請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16263完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡定平(Din Ping Tsai) | |
| dc.contributor.author | Li-Chung Kuo | en |
| dc.contributor.author | 郭立中 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:07:15Z | - |
| dc.date.copyright | 2012-07-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-23 | |
| dc.identifier.citation | [1] A. Fujishima, and K. Honda, 'Electrochemical photolysis of water at a semiconductor electrode,' Nature 238, 37 (1972).
[2] http://en.wikipedia.org/wiki/Catalysis [3] http://en.wikipedia.org/wiki/Photocatalysis [4] A. Fujishima, T. N. Rao, and D. A. Tryk, 'Titanium dioxide photocatalysis, ' Journal of Photochemistry and Photobiology c-Photochemistry Reviews 1, 1-21 (2000). [5] K. G. Denbigh, and J. C. R. Turner , 'Chemical Reactor Theory: An Introduction,' Cambrigdge University Press, Cambridge, (1984). [6] A. Fujishima, X. Zhang, and D. A. Tryk, 'TiO2 photocatalysis and related surface phenomena,' Surface Science Reports 63, 515-582 (2008). [7] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, 'Environmental Applications of Semiconductor Photocatalysis, ' Chemical Reviews 95, 69-96(1995). [8] S. Chakrabarti, and B. K. Dutta, 'Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst,' Journal of Hazardous Materials 112, 269-278 (2004). [9] C. Kormann, D. W. Bahnemann, and M. R. Hoffmann, ' Environmental photochemistry: Is iron oxide (hematite) an active photocatalyst? A comparative study: α-Fe2O3, ZnO, TiO2,' Journal of Photochemistry and Photobiology a-Chemistry 48, 161-169 (1989). [10] C. H. Wu, 'Comparison of azo dye degradation efficiency using UV/single semiconductor and UV/coupled semiconductor systems,' Chemosphere 57, 601-608 (2004). [11] B. Neppolian, H. C. Choi, S. Sakthivel, B. Arabindoo, and V. Murugesan, 'Solar/UV-induced photocatalytic degradation of three commercial textile dyes,' Journal of Hazardous Materials 89, 303-317 (2002). [12] L. S. Zhang, W. Z. Wang, J. O. Yang, Z. G. Chen, W. Q. Zhang, L. Zhou, and S. W. Liu, 'Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst,' Applied Catalysis a-General 308, 105-110 (2006). [13] D. Jing, and L. Guo, 'A novel method for the preparation of a highly stable and active CdS photocatalyst with a special surface nanostructure,' Journal of Physical Chemistry B 110, 11139-11145 (2006). [14] F. A. Frame, E. C. Carroll, D. S. Larsen, M. Sarahan, N. D. Browning, and F. E. Osterloh, 'First demonstration of CdSe as a photocatalyst for hydrogen evolution from water under UV and visible light,' Chemical Communications 44, 2206-2208 (2008). [15] S. N. Frank, and A. J. Bard, ' Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at TiO2 powder,' Journal of the American Chemical Society 99, 303-304 (1977). [16] N. Daneshvar, D. Salari, and A. R. Khataee, 'Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2,' Journal of Photochemistry and Photobiology a-Chemistry 162, 317-322 (2004). [17] F. D. Mai, C. C. Chen, J. L. Chen, and S. C. Liu, 'Photodegradation of methyl green using visible irradiation in ZnO suspensions - Determination of the reaction pathway and identification of intermediates by a high-performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry method,' Journal of Chromatography A 1189, 355-365 (2008). [18] R. P. Wang, L. L. H. King, and A. W. Sleight, 'Highly conducting transparent thin films based on zinc oxide,' Journal of Materials Research 11, 1659-1664 (1996). [19] P. Theron, P. Pichat, C. Petrier, and C. Guillard, 'Water treatment by TiO2 photocatalysis and/or ultrasound: degradations of phenyltrifluoromethylketone, a trifluoroacetic-acid-forming pollutant, and octan-1-ol, a very hydrophobic pollutant,' Water Science and Technology 44, 263-270 (2001). [20] A. Zaleska, A. Hanel, and M. Nischk, 'Photocatalytic air purification,' Recent Patents on Engineering 4 , 200-216 (2010). [21] M. Nozawa, K. Tanigawa, M. Hosomi, T. Chikusa, and E. Kawada, 'Removal and decomposition of malodorants by using titanium dioxide photocatalyst supported on fiber activated carbon,' Water Science and Technology 44, 127-133 (2001). [22] S. Yoshimitsu, 'Eco-friendly technologies, “Photocatalyst”,' Journal of the Japan Society of Mechanical Engineers 107, 728-729 (2004). [23] A. Fujishima, K. Hashimoto, and T. Watanabe, 'TiO2 Photocatalysis: Fundamentals and Applications,' BKC, Tokyo, (1999). [24] R. W. Wood, 'On a remarkable case of uneven distribution of light in a diffraction grating spectrum,' Philosophical Magazine 4, 396-402 (1902). [25] U. Fano, 'The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves),' Journal of the Optical Society of America 31, 213-222 (1941). [26] R. H. Ritchie, 'Plasma losses by fast electrons in thin films,' Physical Review 106, 874-881 (1957). [27] E. A. Stern, and R. A. Ferrell, 'Surface plasma oscillations of a degenerate electron gas,' Physical Review 120, 130-136 (1960). [28] 邱國斌、蔡定平,「金屬表面電漿簡介」,物理雙月刊,第廿八卷第二期,472-485頁(2006)。 [29] W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, 'Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,' Physical Review B 59, 12661-12666 (1999). [30] J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, 'Transmission resonances on metallic gratings with very narrow slits,' Physical Review Letters 83, 2845-2848 (1999). [31] C. Bohren and D. Huffman, 'Absorption and scattering of light by small particles,' Wiley, New York, (1983). [32] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, 'Shape effects in plasmon resonance of individual colloidal silver nanoparticles,' Journal of Chemical Physics 116, 6755-6759 (2002). [33] H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, 'Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation,' Applied Physics Letters 83, 4625-4627 (2003). [34] H.-A. Chen, H.-Y. Lin, and H.-N. Lin, 'Localized surface plasmon resonance in lithographically fabricated single gold nanowires,' Journal of Physical Chemistry C 114, 10359-10364 (2010). [35] W. A. Murray, and W. L. Barnes, 'Plasmonic materials,' Advanced Materials 19, 3771-3782 (2007). [36] J. L. West, and N. J. Halas, 'Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics,' Annual Review of Biomedical Engineering 5, 285-292 (2003). [37] S. Linic, P. Christopher, and D. B. Ingram, 'Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,' Nature Materials 10, 911-921 (2011). [38] M. Moskovits, 'Hot electrons cross boundaries,' Science 332, 676-677 (2011). [39] V. M. Shalaev, C. Douketis, J. T. Stuckless, and M. Moskovits, 'Light-induced kinetic effects in solids,' Physical Review B 53, 11388-11402 (1996). [40] K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, and T. Watanabe, 'A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide,' Journal of the American Chemical Society 130, 1676-1680 (2008). [41] W. Hou, Z. Liu, P. Pavaskar, W. H. Hung, and S. B. Cronin, 'Plasmonic enhancement of photocatalytic decomposition of methyl orange under visible light,' Journal of Catalysis 277, 149-153 (2011). [42] H. A. Atwater, and A. Polman, 'Plasmonics for improved photovoltaic devices,' Nature Materials 9, 205-213 (2010). [43] Y. Tian, and T. Tatsuma, 'Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,' Journal of the American Chemical Society 127, 7632-7637 (2005). [44] X. Chen, H.-Y. Zhu, J.-C. Zhao, Z.-T. Zheng, and X.-P. Gao, 'Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports,' Angewandte Chemie-International Edition 47, 5353-5356 (2008). [45] P. Christopher, H. Xin, and S. Linic, 'Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures,' Nature Chemistry 3, 467-472 (2011). [46] T. Wu, S. Liu, Y. Luo, W. Lu, L. Wang, and X. Sun, 'Surface plasmon resonance-induced visible light photocatalytic reduction of graphene oxide: Using Ag nanoparticles as a plasmonic photocatalyst,' Nanoscale 3, 2142-2144 (2011). [47] D. Schurch, A. Currao, S. Sarkar, G. Hodes, and G. Calzaferri, 'The silver chloride photoanode in photoelectrochemical water splitting,' Journal of Physical Chemistry B 106, 12764-12775 (2002). [48] L. Han, P. Wang, C. Zhu, Y. Zhai, and S. Dong, 'Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst,' Nanoscale 3, 2931-2935 (2011). [49] N. Kakuta, N. Goto, H. Ohkita, and T. Mizushima, 'Silver bromide as a photocatalyst for hydrogen generation from CH3OH/H2O solution,' Journal of Physical Chemistry B 103, 5917-5919 (1999). [50] C. Hu, Y. Q. Lan, J. H. Qu, X. X. Hu, and A. M. Wang, 'Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria,' Journal of Physical Chemistry B 110, 4066-4072 (2006). [51] J. Yu, G. Dai, and B. Huang, 'Fabrication and Characterization of Visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 TiO2 nanotube arrays,' Journal of Physical Chemistry C 113, 16394-16401 (2009). [52] A. Zielinska, E. Kowalska, J. W. Sobczak, I. Lacka, M. Gazda, B. Ohtani, J. Hupka, and A. Zaleska, 'Silver-doped TiO2 prepared by microemulsion method: Surface properties, bio- and photoactivity,' Separation and Purification Technology 72, 309-318 (2010). [53] Y. Zhou, D. M. King, X. Liang, J. Li, and A. W. Weimer, 'Optimal preparation of Pt/TiO2 photocatalysts using atomic layer deposition,' Applied Catalysis B-Environmental 101, 54-60 (2010). [54] R. Li, W. Chen, H. Kobayashi, and C. Ma, 'Platinum-nanoparticle-loaded bismuth oxide: an efficient plasmonic photocatalyst active under visible light,' Green Chemistry 12, 212-215 (2010). [55] V. Rodriguez-Gonzalez, R. Zanellac, G. del Angela, and R. Gomeza, 'MTBE visible-light photocatalytic decomposition over Au/TiO2 and Au/TiO2-Al2O3 sol-gel prepared catalysts,' Journal of Molecular Catalysis a-Chemical 281, 93-98 (2008). [56] W. Hou, W. H. Hung, P. Pavaskar, A. Goeppert, M. Aykol, and S. B. Cronin, 'Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions,' Acs Catalysis 1, 929-936 (2011). [57] S. Sun, W. Wang, L. Zhang, M. Shang, and L. Wang, 'Ag@C core/shell nanocomposite as a highly efficient plasmonic photocatalyst,' Catalysis Communications 11, 290-293 (2009). [58] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, 'Room-temperature ultraviolet nanowire nanolasers,' Science 292, 1897-1899 (2001). [59] Z. R. Dai, Z. W. Pan, and Z. L. Wang, 'Novel nanostructures of functional oxides synthesized by thermal evaporation,' Advanced Functional Materials 13, 9-24 (2003). [60] M. J. Zheng, L. D. Zhang, G. H. Li, and W. Z. Shen, 'Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique,' Chemical Physics Letters 363, 123–128(2002). [61] W. Lee, M. C. Jeong, and J. M. Myoung, 'Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation,' Acta Materialia 52, 3949-3957 (2004). [62] W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, 'Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,' Applied Physics Letters 80, 4232-4234 (2002). [63] X. Liu, X. H. Wu, H. Cao, and R. P. H. Chang, 'Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition,' Journal of Applied Physics 95, 3141-3147 (2004). [64] Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, and P. H. Fleming, 'Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy,' Applied Physics Letters 81, 3046-3048 (2002). [65] Q. C. Li, V. Kumar, Y. Li, H. T. Zhang, T. J. Marks, and R. P. H. Chang, 'Fabrication of ZnO nanorods and nanotubes in aqueous solutions,' Chemistry of Materials 17, 1001-1006 (2005). [66] M. Guo, P. Diao, X. D. Wang, and S. M. Cai, 'The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films,' Journal of Solid State Chemistry 178, 3210-3215 (2005). [67] D. S. Boyle, K. Govender, and P. O'Brien, 'Novel low temperature solution deposition of perpendicularly orientated rods of ZnO: substrate effects and evidence of the importance of counter-ions in the control of crystallite growth,' Chemical Communications 38, 80-81 (2002). [68] L. Vayssieres, 'Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,' Advanced Materials 15, 464-466 (2003). [69] C.-Y. Chang, and N.-L. Wu, 'Process analysis on photocatalyzed dye decomposition for water treatment with TiO2-coated rotating disk reactor,' Industrial & Engineering Chemistry Research 49, 12173-12179 (2010). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16263 | - |
| dc.description.abstract | 自從1969年「本多-藤島」效應被發現以來,光觸媒已運用在廢水處理、除臭、殺菌、氮化物分解、防污及氫能源的生產上。然而,光觸媒的轉換效率不佳且無法有效提升也限制了其更廣泛的運用於人類文明中。因此本研究設計了利用化學水熱法在光碟片塑膠基板上以低溫製成大面積氧化鋅奈米柱,並以經熱處理之不連續金作為輔助,進行甲基橙染料之光分解實驗。並利用電子顯微鏡、原子力顯微鏡、X光繞射儀以及紫外-可見光光譜來分析製作出的樣品。本實驗亦利用一特殊設計之旋轉盤反應器,提升分解物在光觸媒表面上的質量轉移效率。在染料之光分解的實驗結果顯示,在不連續之金膜上,奈米金結構於特定波長的光照射下,會產生表面電漿共振現象,進而使侷域性的電磁場增強,使得甲基橙降解反應效率之提升,顯示其光觸媒活性之增益。 | zh_TW |
| dc.description.abstract | Since the Honda-Fujishima effect discovered in 1969, the photocatalysis has been utilized in water treatment, deodorization, anti-bacteria, NOX decomposition, dirtiness prevention and production of hydrogen energy. However, low and hardly improved photocatalytic conversion efficiency limits its widely application in human civilization. Therefore, a large scale of ZnO nanorods are synthesized on a plastic optical disc substrate by hydrothermal method at low temperature. By discontinuous gold film supported, a methyl orange degradation experiment was conducted. SEM, AFM, XRD and UV/Vis spectroscopy were used to characterized the sample. A specially designed rotating disk reactor was developed to achieve high mass transfer rate and to increase the process efficiency. Localized suface plasmons were generated in the gold nanostructure on discontinuous gold film with specific light illumination. The experimental results show that by discontinuous gold film supported, the photocatalytic conversion rate does increase both with UV and UV/Vis light illumination. It shows that the LSP enhance the near electromagnetic field, and then increased the photocatalytic activities. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:07:15Z (GMT). No. of bitstreams: 1 ntu-101-R99245011-1.pdf: 2609336 bytes, checksum: 03f42cd67e060b3c781f9b07bc683e5b (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
中文摘要 i ABSTRACT ii 目錄 iii 圖目錄 vi 表目錄 viii 第一章 緒論 1 1.1 前言 1 1.2 半導體光觸媒 2 1.2.1 半導體光觸媒之發現與原理 2 1.2.2 常見之半導體光觸媒 5 1.2.3 光觸媒之發展與應用 7 1.3 金屬表面電漿共振 8 1.3.1 發展背景 8 1.3.2 介電物質與金屬介面的表面電漿共振 9 1.3.3 侷域性表面電漿共振 14 1.4 表面電漿共振光觸媒 17 1.4.1 表面電漿共振光觸媒之工作原理 17 1.4.2 近期發表之表面電漿共振光觸媒 21 1.5 研究動機 22 第二章 實驗架構 23 2.1 前言 23 2.2 四靶濺鍍系統 23 2.2.1 四靶濺鍍系統簡介 23 2.2.2 薄膜製作流程 24 2.3 常見之氧化鋅奈米柱合成方法 26 2.3.1 氣液固法 27 2.3.2 熱蒸鍍法 27 2.3.3 模板輔助成長 27 2.3.4 化學氣相沈積法 28 2.3.5 分子束磊晶法 28 2.3.6 水熱法 29 2.4 水熱法合成氧化鋅奈米柱 30 2.4.1 氧化鋅奈米柱樣品製作 30 2.4.2 表面電漿共振光觸媒光碟片樣品製作 31 2.5 旋轉盤反應器系統 31 2.5.1 旋轉盤反應器介紹 31 2.5.2 旋轉盤反應器實驗架構 32 第三章 實驗結果與分析 35 3.1 前言 35 3.2 水熱法合成氧化鋅奈米柱於光碟基板 35 3.2.1 氧化鋅奈米柱樣品分析 35 3.2.2 表面電漿共振光觸媒光碟片特性分析 38 3.3 甲基橙光降解實驗結果與分析 40 3.3.1 紫外光光分解甲基橙 40 3.3.2 可見光輔助表面電漿共振光觸媒光分解甲基橙 43 第四章 結論 46 參考文獻 47 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光觸媒 | zh_TW |
| dc.subject | 廢水處理 | zh_TW |
| dc.subject | 旋轉盤反應器 | zh_TW |
| dc.subject | 表面電漿共振 | zh_TW |
| dc.subject | 氧化鋅 | zh_TW |
| dc.subject | Plasmonics | en |
| dc.subject | Rotating Disk Reactor | en |
| dc.subject | Water Treatment | en |
| dc.subject | Zinc Oxide | en |
| dc.subject | Photocatalysis | en |
| dc.title | 新穎表面電漿光觸媒光碟片 | zh_TW |
| dc.title | Novel Plasmonic Photocatalytic Optical Disc | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳紀聖(Jeffrey Chi-Sheng Wu),周趙遠鳳(Yuan-Fong Chau),董奕鍾(Yi-Chung Tung) | |
| dc.subject.keyword | 光觸媒,氧化鋅,表面電漿共振,旋轉盤反應器,廢水處理, | zh_TW |
| dc.subject.keyword | Photocatalysis,Zinc Oxide,Plasmonics,Rotating Disk Reactor,Water Treatment, | en |
| dc.relation.page | 54 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-07-23 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
