phys. Rev. B 28, 1809 (1983). [14] S. Goedecker, M. Teter and J. Hutter, Phys. Rev. B 54, 1703 (1996). [15] G. S. Painter, F. W. Averill, Phys. Rev. B 26, 1781 (1982). [16] E. Engel and S. H. Vosko, Phys. Rev. A 47, 2800 (1993). [17] D. C. Langreth and J. P. Perdew, Phys. Rev. B 21, 5469 (1980). [18] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). [19] J. P. Perdew, Phys. Rev. B 33, 8822 (1986). [20] G. D. Mahan, Condensed Matter in a Nutshell, Princeton University Press (2010). [21] D. R. Hamann, M. Schl uter, C. Chiang, Phys. Rev. Lett. 43, 1494 (1979). [22] L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982). [23] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992). [24] J. F. Dobson, and J. Wang, Phys. Rev. Lett. 82, 2123 (1999). [25] H. Rydberg, B. I. Lundqvist, D. C. Langrethand and M. Dion, Phys. Rev. B 62, 6997 (2000). [26] H. Rydberg, M. Dion, N. Jacobson, E. Schroder, P. Hyldgaard, S. I. Simak, D. C. Langreth and B. I. Lundqvist, Phys. Rev. Lett. 91, 126402 (2003). [27] M. Dion, H. Rydberg, E. Schr oder, D. C. Langreth and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). [28] S. Grimme, J Comput Chem 27, 1787 (2006). [29] M. A. Ruderman, C. Kittel, Phys. Rev. 96, 99 (1954). [30] K. Yosida, Phys. Rev. 106, 893 (1957). [31] T. Kasuya, Progress of Theoretical Physics 16, 45 (1956). [32] N. Atodiresei, J. Brede, P. Laziacutec, V. Caciuc, G. Ho mann, R. Wiesendanger and S. Bl ugel1, Phys. Rev. Lett. 105, 066601 (2010). [33] L. A lvarez, S. Pela ez, R. Caillard, P. A Serena, J. A Mart {n-Gago and J. M endez, Nanotechnology 21, 305703 (2010). [34] J. Mendez, R. Caillard, G. Otero, N. Nicoara, J. A. Martin-Gago, Adv. Mater. 18, 2048 (2006). [35] P. Giannozzi et al., Journal of Physics: Condensed Matter 39, 395502 (2009). [36] L. Gross, F. Mohn, N. Moll, P. Liljeroth and G. Meyer, Science 325, 1110 (2009). [37] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). [38] V. A. Dediu, L. E. Hueso, I. Bergenti and C. Taliani, Nature Mater. 8, 707 (2009). [39] S. Kowarik, A. Gerlach and F. Schreiber, J. Phys.: Condens. Matter 20, 184005 (2008). [40] S. Stepanow, M. Lingenfelder, A. Dmitriev, H. Spillmann, E. Delvigne, N. Lin, X. Deng, C. Cai, J. V. Barth and K. Kern, Nature Mater. 2, 229 (2004). [41] Y. Hirose, A. Kahn, V. Aristov, P. Soukiassian, V. Bulovic and S. R. Forrest, Phys. Rev. B 54, 13748 (1996). [42] M. Eremtchenko, J. A. Schaefer and F. S. Tautz, Nature 425, 602 (2003). [43] R. Temirov, S. Soubatch, A. Luican1 and F. S. Tautz, Nature 444, 350 (2006). [44] R. Temirov, S. Soubatch, A Lassise and F. S. Tautz, J. Phys.: Condens. Matter 20, 224010 (2008). [45] T. Wagner, A. Bannani, C. Bobisch, H. Karacuban and R. M oller, J. Phys.: Condens. Matter 19, 056009 (2007). [46] X. Q. Tian, J. B. Xu and X. M. Wang, J. Phys. Chem. C 114, 20917 (2010). [47] A. Kraft, R. Temirov, S. K. M. Henze, S. Soubatch, M. Rohl ng and F. S. Tautz, Phys. Rev. B 74, 041402 (2006). [48] M. Rohl ng, R. Temirov and F. S. Tautz, Phys. Rev. B 76, 115421 (2007). [49] A. Hauschild, K. Karki, B. C. C. Cowie, M. Rohl ng, F. S. Tautz and M. Sokolowski, Phys. Rev. Lett. 94, 036106 (2005). [50] L. Kilian, A. Hauschild, R. Temirov, S. Soubatch, A. Sch oll, A. Bendounan, F. Reinert, T.-L. Lee, F. S. Tautz, M. Sokolowski and E. Umbach, Phys. Rev. Lett. 100, 136103 (2008). [51] C. H. Schwalb, S. Sachs, M. Marks, A. Sch oll, F. Reinert, E. Umbach and U. H ofer, Phys. Rev. Lett. 101, 146801 (2008). [52] H. T. Zhou, J. H. Mao, G. Li, Y. L. Wang, X. L. Feng, Appl. Phys. Lett. 99, 153101 (2011). [53] J. Ziro , F. Forster, A. Sch oll, P. Puschnig, and F. Reinert, Phys. Rev. Lett. 104, 233004 (2010). [54] F. J ackel, U. G. E. Perera, V. Iancu, K.-F. Braun, N. Koch, J. P. Rabe and S.-W. Hla, Phys. Rev. Lett. 100, 126102 (2008). [55] U. G. E. Perera, H. J. Kulik, V. Iancu, L. G. G. V. Dias da Silva, S. E. Ulloa, N. Marzari, N. and S.-W. Hla, Phys. Rev. Lett. 105, 106601 (2010). [56] N. Gonzalez-Lakunza, I. Fern andez-Torrente, K. J. Franke, N. Lorente, A. Arnau and J. I. Pascual, Phys. Rev. Lett. 100, 156805 (2008). [57] N. Gonzalez-Lakunza, I. Fern andez-Torrente, K. J. Franke, N. Lorente, A. Arnau and J. I. Pascual, Phys. Rev. Lett. 101, 217203 (2008). [58] J. M. Manriquez et al., Science 525, 1415 (1991). [59] R. S. Mulliken, J. Am. Chem. Soc. 72, 600 (1950). [60] V. A. Dediu, L. E. Hueso, I. Bergenti and C. Taliani, Nature Mater. 8, 707 (2009). [61] D. D. Awschalom and M. E. Flat te, Nature Phys. 3, 153 (2007). [62] P. M. Allemand, K. C. Khemani, A. Koch, F. Wuld, K. Holczer, S. Donovan, G. Grunder and J. D. Thompson, Science 253, 301 (1991). [63] B. Narymbetov, A. Omerzu, Viktor V. Kabanov, M. Tokumoto, H. Kobayashi and D. Mihailovic, Nature 407, 833 (2000). [64] F. J ackel, M. D. Watson, K. M ullen and J. P. Rabe, Phys. Rev. Lett. 92, 188303 (2004). [65] D. Wegner, R. Yamachika, X. Zhang, Y. Wang, T. Baruah, M. R. Pederson, B. M. Bartlett, J. R. Long and M. F. Crommie, Phys. Rev. Lett. 103, 087205 (2009). [66] A. A. Khajetoorians, J. Wiebe, B. Chilian, R. Wiesendanger, Science 332, 1062 (2011). [67] A. A. Khajetoorians, B. Chilian, J. Wiebe, S. Schuwalow, F. Lechermann and R. Wiesendanger, Nature 467, 1084 (2010). [68] N. N. Lathiotakis, B. L. Gy or y and B. Ujfalussy, Phys. Rev. B 61, 6854 (2000). [69] O. O. Brovko, V. S. Stepanyuk and P. Bruno, Phys. Rev. B 78, 165413 (2008). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16272 | - |
| dc.description.abstract | 金屬與有機分子混成的材料因其特殊的性質所以具有相當好的發展潛力。如自旋過濾器、有機自旋電子學及半金屬等,對於未來的應用都是相當有前途。然而,鐵原子與苝四甲酸二酐(3, 4, 9, 10-perylene-tetracarboxylic-dianhydride)有機分子在金(111)表面的自組裝結構是很有趣的。因為此系統結合了磁性材料與有機分子,不單是電子結構,自旋磁性也是相當的重要。藉由低溫掃描穿隧式顯微鏡,我們觀察其成長模式與電子結構。再進一步的利用密度泛涵理論計算探討細部的性質。然而,密度泛涵理論計算的結果可以與低溫掃描穿隧式顯微鏡的量測互相配合,對於此系統我們可以有更完整的解釋。
在超高真空的環境下,我們可以控制鐵原子與苝四甲酸二酐有機分子在金(111)表面上的成長模式。並且在低溫的量測環境下,我們低溫掃描穿隧式顯微鏡的測量有著更好的穩定性。基於低溫掃描穿隧式顯微鏡的量測結果,配合密度泛涵理論計算,我們對於這自組裝系統建立了一個可信度高的幾何結構。在電子結構方面,我們實驗上解釋了此系統的電荷轉移。並且在密度泛涵理論計算得到了相似的結果。對於此系統的鍵結機制,我們也有完整的解釋。在磁性方面,我們發現有機分子在不同的自旋組態下會有不同的磁化表現。當在鐵磁態時,有機分子可以達到很高的自旋極化率。而在不同的自旋組態下,我們發現有機分子中的自旋電荷有類似RKKY的磁矩振盪出現。 我們的結果展示了磁性金屬與有機分子結合材料的潛力。由於不同的自旋組態能量差異甚大,此系統有著長距離磁性排列的特性;對於未來有機自旋電子學的發展與應用提供了一個基礎的知識。 | zh_TW |
| dc.description.abstract | Metal-organic hybrid systems are promising materials because of their special properties and applications. Such as, spin filter, organic spintronics, half-metal and spin injection. A self-assembly structure which consists of iron (Fe) and 3, 4, 9, 10-perylene-tetracarboxylic-dianhydride (PTCDA) on Au(111) is an interesting material due to the coupling of the magnetic material and the organic molecule. Not only the electronic structure but also the magnetic properties are important. Base on the scanning tunneling microscopy (STM) measurements, the growth mode and electronic structures can be resolved. To understand the details of this system, density functional theory (DFT) has been performed. The calculation results are signi_cant to compare with the STM measurements.
Under ultra-high vacuum condition, we controlled the growth mode of Fe-PTCDA self-assembly structures on the Au(111) substrate. Based on the STM and STS measurements, we set up a reliable geometry structure for DFT calculations. For electronic structure, we analyzed the bonding mechanism between Fe and PTCDA, which is due to the d-orbital hybridization. Otherwise, the charging limitation of PTCDA in self-assembly system can be observed not only in DFT but also in STS measurements. For magnetic properties, we calculated the spin configurations of this system. The PTCDA molecules present spin-polarized and RKKY-like oscillations in different spin configurations. Our results show that the combination of magnetic materials and organic molecules has potentials for spintronic devices. Due to the significant energy difference between spin configurations, it's possible to build up a long range magnetic transport device. Moreover, our results provide a different insight in magnetism for metal-organic hybrid system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:07:38Z (GMT). No. of bitstreams: 1 ntu-101-R99222052-1.pdf: 32925733 bytes, checksum: ed2c45dbb126d98b7e8aa01d807664e6 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 1 Introduction 1
2 Methodology and Principles 3 2.1 Ultra-high Vacuum System . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Pumping System . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Preparation System . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.3 Deposition System . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Scanning Tunneling Microscopy . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Basic Transport Theorem . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Modified Bardeen Approach . . . . . . . . . . . . . . . . . . . 9 2.2.3 Tunneling Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.4 Scanning Tunneling Spectroscopy . . . . . . . . . . . . . . . . 15 2.2.5 Drift Compensation . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.1 Kohn-Sham Energy Functional . . . . . . . . . . . . . . . . . 18 2.3.2 Hartree Potential . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.3 Pseudopotentials . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.4 Exchange and Correlation . . . . . . . . . . . . . . . . . . . . 21 2.3.5 Non-local Dispersion Functional . . . . . . . . . . . . . . . . . 23 2.4 Interaction and Coupling . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4.1 Van der Waals Interaction . . . . . . . . . . . . . . . . . . . . 24 2.4.2 Ruderman-Kittel-Kasuya-Yosida Interaction . . . . . . . . . . 25 3 Morphology and Structure Modelling 29 3.1 Growth Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Structure Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.1 Computational Details . . . . . . . . . . . . . . . . . . . . . . 31 3.2.2 Symmetry and Orientations . . . . . . . . . . . . . . . . . . . 33 3.3 Optimized Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 Comparing with van der Waals calculation . . . . . . . . . . . . . . . 34 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4 Electronic Structure and Bonding Mechanism 37 4.1 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Properties of Gas Phase PTCDA . . . . . . . . . . . . . . . . . . . . 38 4.3 Charge Transfer in Metal-Organic Interface . . . . . . . . . . . . . . . 38 4.3.1 Scanning Tunneling Spectrum Observation . . . . . . . . . . . 38 4.3.2 Limitation of Charge Transfer in PTCDA . . . . . . . . . . . 40 4.4 Bonding Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.5 Influence of substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 Magnetic Properties and Spin Stability 51 5.1 Charge Transfer and Magnetism . . . . . . . . . . . . . . . . . . . . . 51 5.2 Energy Dependent Spin-polarization . . . . . . . . . . . . . . . . . . 53 5.3 Stabilization of Spin Charge Distribution . . . . . . . . . . . . . . . . 56 5.4 Exchange Coupling in Organic Materials . . . . . . . . . . . . . . . . 58 5.5 Spin Transport Competition between Molecule and Substrate . . . . . 59 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6 Conclusion 64 A Other Metal-PTCDA Self-assembly Structure 66 A.1 Co-PTCDA Self-assembly Structure . . . . . . . . . . . . . . . . . . . 66 A.1.1 Computational Details . . . . . . . . . . . . . . . . . . . . . . 67 A.1.2 Optimized Results . . . . . . . . . . . . . . . . . . . . . . . . 68 A.2 Cr-PTCDA Self-assembly Structure . . . . . . . . . . . . . . . . . . . 69 A.2.1 Scanning Tunneling Spectrum Observation . . . . . . . . . . . 69 B Useful Information of DFT Calculation 71 Bibliography 73 | |
| dc.language.iso | en | |
| dc.subject | 四甲酸二酐 | zh_TW |
| dc.subject | 低溫掃描穿隧顯微鏡 | zh_TW |
| dc.subject | 密度泛涵理論 | zh_TW |
| dc.subject | 電荷轉移 | zh_TW |
| dc.subject | 金屬有機系統 | zh_TW |
| dc.subject | 苝 | zh_TW |
| dc.subject | 鍵結 | zh_TW |
| dc.subject | 凡德瓦爾交互作用 | zh_TW |
| dc.subject | RKKY交互作用 | zh_TW |
| dc.subject | 自旋耦合 | zh_TW |
| dc.subject | 自旋穩定性 | zh_TW |
| dc.subject | Magnetic coupling | en |
| dc.subject | Bonding | en |
| dc.subject | Van der Waal | en |
| dc.subject | RKKY | en |
| dc.subject | Spin stability | en |
| dc.subject | Scanning tunneling microscopy | en |
| dc.subject | Density functional theory | en |
| dc.subject | Charge transfer | en |
| dc.subject | Metal-organic | en |
| dc.subject | PTCDA | en |
| dc.title | 探討金屬與有機混成系統之電子結構與磁性耦合 | zh_TW |
| dc.title | Investigating Electronic Structure and Magnetic Coupling in Metal-Organic Hybrid System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 關肇正 | |
| dc.contributor.oralexamcommittee | 魏金明,郭哲來,江文中 | |
| dc.subject.keyword | 低溫掃描穿隧顯微鏡,密度泛涵理論,電荷轉移,金屬有機系統,苝,四甲酸二酐,鍵結,凡德瓦爾交互作用,RKKY交互作用,自旋耦合,自旋穩定性, | zh_TW |
| dc.subject.keyword | Scanning tunneling microscopy,Density functional theory,Charge transfer,Metal-organic,PTCDA,Bonding,Van der Waal,RKKY,Magnetic coupling,Spin stability, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-07-20 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 32.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
