Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16256
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳進庭
dc.contributor.authorJun-Yan Chenen
dc.contributor.author陳俊諺zh_TW
dc.date.accessioned2021-06-07T18:06:59Z-
dc.date.copyright2012-07-26
dc.date.issued2012
dc.date.submitted2012-07-24
dc.identifier.citation1. Dougherty, T. J. et al. Photodynamic therapy. J Natl Cancer Inst 90, 889-905 (1998).
2. Finsen, N. R. Phototherapy. . Edward Arnold, London (1901).
3. Raab, O. Uber die Wirkung fluoreszierender Stoffe auf Infusorien. Zeitung Biol. 39, 524-526 (1900).
4. Prime, J. Les accidents toxiques par l’eosinate de sodium. Jouve and Boyer (1900).
5. von Tappeiner, H. Jesionek, A. Therapeutische versuche mit fluoreszierenden stoffen. Muench Med. Wochenschr 47, 2042-2044 (1903).
6. von Tappeiner, H. Jesionek, A. Die sensiblilisierende Wirkung fluoreszierender Substanzer Gesammte Untersuchungen uber die photodynamische Erscheinerung. Voger, F. C., Leipzig (1907).
7. Hausmann, W. Die sensiblisierende Wirkung des Hematoporphyrins. Biochemistry Zeitung 30, 276–316 (1911).
8. Meyer–Betz, F. Untersuchungen uber die biologische photodynamische Wirkung des Hematoporphyrins und anderer Derivative des Blut und Galenafarbstoffs. Dtsch Arch. Klin. 112, 476-503 (1913).
9. Lipson, R. L., Baldes, E. J. The photodynamic properties of a particular hematoporphyrin derivative. Archives of Dermatology 82, 508-516 (1960).
10. Lipson, R. L, Baldes, E. J. and Olsen, A. M. The use of an derivative of hematoporphyrin in tumor detection. Journal of the National Cancer Institute 26, 1-11 (1961).
11. Schwartz, S. K., Abolon, K. and Vermund, H. Some relationships of porphyrins, X-rays and tumors. University of Minnesota Medical Bulletin 27, 7-8 (1955).
12. Dougherty, T. J. et al. Photodynamic Therapy. Journal of the National Cancer Institute 90, 889-905 (1998).
13. Kelly, J. F., Snell, M. E. Hematoporphyrin derivative: a possible aid in the diagnosis and therapy of carcinoma of the bladder. Journal of Urology 115, 150-151 (1976).
14. Dougherty, T. J. et al. Photoradiation Therapy for the Treatment of Malignant Tumors. Cancer Research 38, 2628-2635 (1978).
15. McCaughan, J. S. Jr., Hicks, W., Laufman, L., May, E., Roach, R. Palliation of esophageal malignancy with photoradiation therapy. Cancer 54, 2905-2910 (1984).
16. Balchum, O. J, Doiron, D. R., Huth, G. C. Photoradiation therapy of endobronchial lung cancers employing the photodynamic action of hematoporphyrin derivative. Lasers in Surgery and Medicine 4, 13-30 (1984).
17. Hayata, Y., Kato, H., Okitsu, H., Kawaguchi M., Konaka, C. Photodynamic therapy with hematoporphyrin derivative in cancer of the upper gastrointestinal tract. Seminars in Surgical Oncology 1, 1-11 (1985).
18. Gomer, C. J. and Razum, N. J. Acute Skin Response in Albino mice following Porphyrin Photosensitization under Oxic and Anoxic Condutions. Photochemistry and Photobiology 40, 435-439 (1984).
19. Agostinis, P. et al. Photodynamic therapy of cancer: An update. CA: A Cancer Journal for Clinicians 61, 250-281 (2011).
20. Allison, R. R. and Sibata, C. H. Oncologic photodynamic therapy photosensitizers: A clinical review. Photodiagnosis and Photodynamic Therapy 7, 61-75 (2010).
21. De Rosa, F. and Bentley, M. V. Photodynamic Therapy of Skin Cancers: Sensitizers, Clinical Studies and Future Directives. Pharmaceutical Research 17, 1447-1455 (2000).
22. Kennedy, J. C., Marcus S. L., and Pottier R. H. Photodynamic Therapy (PDT) and Photodiagnosis (PD) Using Endogenous Photosensitization Induced by 5-Aminolevulinic Acid (ALA): Mechanisms and Clinical Results. Journal of Clinical Laser Medicine & Surgery 14, 289-304 (1996).
23. Foley, P. Clinical efficacy of methyl aminolevulinate (Metvix®) photodynamic therapy. Journal of Dermatological Treatment 14, 15-22 (2003).
24. Hamblin, M. R., Newman E. L. On the mechanism of the tumour-localising effect in photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology 23, 3-8 (1994).
25. Iyer, A.K. et al. Polymeric micelles of zinc protoporphyrin for tumor targeted delivery based on EPR effect and singlet oxygen generation. Journal of Drug Targeting 15, 496-506 (2007).
26. Jori, G. and Reddi, E. The role of lipoproteins in the delivery of tumour-targeting photosensitizers. International Journal of Biochemistry 25, 1369-1375 (1993).
27. May B. K., Bawden M. J. Control of heme biosynthesis in animals. Seminars in Hematology 26, 150-156 (1989).
28. Scotto, A. W., Chang, L. F. and Beattie, D.S. The characterization and submitochondrial localization of delta-aminolevulinic acid synthase and an associated amidase in rat liver mitochondria using an improved assay for both enzymes. Journal of Biological Chemistry 258, 81-90 (1983).
29. Leibovici, L., Schoenfeld, N., Yehoshua, H. A., Mamet, R., Rakowsky, E., Shindel, A., Atsmon, A. Activity of porphobilinogen deaminase in peripheral blood mononuclear cells of patients with metastatic cancer. Cancer 62, 2297-2300 (1988).
30. Schoenfeld, N., Epstein, O., Lahav R. et al. The heme biosynthetic pathway in lymphocytes of patients with malignant lymphoproliferative disorders. Cancer Letters 43, 43-48 (1988).
31. Kondo, M., Hirota, N., Takaoka, T. and Kajiwara, M. Heme-biosynthetic enzyme activities and porphyrin accumulation in normal liver and hepatoma cell lines of rat. Cell Biology and Toxicology 9, 95-105 (1993).
32. Van Hillegersberg, R., Van den Berg, J. W., Kort, W. J., Terpstra, O.T., Wilson, J. H. Selective accumulation of endogenously produced porphyrins in a liver metastasis model in rats. Gastroenterology 103, 647-651 (1992).
33. el-Sharabasy, M. M., el-Waseef, A. M., Hafez, M. M. and Salim, S. A. Porphyrin metabolism in some malignant diseases. British journal of cancer 65, 409-412 (1992).
34. Malik, Z. and Lugaci, H. Destruction of erythroleukaemic cells by photoactivation of endogenous porphyrins. British Journal of Cancer 56, 589–595 (1987).
35. Kennedy, J. C., Pottier, R. H. and Pross, D.C. Photodynamic therapy with endogenous protoporphyrin: IX: Basic principles and present clinical experience. Journal of Photochemistry and Photobiology B: Biology 6, 143-148 (1990).
36. Morton, C. A., Brown S.B., Collins S. et al. Guidelines for topical photodynamic therapy: report of a workshop of the British Photodermatology Group. British Journal of Dermatology 146, 552-567 (2002).
37. Morton, C.A. Whitehurst C. Moseley H. et al. Comparison of photodynamic therapy with cryotherapy in the treatment of Bowen's disease. British Journal of Dermatology 135, 766-771 (1996).
38. Salim, A., Leman, J. A., McColl, J. H., Chapman, R. and Morton, C. A. Randomized comparison of photodynamic therapy with topical 5-fluorouracil in Bowen's disease. British Journal of Dermatology 148, 539-543 (2003).
39. Peng, Q., Warloe T. et al. 5-Aminolevulinic acid-based photodynamic therapy. Cancer 79, 2282-2308 (1997).
40. Thissen, M. R. T. M., Schroeter, C. A. and Neumann, H. A. M. Photodynamic therapy with delta-aminolaevulinic acid for nodular basal cell carcinomas using a prior debulking technique. British Journal of Dermatology 142, 338-339 (2000).
41. Morton, C., Horn, M., Leman, J., Tack, B., Bedane, C., Tjioe, M., Ibbotson, S., Khemis, A., Wolf, P. Comparison of topical methyl aminolevulinate photodynamic therapy with cryotherapy or fluorouracil for treatment of squamous cell carcinoma in situ. Results of a multicenter randomized trial. Archives of Dermatology 142, 729-735 (2006).
42. Leman, J. A., Dick, D. C. and Morton, C. A. Topical 5-ALA photodynamic therapy for the treatment of cutaneous T-cell lymphoma. Clinical and Experimental Dermatology 27, 516-518 (2002).
43. Edström, D. W., Porwita, A., Ros, A. M. Photodynamic therapy with topical 5-aminolevulinic acid for mycosis fungoides: clinical and histological response. Acta Dermato-Venereologica 81, 184-188 (2001).
44. Shieh, S. et al. Photodynamic therapy for the treatment of extramammary Paget's disease. British Journal of Dermatology 146, 1000-1005 (2002).
45. Alexiades-Armenakas, M. Long-pulsed dye laser-mediated photodynamic therapy combined with topical therapy for mild to severe comedonal, inflammatory, or cystic acne. Journal of Drugs in Dermatology : JDD 5, 45-55 (2006).
46. Fehr, M. K. et al. Photodynamic therapy of vulvar and vaginal condyloma and intraepithelial neoplasia using topically applied 5-aminolevulinic acid. Lasers in Surgery and Medicine 30, 273-279 (2002).
47. Gardlo, K. et al. Treatment of cutaneous leishmaniasis by photodynamic therapy. Journal of the American Academy of Dermatology 48, 893-896 (2003).
48. Ghaffarifar, F., Jorjani O., Mirshams M., Miranbaygi M. H., Hosseini Z. K. Photodynamic therapy as a new treatment of cutaneous leishmaniasis. Eastern Mediterranean Health Journal 12, 902-908 (2006).
49. Baumgartner, R., Kriegmair, M., Knuechel, R. et al. Delta-ALA-assisted fluorescence detection of cancer in the urinary bladder. Proceedings of SPIE 2081, 74-80 (1994).
50. Kaliszewski, M. et al. Biological activity of 5-aminolevulinic acid and its methyl ester after storage under different conditions. Journal of Photochemistry and Photobiology B: Biology 87, 67-72 (2007).
51. Strand, L. J., Felsher, B. F., Redeker, A. G. and Marver, H. S. Heme biosynthesis in intermittent acute prophyria: decreased hepatic conversion of porphobilinogen to porphyrins and increased delta aminolevulinic acid synthetase activity. Proceedings of National Academy of Sciences 67, 1315-1320 (1970).
52. Butler, A. R. and George, S. The nonenzymatic cyclic dimerisation of 5-aminolevulinic acid. Tetrahedron 48, 7879-7886 (1992).
53. Jaffe, E. K. and Rajagopalan, J. S. Nuclear magnetic resonance studies of 5-aminolevulinate demonstrate multiple forms in aqueous solution. Bioorganic Chemistry 18, 381-394 (1990).
54. Rodriguez, M. N., Huettmann, G. and Diddens, H. C. Chemical instability of 5-aminolevulimc acid (ALA) in aqueous solution. 5th International Photodynamic Association Biennial Meeting 2371, 204-209 (1994).
55. Elfsson, B. et al. Stability of 5-aminolevulinic acid in aqueous solution. European Journal of Pharmaceutical Sciences 7, 87-91 (1999).
56. de Blois, A. W., Grouls, R. J. E., Ackerman, E. W. and Wijdeven, W. J. A. Development of a Stable Solution of 5-Aminolaevulinic Acid for Intracutaneous Injection in Photodynamic Therapy. Lasers in Medical Science 17, 208-215 (2002).
57. Novo, M., Hüttmann, G. and Diddens, H. Chemical instability of 5-aminolevulinic acid used in the fluorescence diagnosis of bladder tumours. Journal of Photochemistry and Photobiology B: Biology 34, 143-148 (1996).
58. Bunke, A. et al. Degradation mechanism and stability of 5-aminolevulinic acid. Journal of Pharmaceutical Sciences 89, 1335-1341 (2000).
59. McCarron, P. A., Donnelly, R. F., Andrews, G. P. and Woolfson, A. D. Stability of 5-aminolevulinic acid in novel non-aqueous gel and patch-type systems intended for topical application. Journal of Pharmaceutical Sciences 94, 1756-1771 (2005).
60. de Campos Araújo, L. M. P., Thomazine, J. A. and Lopez, R. F. V. Development of microemulsions to topically deliver 5-aminolevulinic acid in photodynamic therapy. European Journal of Pharmaceutics and Biopharmaceutics 75, 48-55 (2010).
61. Mauzerall, D. and Granick, S. The ourrence and determination of δ-aminolevulinic acid and porphobilinogen in urine. Journal of Biological Chemistry 219, 435-446 (1956).
62. Moore, D. J. and Labbe, R. F. A Quantitative assay for urinary porphobilinogen. Clinical Chemistry 10, 1105-1111 (1964).
63. Meisch, H. U., Reinle, W. and Wolf, U. Determination of 5-aminolevulinic acid in biological samples by high-performance liquid chromatography. Analytical Biochemistry 149, 29-34 (1985).
64. Meisch, H. U. and Wannemacher, B. Fluorometric determination of 5-aminolevulinic acid after derivatization with o-phthaldialdehyde and separation by reversed-phase high-performance liquid chromatography. Analytical Chemistry 58, 1372-1375 (1986).
65. Okayama, A., Lin K., Goto S. Fluorophotometric determination of 5-aminolevulinic acid in urine by reversed-phase highperformance liquid chromatography. Igaku no ayumi 139, 845-846 (1986).
66. Minder, E. I. Measurement of 5-aminolaevulinic acid by reversed phase HPLC and fluorescence detection. Clinica Chimica Acta 161, 11-18 (1986).
67. Betnér, I. and Földi, P. New automated amino acid analysis by HPLC precolumns derivatization with fluorenylmethyloxycarbonylchloride. Chromatographia 22, 381-387 (1986).
68. Tomokuni, K., Ichiba, M., Hirai, Y. and Hasegawa, T. Optimized liquid- chromatographic method for fluorometric determination of urinary delta- aminolevulinic acid in workers exposed to lead. Clinical Chemistry 33, 1665-1667 (1987).
69. Sakai, T. and Morita, Y. δ-Aminolevulinic acid in plasma or whole blood as a sensitive indicator of lead effects, and its relation to the other heme-related parameters. International Archives of Occupational and Environmental Health 68, 126-132 (1996).
70. Donnelly, R. F., Morrow, D. I. J., McCarron, P. A., Juzenas, P. and Woolfson, A. D. Pharmaceutical analysis of 5-aminolevulinic acid in solution and in tissues. Journal of Photochemistry and Photobiology B: Biology 82, 59-71 (2006).
71. Kajiwara, M., Hara, K., Takatori, K. and Matsumoto, K. Revised structure of a delta-aminolevulinic acid derivative. Clinical Chemistry 39, 1867-1871 (1993).
72. Giuntini, F., Bourré, L., MacRobert, A. J., Wilson, M. and Eggleston, I. M. Quantitative determination of 5-aminolaevulinic acid and its esters in cell lysates by HPLC-fluorescence. Journal of Chromatography B 875, 562-566 (2008).
73. Luo, J. L., Deka, J. and Lim, C. K. Determination of 5-aminolaevulinic acid dehydratase activity in erythrocytes and porphobilinogen in urine by micellar electrokinetic capillary chromatography. Journal of Chromatography A 722, 353-357 (1996).
74. Bunke, A., Schmid, H., Burmeister, G., Merkle, H. P. and Gander, B. Validation of a capillary electrophoresis method for determination of 5-aminolevulinic acid and degradation products. Journal of Chromatography A 883, 285-290 (2000).
75. Bunke, A. et al. Degradation mechanism and stability of 5-aminolevulinic acid. Journal of Pharmaceutical Sciences 89, 1335-1341 (2000).
76. Kim, J. N., Yun, J. S. and Ryu, H. W. Simultaneous determination of δ-aminolevulinic acid, porphobilinogen, levulinic acid and glycine in culture broth by capillary electrophoresis. Journal of Chromatography A 938, 137-143 (2001).
77. Weinberger, R. Practical Capillary Electrophoresis (Second Edition). (Academic Press, San diego,CA; 2000 ).
78. Britz-McKibbin, P., Bebault, G. M. and Chen, D. D. Y. Velocity-difference induced focusing of nucleotides in capillary electrophoresis with a dynamic pH junction. Analytical Chemistry 72, 1729-1735 (2000).
79. Britz-McKibbin, P., Otsuka, K. and Terabe, S. On-line focusing of flavin derivatives using dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection. Analytical Chemistry 74, 3736-3743 (2002).
80. Britz-McKibbin, P. and Chen, D. Velocity-difference induced focusing of xanthine and purine metabolites by capillary electrophoresis using a dynamic pH junction. Chromatographia 57, 87-93 (2003).
81. Monton, M. R. N., Imami, K., Nakanishi, M., Kim, J. B. and Terabe, S. Dynamic pH junction technique for on-line preconcentration of peptides in capillary electrophoresis. Journal of Chromatography A 1079, 266-273 (2005).
82. Kazarian, A. A., Hilder, E. F. and Breadmore, M. C. Online sample pre-concentration via dynamic pH junction in capillary and microchip electrophoresis. Journal of Separation Science 34, 2800-2821 (2011).
83. Jain, P. and Banga, A. K. Inhibition of crystallization in drug-in-adhesive-type transdermal patches. International Journal of Pharmaceutics 394, 68-74 (2010).
84. Shivaraj, A., Panner Selvam, R., Tamiz Mani, T. and Sivakumar T. Design and evaluation of transdermal drug delivery of ketotifen fumarate. International Journal of Pharmaceutical and Biomedical Research 1, 42-47 (2010).
85. Gupta, S. P. and Jain, S. K. Development of matrix-membrane transdermal drug delivery system for atenolol. Drug Delivery 11, 281-286 (2004).
86. Csóka, G., Marton, S., Zelko, R., Otomo, N. and Antal, I. Application of sucrose fatty acid esters in transdermal therapeutic systems. European Journal of Pharmaceutics and Biopharmaceutics 65, 233-237 (2007).
87. Raj Singh, T. R., Garland M. J. et al. Influence of a pore-forming agent on swelling, network parameters, and permeability of poly(ethylene glycol)-crosslinked poly(methyl vinyl ether-co-maleic acid) hydrogels: Application in transdermal delivery systems. Journal of Applied Polymer Science 125, 2680–2694 (2012).
88. Koland, M., Sandeep, V. P. and Charyulu, N. R. Fast dissolving sublingual films of ondansetron hydrochloride: effect of additives on in vitro drug release and mucosal permeation. Journal of Young Pharmacists 2, 216-222 (2010).
89. Lee, T. W., Kim, J. C. and Hwang, S. J. Hydrogel patches containing Triclosan for acne treatment. European Journal of Pharmaceutics and Biopharmaceutics 56, 407-412 (2003).
90. Nicoli, S., Penna, E., Padula, C., Colombo, P. and Santi, P. New transdermal bioadhesive film containing oxybutynin: In vitro permeation across rabbit ear skin. International Journal of Pharmaceutics 325, 2-7 (2006).
91. Mittal, A., Sara, U. S., Ali, A. and Mohammed, A. Design, development, physicochemical, in vitro and in vivo evaluation of monolithic matrix type transdermal patches containing nitrendipine. Pharmaceutical Development and Technology 14, 422-434 (2009).
92. Chang, S. F., Yang, Y. T., Li, W. L., Lin, C. T. and Tsai, T. Enhancement of 5-aminolevulinic acid-induced photodynamic therapy by a bioadhesive polymer. Journal of Dental Sciences 5, 30-35 (2010).
93. Sheth, N. S., Mistry, R. B. Formulation and evaluation of transdermal patches and to study permeation enhancement effect of eugenol. Journal of Applied Pharmaceutical Science 1, 96-101 (2011).
94. Padula, C. et al. Bioadhesive film for the transdermal delivery of lidocaine: in vitro and in vivo behavior. Journal of Controlled Release 88, 277-285 (2003).
95. Ah, Y. C., Choi, J. K., Choi, Y. K., Ki, H. M. and Bae, J. H. A novel transdermal patch incorporating meloxicam: In vitro and in vivo characterization. International Journal of Pharmaceutics 385, 12-19 (2010).
96. Limpongsa, E. and Umprayn, K. Preparation and evaluation of diltiazem hydrochloride diffusion-controlled transdermal delivery System. AAPS PharmSciTech 9, 464-470 (2008).
97. Hsieh, B. C., Chen, R. L. C., Chen, C. T., Chen, J. Y., Tsai T. Simple and efficient quantification of 5-aminolevulinic acid by capillary electrophoresis using dynamic pH junction technique. (In press).
98. Juzeniene, A., Juzenas, P., Iani, V. and Moan, J. Topical application of 5-aminolevulinic acid and its methylester, hexylester and octylester derivatives: considerations for dosimetry in mouse skin model. Photochemistry and Photobiology 76, 329-334 (2002).
99. van den Akker, J. T. H. M., Iani, V., Star, W. M., Sterenborg, H. J. C. M. and Moan, J. Topical application of 5-aminolevulinic acid hexyl ester and 5-aminolevulinic acid to normal nude mouse skin: differences in protoporphyrin IX fluorescence kinetics and the role of the stratum corneum. Photochemistry and Photobiology 72, 681-689 (2000).
100. Morrow, D. I. J. et al. Novel patch-based systems for the localised delivery of ALA-esters. Journal of Photochemistry and Photobiology B: Biology 101, 59-69 (2010).
101. Juzeniene, A., Juzenas, P., Ma, L. W., Iani, V. and Moan, J. Topical application of 5-aminolaevulinic acid, methyl 5-aminolaevulinate and hexyl 5-aminolaevulinate on normal human skin. British Journal of Dermatology 155, 791-799 (2006).
102. Hauschild, A. et al. Effective photodynamic therapy of actinic keratoses on the head and face with a novel, self-adhesive 5-aminolaevulinic acid patch. Experimental Dermatology 18, 116-121 (2009).
103. Robinson, D. J., de Bruijn, H. S., Johannes de Wolf, W., Sterenborg, H. J. C. M. and Star, W. M. Topical 5-aminolevulinic acid-photodynamic therapy of hairless mouse skin using two-fold illumination schemes: PpIX fluorescence kinetics, photobleaching and biological effect. Photochemistry and Photobiology 72, 794-802 (2000).
104. Thissen, M. R. et al. PpIX fluorescence kinetics and increased skin damage after intracutaneous injection of 5-aminolevulinic acid and repeated illumination. Journal of Investigative Dermatology 118, 239-245 (2002).
105. De Rosa, F. S., Marchetti, J. M., Thomazini, J. A., Tedesco, A. C. and Bentley, M. V. L. B. A vehicle for photodynamic therapy of skin cancer: influence of dimethylsulphoxide on 5-aminolevulinic acid in vitro cutaneous permeation and in vivo protoporphyrin IX accumulation determined by confocal microscopy. Journal of Controlled Release 65, 359-366 (2000).
106. Divaris D. X., Kennedy J. C., and Pottier R. H. Phototoxic damage to sebaceous glands and hair follicles of mice after systemic administration of 5-aminolevulinic acid correlates with localized protoporphyrin IX fluorescence. The American Journal of Pathology 136, 891-897 (1990).
107. Mikolajewska, P., Donnelly, R. F., Garland, M. J., Morrow, D. I. J., Singh, T. R. R., Iani V., Moan J. and Juzeniene A. Microneedle pre-treatment of human skin improves 5-aminolevulininc acid (ALA)- and 5-aminolevulinic acid methyl ester (MAL)-induced PpIX production for topical photodynamic therapy without increase in pain or erythema. Pharmaceutical Research 27, 2213-2220 (2010).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16256-
dc.description.abstract光動力治療(photodynamic therapy, PDT)是具潛力的腫瘤治療方法,五胺基酮戊酸(5-aminolevulinic acid, ALA)為目前臨床上常使用於光動力治療的光感物質前驅藥物。ALA可經血紅素合成路徑而轉化為光感物質原紫質環IX(protoporphyrin IX, PpIX)。但ALA安定性並不佳,目前市面上常見之ALA製劑需使用前預混或開封一週後拋棄。因此開發安定且便利的ALA劑型有其需要性。另一方面,分析ALA含量常需將ALA衍生為螢光產物,再以高效液相層析儀(high-performance liquid chromatography, HPLC)進行分析,在分析上除需費時費工製作螢光衍生物,分析上也易受雜訊干擾。所以找尋新的ALA分析方法以增加分析之便利性,亦有其必要性。本研究建立新的ALA含量及降解產物的分析方法,與常用之ALA衍生搭配HPLC分析方法比較,兩者線性相關(R2)>0.9。此外本研究亦篩選適合於藥物使用之賦形劑,藉由細胞試驗來探討這些賦形劑是否適合做為ALA製劑之材料,並就做成之成品進行物化性質探討及動物試驗。zh_TW
dc.description.abstractPhotodynamic therapy is a therapeutic modality for cancer treatment. 5-Aminolevulinic acid (ALA) is currently used as a photosensitizer precursor in clinical application. ALA is not a photosensitizer and converted into the photosensitizer, protoporphyrin IX (PpIX), via heme biosynthetic pathway. Due to the poor stability, current products of ALA either has to be used prior to mix with the solvent vehicle or has to be discarded one week after opening. For these reasons, it is necessary to develop a stable and convenient ALA dosage form. Meanwhile, due to the weak absorbance and high noise, the fluorescent derivatives of ALA is prepared and further analyzed in HPLC. However, such analysis method is time and labor comsuming, and easily interfered by noise. In this study, a new method for analyzing ALA content and its degradation was developed, and the linear regression correlation (R2) to the HPLC method is greater than 0.9. In addition, excipient screening and cell culture tests were carried out to select suitable excipients for ALA dosage form. The final preparation was examined for its physiochemical properties and in an animal model.en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:06:59Z (GMT). No. of bitstreams: 1
ntu-101-R99b22053-1.pdf: 1975705 bytes, checksum: 83e60cbf07a7fd8cbe5efca07cbad83d (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents摘要 I
Abstract II
圖目錄 VI
表目錄 VII
第一章 緒論 1
1.1光動力治療(Photodynamic therapy, PDT) 1
1.1.1發展起源 1
1.1.2光動力治療的作用機制 2
1.1.3光感物質 3
1.1.4五胺基酮戊酸(5-aminolevulinic acid, ALA)在體內扮演的角色 4
1.1.5 ALA-PDT在臨床的使用 5
1.2 5-Aminolevulinic acid的安定性與分析 6
1.2.1 ALA的降解機制 7
1.2.2影響ALA降解路徑的因子 7
1.2.3 ALA分析 9
1.3研究動機與目的 12
第二章 材料與方法 13
2.1藥品與儀器 13
2.1.1藥品 13
2.1.2細胞培養試劑 14
2.1.3儀器 14
2.2細胞株 15
2.2.1細胞繼代培養 15
2.2.3細胞計數 16
2.3 5-Aminolevulinic acid分析 16
2.3.1 HPLC管柱前衍生(ALA衍生) 16
2.3.2 HPLC樣本測定 16
2.3.3毛細管電泳 17
2.4劑型開發 17
2.4.1賦形劑篩選 17
2.4.2賦形劑對細胞累積PpIX之影響 18
2.4.3薄膜製程 18
2.4.4薄膜保存 18
2.5薄膜特性分析 19
2.5.1藥物滲透測定 19
2.5.2樣本pH之測定 19
2.5.3薄膜含水率之測定 19
2.5.4薄膜厚度測定 20
2.5.5 5-Aminolevulinic acid安定性 20
2.6動物試驗 20
2.6.1動物與腫瘤模式 20
2.6.2給藥流程 20
2.6.3 Protoporphyrin IX之測定 21
2.6.4樣本包埋、冷凍切片及共軛焦顯微鏡之方法 21
2.7 統計分析 21
第三章 結果 22
3.1劑型開發 22
3.1.1薄膜賦形劑篩選 22
3.1.2塑化劑賦形劑篩選 22
3.1.3賦形劑對細胞累積Protoporphyrin IX的影響 23
3.1.4最佳化具潛力配方 23
3.2薄膜特性分析 24
3.2.1薄膜藥物滲透 24
3.2.2各薄膜之pH、含水量及厚度 25
3.2.3 HPMC薄膜藥物析出 26
3.2.4 ALA在劑型中之安定性分析 26
3.3動物試驗 27
3.3.1評估各薄膜在動物模式上累積PpIX之差異 27
3.3.2不同濃度ALA的PCM薄膜在動物模式累積PpIX圖譜 27
3.3.3評估不同薄膜使用時間及劑量在動物模式上累積PpIX之差異 28
3.3.5以冷凍切片觀察PpIX在組織的分佈 28
第四章 討論 29
4.1劑型開發 29
4.1.1賦形劑篩選 29
4.1.2賦形劑增進細胞累積PpIX 29
4.2薄膜特性分析 30
4.2.1薄膜的物理性質 30
4.2.2 ALA分析及在薄膜之安定性 32
4.3動物試驗 33
4.3.1薄膜不同配方、ALA濃度及用藥時間在動物模式的PpIX累積 33
4.3.2 PpIX使用薄膜後在動物組織的分佈 34
第五章 結論與未來工作 36
圖 37
表格 55
附錄 58
參考文獻 61
dc.language.isozh-TW
dc.title五胺基酮戊酸之劑型及分析方法研究zh_TW
dc.title5-Aminolevulinic acid analysis and dosage form developmenten
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡翠敏,黃慶璨,許瑞祥
dc.subject.keyword光動力治療,五胺基酮戊酸,原紫質環IX,安定性,劑型,zh_TW
dc.subject.keywordPhotodynamic therapy,5-ALA,Protoporphyrin IX,Stability,Dosage form,en
dc.relation.page72
dc.rights.note未授權
dc.date.accepted2012-07-24
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
1.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved