請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16235完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張孟基(Men-Chi Chang) | |
| dc.contributor.author | Bo-Yuan Huang | en |
| dc.contributor.author | 黃柏元 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:06:08Z | - |
| dc.date.copyright | 2020-09-17 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-13 | |
| dc.identifier.citation | 許育嘉、林彥蓉(2018)。作物育種之歷程。作物、環境與生物資訊。15:59-70 Airoldi, C.A., Della Rovere, F., Falasca, G., Marino, G., Kooiker, M., Altamura, M.M., Citterio, S., and Kater, M.M. (2010). The Arabidopsis BET bromodomain factor GTE4 is involved in maintenance of the mitotic cell cycle during plant development. Plant Physiology 152, 1320-1334. Becker, J.S., Nicetto, D., and Zaret, K.S. (2016). H3K9me3-dependent heterochromatin: barrier to cell fate changes. Trends in Genetics 32, 29-41. Beguiristain, T., Grandbastien, M.-A., Puigdomènech, P., and Casacuberta, J.M. (2001). Three Tnt1 subfamilies show different stress-associated patterns of expression in tobacco. Consequences for retrotransposon control and evolution in plants. Plant Physiology 127, 212-221. Bird, A.P. (1980). DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Research 8, 1499-1504. Boyko, A., and Kovalchuk, I. (2008). Epigenetic control of plant stress response. Environmental and Molecular Mutagenesis 49, 61-72. Brenner, C., and Fuks, F. DNA methyltransferases: facts, clues, mysteries. In DNA Methylation: Basic Mechanisms (pp. 45-66). Springer, Berlin, Heidelberg. Bu, Q., Li, H., Zhao, Q., Jiang, H., Zhai, Q., Zhang, J., Wu, X., Sun, J., Xie, Q., and Wang, D. (2009). The Arabidopsis RING finger E3 ligase RHA2a is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development. Plant Physiology 150, 463-481. Calarco, J.P., Borges, F., Donoghue, M.T., Van Ex, F., Jullien, P.E., Lopes, T., Gardner, R., Berger, F., Feijó, J.A., and Becker, J.D. (2012). Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151, 194-205. Cao, X., Aufsatz, W., Zilberman, D., Mette, M.F., Huang, M.S., Matzke, M., and Jacobsen, S.E. (2003). Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Current Biology 13, 2212-2217. Chang, C.W., Couñago, R.M., Williams, S.J., Boden, M., and Kobe, B. (2013). The distribution of different classes of nuclear localization signals (NLSs) in diverse organisms and the utilization of the minor NLS-binding site inplantnuclear import factor importin-α. Plant Signaling Behavior 8, 5074-5088. Choudhury, S.R., Cui, Y., Lubecka, K., Stefanska, B., and Irudayaraj, J. (2016). CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 7, 46545. Christie, M., Chang, C.-W., Róna, G., Smith, K.M., Stewart, A.G., Takeda, A.A., Fontes, M.R., Stewart, M., Vértessy, B.G., and Forwood, J.K. (2016). Structural biology and regulation of protein import into the nucleus. Journal of Molecular Biology 428, 2060-2090. Citao Liu, C., Wu, Y., and Wang, X. (2012). bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta 235, 1157-1169. Clapier, C.R., and Cairns, B.R. (2009). The biology of chromatin remodeling complexes. Annual Review of Biochemistry 78, 273-304. Clayton, A.L., Hazzalin, C.A., and Mahadevan, L.C. (2006). Enhanced histone acetylation and transcription: a dynamic perspective. Molecular Cell 23, 289-296. Collard, B.C., and Mackill, D.J. (2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences 363, 557-572. Cortijo, S., Wardenaar, R., Colomé-Tatché, M., Gilly, A., Etcheverry, M., Labadie, K., Caillieux, E., Aury, J.-M., Wincker, P., and Roudier, F. (2014). Mapping the epigenetic basis of complex traits. Science 343, 1145-1148. Czerwińska, P., Mazurek, S., and Wiznerowicz, M. (2017a). The complexity of TRIM28 contribution to cancer. Journal of Biomedical Science 24, 63. Czerwińska, P., Shah, P.K., Tomczak, K., Klimczak, M., Mazurek, S., Sozańska, B., Biecek, P., Korski, K., Filas, V., and Mackiewicz, A. (2017b). TRIM28 multi-domain protein regulates cancer stem cell population in breast tumor development. Oncotarget 8, 863. Debbarma, J., Sarki, Y.N., Saikia, B., Boruah, H.P.D., Singha, D.L., and Chikkaputtaiah, C. (2019). Ethylene response factor (ERF) family proteins in abiotic stresses and CRISPR–Cas9 genome editing of ERFs for multiple abiotic stress tolerance in crop plants: a review. Molecular Biotechnology 61, 153-172. Du, J., Zhong, X., Bernatavichute, Y.V., Stroud, H., Feng, S., Caro, E., Vashisht, A.A., Terragni, J., Chin, H.G., and Tu, A. (2012). Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell 151, 167-180. Eames, H., Saliba, D., Krausgruber, T., Lanfrancotti, A., Ryzhakov, G., and Udalova, I. (2012). KAP1/TRIM28: an inhibitor of IRF5 function in inflammatory macrophages. Immunobiology 217, 1315-1324. Ecco, G., Imbeault, M., and Trono, D. (2017). KRAB zinc finger proteins. Development 144, 2719-2729. Emerson, R.O., and Thomas, J.H. (2009). Adaptive evolution in zinc finger transcription factors. PLoS Genetics 5, e1000325. Espinas, N.A., Saze, H., and Saijo, Y. (2016). Epigenetic control of defense signaling and priming in plants. Frontiers in Plant Science 7, 1201. Fedotova, A., Bonchuk, A., Mogila, V., and Georgiev, P. (2017). C2H2 zinc finger proteins: the largest but poorly explored family of higher eukaryotic transcription factors. Acta Naturae (англоязычная версия) 9. Feng, J., and Lu, J. (2017). LHP1 could act as an activator and a repressor of transcription in plants. Frontiers in Plant Science 8, 2041. Feng, S., Jacobsen, S.E., and Reik, W. (2010). Epigenetic reprogramming in plant and animal development. Science 330, 622-627. Finnegan, E.J., Peacock, W.J., and Dennis, E.S. (1996). Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proceedings of the National Academy of Sciences 93, 8449-8454. Fontes, M.R., Teh, T., and Kobe, B. (2000). Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-α. Journal of Molecular Biology 297, 1183-1194. Fortes, A.M., and Gallusci, P. (2017). Plant stress responses and phenotypic plasticity in the epigenomics era: perspectives on the grapevine scenario, a model for perennial crop plants. Frontiers in Plant Science 8, 82. Fu, W., Wu, K., and Duan, J. (2007). Sequence and expression analysis of histone deacetylases in rice. Biochemical and Biophysical Research Communications 356, 843-850. Fu, X., Li, C., Liang, Q., Zhou, Y., He, H., and Fan, L.M. (2016). CHD3 chromatin-remodeling factor PICKLE regulates floral transition partially via modulating LEAFY expression at the chromatin level in Arabidopsis. Science China Life Sciences 59, 516-528. Fujisawa, T., and Filippakopoulos, P. (2017). Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nature Reviews Molecular Cell Biology 18, 246. Gallego-Bartolomé, J., Gardiner, J., Liu, W., Papikian, A., Ghoshal, B., Kuo, H.Y., Zhao, J.M.-C., Segal, D.J., and Jacobsen, S.E. (2018). Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proceedings of the National Academy of Sciences 115, E2125-E2134. Gallusci, P., Dai, Z., Génard, M., Gauffretau, A., Leblanc-Fournier, N., Richard-Molard, C., Vile, D., and Brunel-Muguet, S. (2017). Epigenetics for plant improvement: current knowledge and modeling avenues. Trends in Plant Science 22, 610-623. Gangappa, S.N., and Botto, J.F. (2014). The BBX family of plant transcription factors. Trends in Plant Science 19, 460-470. Gangappa, S.N., Crocco, C.D., Johansson, H., Datta, S., Hettiarachchi, C., Holm, M., and Botto, J.F. (2013). The Arabidopsis B-BOX protein BBX25 interacts with HY5, negatively regulating BBX22 expression to suppress seedling photomorphogenesis. The Plant Cell 25, 1243-1257. Goldfarb, D.S., Corbett, A.H., Mason, D.A., Harreman, M.T., and Adam, S.A. (2004). Importin α: a multipurpose nuclear-transport receptor. Trends in Cell Biology 14, 505-514. Grimmer, M.R., Stolzenburg, S., Ford, E., Lister, R., Blancafort, P., and Farnham, P.J. (2014). Analysis of an artificial zinc finger epigenetic modulator: widespread binding but limited regulation. Nucleic Acids Research 42, 10856-10868. Groner, A.C., Meylan, S., Ciuffi, A., Zangger, N., Ambrosini, G., Dénervaud, N., Bucher, P., and Trono, D. (2010). KRAB–zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genetics 6, e1000869. Guo, L., Yin, B., Zhou, J., Li, X., and Deng, X.W. (2006). Development of rabbit monoclonal and polyclonal antibodies for detection of site-specific histone modifications and their application in analyzing overall modification levels. Cell research 16, 519-527. Habu, Y., Kakutani, T., and Paszkowski, J. (2001). Epigenetic developmental mechanisms in plants: molecules and targets of plant epigenetic regulation. Current Opinion in Genetics Development 11, 215-220. He, X.J., Chen, T., and Zhu, J.-K. (2011). Regulation and function of DNA methylation in plants and animals. Cell Research 21, 442. Hilton, I.B., D'ippolito, A.M., Vockley, C.M., Thakore, P.I., Crawford, G.E., Reddy, T.E., and Gersbach, C.A. (2015). Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nature Biotechnology 33, 510-517. Hossain, M.A., Barrow, J.J., Shen, Y., Haq, M.I., and Bungert, J. (2015). Artificial zinc finger DNA binding domains: versatile tools for genome engineering and modulation of gene expression. Journal of Cellular Biochemistry 116, 2435-2444. Hou, H., Zhao, L., Zheng, X., Gautam, M., Yue, M., Hou, J., Chen, Z., Wang, P., and Li, L. (2019). Dynamic changes in histone modification are associated with upregulation of Hsf and rRNA genes during heat stress in maize seedlings. Protoplasma 256, 1245-1256. Huang, Y.-H., Su, J., Lei, Y., Brunetti, L., Gundry, M.C., Zhang, X., Jeong, M., Li, W., and Goodell, M.A. (2017). DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A. Genome Biology 18, 1-11. Hudson, W.H., and Ortlund, E.A. (2014). The structure, function and evolution of proteins that bind DNA and RNA. Nature Reviews Molecular Cell Biology 15, 749-760. Ivanov, A.V., Peng, H., Yurchenko, V., Yap, K.L., Negorev, D.G., Schultz, D.C., Psulkowski, E., Fredericks, W.J., White, D.E., and Maul, G.G. (2007). PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Molecular Cell 28, 823-837. Iyengar, S., and Farnham, P.J. (2011). KAP1 protein: an enigmatic master regulator of the genome. Journal of Biological Chemistry 286, 26267-26276. Jacobsen, S.E., and Meyerowitz, E.M. (1997). Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277, 1100-1103. Ji, L., Jordan, W.T., Shi, X., Hu, L., He, C., and Schmitz, R.J. (2018). TET-mediated epimutagenesis of the Arabidopsis thaliana methylome. Nature Communications 9, 1-9. Johannes, F., Porcher, E., Teixeira, F.K., Saliba-Colombani, V., Simon, M., Agier, N., Bulski, A., Albuisson, J., Heredia, F., and Audigier, P. (2009). Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genetics 5, e1000530. Jones, L., Ratcliff, F., and Baulcombe, D.C. (2001). RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Current Biology 11, 747-757. Jurkowska, R.Z., Qin, S., Kungulovski, G., Tempel, W., Liu, Y., Bashtrykov, P., Stiefelmaier, J., Jurkowski, T.P., Kudithipudi, S., and Weirich, S. (2017). H3K14ac is linked to methylation of H3K9 by the triple Tudor domain of SETDB1. Nature Communications 8, 1-13. Kakutani, T. (2002). Epi-alleles in plants: inheritance of epigenetic information over generations. Plant and Cell Physiology 43, 1106-1111. Kearns, N.A., Pham, H., Tabak, B., Genga, R.M., Silverstein, N.J., Garber, M., and Maehr, R. (2015). Functional annotation of native enhancers with a Cas9–histone demethylase fusion. Nature Methods 12, 401-403. Kenchanmane Raju, S.K., Shao, M.R., Wamboldt, Y., and Mackenzie, S. (2018). Epigenomic plasticity of Arabidopsis msh1 mutants under prolonged cold stress. Plant Direct 2, e00079. Khanna, R., Kronmiller, B., Maszle, D.R., Coupland, G., Holm, M., Mizuno, T., and Wu, S.-H. (2009). The Arabidopsis B-box zinc finger family. The Plant Cell 21, 3416-3420. Kim, J., Samaranayake, M., and Pradhan, S. (2009). Epigenetic mechanisms in mammals. Cellular and Molecular Life Sciences 66, 596. Klimczak, M., Czerwińska, P., Mazurek, S., Sozańska, B., Biecek, P., Mackiewicz, A., and Wiznerowicz, M. (2017). TRIM28 epigenetic corepressor is indispensable for stable induced pluripotent stem cell formation. Stem Cell Research 23, 163-172. Kuhlmann, M., and Mette, M.F. (2012). Developmentally non-redundant SET domain proteins SUVH2 and SUVH9 are required for transcriptional gene silencing in Arabidopsis thaliana. Plant Molecular Biology 79, 623-633. Kumar, S., Beena, A., Awana, M., and Singh, A. (2017). Physiological, biochemical, epigenetic and molecular analyses of wheat (Triticum aestivum) genotypes with contrasting salt tolerance. Frontiers in Plant Science 8, 1151. López-González, L., Mouriz, A., Narro-Diego, L., Bustos, R., Martínez-Zapater, J.M., Jarillo, J.A., and Piñeiro, M. (2014). Chromatin-dependent repression of the Arabidopsis floral integrator genes involves plant specific PHD-containing proteins. The Plant Cell 26, 3922-3938. Law, J.A., and Jacobsen, S.E. (2010). Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Reviews Genetics 11, 204. Lee, W.Y., Lee, D., Chung, W.I., and Kwon, C.S. (2009). Arabidopsis ING and Alfin1‐like protein families localize to the nucleus and bind to H3K4me3/2 via plant homeodomain fingers. The Plant Journal 58, 511-524. Lennartsson, A., and Ekwall, K. (2009). Histone modification patterns and epigenetic codes. Biochimica et Biophysica Acta (BBA)-general subjects 1790, 863-868. Li, Y., Kumar, S., and Qian, W. (2018). Active DNA demethylation: mechanism and role in plant development. Plant Cell Reports 37, 77-85. Lin, C.S., Hsu, C.T., Yang, L.H., Lee, L.Y., Fu, J.Y., Cheng, Q.W., Wu, F.H., Hsiao, H.C.W., Zhang, Y., and Zhang, R. (2018). Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single‐cell mutation detection to mutant plant regeneration. Plant Biotechnology Journal 16, 1295-1310. Lindroth, A.M., Cao, X., Jackson, J.P., Zilberman, D., McCallum, C.M., Henikoff, S., and Jacobsen, S.E. (2001). Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292, 2077-2080. Liu, C., Lu, F., Cui, X., and Cao, X. (2010). Histone methylation in higher plants. Annual Review of Plant Biology 61, 395-420. Liu, X., Luo, M., Zhang, W., Zhao, J., Zhang, J., Wu, K., Tian, L., and Duan, J. (2012). Histone acetyltransferases in rice (Oryza sativaL.): phylogenetic analysis, subcellular localization and expression. BMC Plant Biology 12, 145. Lobel, D., and Asner, C. (2003). Climate and management contributions to recent trends in US agricultural yields. Science 299, 1032-1033. Luger, K., and Hansen, J.C. (2005). Nucleosome and chromatin fiber dynamics. Current Opinion in Structural Biology 15, 188-196. Luo, M., Wang, Y.-Y., Liu, X., Yang, S., Lu, Q., Cui, Y., and Wu, K. (2012). HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. Journal of Experimental Botany 63, 3297-3306. Luo, Y., Wang, Z., Ji, H., Fang, H., Wang, S., Tian, L., and Li, X. (2013). An A rabidopsis homolog of importin β1 is required for ABA response and drought tolerance. The Plant Journal 75, 377-389. Lupo, A., Cesaro, E., Montano, G., Zurlo, D., Izzo, P., and Costanzo, P. (2013). KRAB-zinc finger proteins: a repressor family displaying multiple biological functions. Current Genomics 14, 268-278. Müssig, C., Kauschmann, A., Clouse, S., and Altmann, T. (2000). The Arabidopsis PHD-finger protein SHL is required for proper development and fertility. Molecular and General Genetics 264, 363-370. Maksimov, D.A., and Koryakov, D.E. (2019). Binding of SU (VAR) 3-9 Partially Depends on SETDB1 in the Chromosomes of Drosophila melanogaster. Cells 8, 1030. Malik, H.S., Eickbush, T.H., and Goldfarb, D.S. (1997). Evolutionary specialization of the nuclear targeting apparatus. Proceedings of the National Academy of Sciences 94, 13738-13742. Matangkasombut, O., and Buratowski, S. (2003). Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation. Molecular Cell 11, 353-363. Montague, T.G., Cruz, J.M., Gagnon, J.A., Church, G.M., and Valen, E. (2014). CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Research 42, W401-W407. Moriyama, T., Sangel, P., Yamaguchi, H., Obuse, C., Miyamoto, Y., Oka, M., and Yoneda, Y. (2015). Identification and characterization of a nuclear localization signal of TRIM28 that overlaps with the HP1 box. Biochemical and Biophysical Research Communications 462, 201-207. Morra, R., Lee, B.M., Shaw, H., Tuma, R., and Mancini, E.J. (2012). Concerted action of the PHD, chromo and motor domains regulates the human chromatin remodelling ATPase CHD4. FEBS Letters 586, 2513-2521. Mouriz, A., López-González, L., Jarillo, J.A., and Piñeiro, M. (2015). PHDs govern plant development. Plant signaling behavior 10, e993253. Murakami, T., Matsuba, S., Funatsuki, H., Kawaguchi, K., Saruyama, H., Tanida, M., and Sato, Y. (2004). Over-expression of a small heat shock protein, sHSP17. 7, confers both heat tolerance and UV-B resistance to rice plants. Molecular Breeding 13, 165-175. Murphy, K.E., Shylo, N.A., Alexander, K.A., Churchill, A.J., Copperman, C., and García-García, M.J. (2016). The transcriptional repressive activity of KRAB zinc finger proteins does not correlate with their ability to recruit TRIM28. PloS One 11. Naumann, K., Fischer, A., Hofmann, I., Krauss, V., Phalke, S., IrmLer, K., Hause, G., Aurich, A.C., Dorn, R., and Jenuwein, T. (2005). Pivotal role of AtSUVH2 in heterochromatic histone methylation and gene silencing in Arabidopsis. The EMBO Journal 24, 1418-1429. Nicholson, T.B., Veland, N., and Chen, T. (2015). Writers, readers, and erasers of epigenetic marks. In Epigenetic Cancer Therapy (Elsevier), pp. 31-66. Niederhuth, C.E., and Schmitz, R.J. (2014). Covering your bases: inheritance of DNA methylation in plant genomes. Molecular Plant 7, 472-480. Ogas, J., Kaufmann, S., Henderson, J., and Somerville, C. (1999). PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proceedings of the National Academy of Sciences 96, 13839-13844. Okamoto, K., Kitabayashi, I., and Taya, Y. (2006). KAP1 dictates p53 response induced by chemotherapeutic agents via Mdm2 interaction. Biochemical and Biophysical Research Communications 351, 216-222. Parsi, K.M., Hennessy, E., Kearns, N., and Maehr, R. (2017). Using an inducible CRISPR-dCas9-KRAB effector system to dissect transcriptional regulation in human embryonic stem cells. In Eukaryotic transcriptional and post-transcriptional gene expression regulation (pp. 221-233). Humana Press, New York, NY. Peng, H., Begg, G.E., Schultz, D.C., Friedman, J.R., Jensen, D.E., Speicher, D.W., and Rauscher III, F.J. (2000). Reconstitution of the KRAB-KAP-1 repressor complex: a model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions. Journal of Molecular Biology 295, 1139-1162. Peng, J., and Wysocka, J. (2008). It takes a PHD to SUMO. Trends in Biochemical Sciences 33, 191-194. Peng, S., Huang, J., Sheehy, J.E., Laza, R.C., Visperas, R.M., Zhong, X., Centeno, G.S., Khush, G.S., and Cassman, K.G. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences 101, 9971-9975. Pineda, C.T., Ramanathan, S., Tacer, K.F., Weon, J.L., Potts, M.B., Ou, Y.-H., White, M.A., and Potts, P.R. (2015). Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell 160, 715-728. Putterill, J., Robson, F., Lee, K., Simon, R., and Coupland, G. (1995). The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80, 847-857. Raju, S.K.K., Shao, M.R., Sanchez, R., Xu, Y.Z., Sandhu, A., Graef, G., and Mackenzie, S. (2018). An epigenetic breeding system in soybean for increased yield and stability. Plant Biotechnology Journal 16, 1836-1847. Razin, A., and Cedar, H. (1991). DNA methylation and gene expression. Microbiology and Molecular Biology Reviews 55, 451-458. Rombauts, S., Déhais, P., Van Montagu, M., and Rouzé, P. (1999). PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Research 27, 295-296. Sanchez, R., and Zhou, M.-M. (2011). The PHD finger: a versatile epigenome reader. Trends in Biochemical Sciences 36, 364-372. Saze, H., Shiraishi, A., Miura, A., and Kakutani, T. (2008). Control of genic DNA methylation by a jmjC domain-containing protein in Arabidopsis thaliana. Science 319, 462-465. Schultz, D.C., Ayyanathan, K., Negorev, D., Maul, G.G., and Rauscher, F.J. (2002). SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Development 16, 919-932. Servet, C., e Silva, N.C., and Zhou, D.-X. (2010). Histone acetyltransferase AtGCN5/HAG1 is a versatile regulator of developmental and inducible gene expression in Arabidopsis. Molecular Plant 3, 670-677. Shanker, A., and Venkateswarlu, B. (2011). Abiotic stress in plants: mechanisms and adaptations. (BoD–Books on Demand). Simpson, G.G. (2004). The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Current Opinion in Plant Biology 7, 570-574. Sokol, A., Kwiatkowska, A., Jerzmanowski, A., and Prymakowska-Bosak, M. (2007). Up-regulation of stress-inducible genes in tobacco and Arabidopsis cells in response to abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4 modifications. Planta 227, 245-254. Stepper, P., Kungulovski, G., Jurkowska, R.Z., Chandra, T., Krueger, F., Reinhardt, R., Reik, W., Jeltsch, A., and Jurkowski, T.P. (2017). Efficient targeted DNA methylation with chimeric dCas9–Dnmt3a–Dnmt3L methyltransferase. Nucleic Acids Research 45, 1703-1713. Sudan, J., Raina, M., and Singh, R. (2018). Plant epigenetic mechanisms: role in abiotic stress and their generational heritability. 3 Biotech 8, 172. Sung, S., Schmitz, R.J., and Amasino, R.M. (2006). A PHD finger protein involved in both the vernalization and photoperiod pathways in Arabidopsis. Genes Development 20, 3244-3248. Surdonja, K., Eggert, K., Hajirezaei, M.-R., Harshavardhan, V.T., Seiler, C., Von Wirén, N., Sreenivasulu, N., and Kuhlmann, M. (2017). Increase of DNA methylation at the HvCKX2. 1 promoter by terminal drought stress in barley. Epigenomes 1, 9. Tamada, Y., Yun, J.-Y., chul Woo, S., and Amasino, R.M. (2009). ARABIDOPSIS TRITHORAX-RELATED7 is required for methylation of lysine 4 of histone H3 and for transcriptional activation of FLOWERING LOCUS C. The Plant Cell 21, 3257-3269. Tamura, K., and Hara-Nishimura, I. (2014). Functional insights of nucleocytoplasmic transport in plants. Frontiers in Plant Science 5, 118. Thakore, P.I., D'ippolito, A.M., Song, L., Safi, A., Shivakumar, N.K., Kabadi, A.M., Reddy, T.E., Crawford, G.E., and Gersbach, C.A. (2015). Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nature Methods 12, 1143. Tripathi, P., Carvallo, M., Hamilton, E.E., Preuss, S., and Kay, S.A. (2017). Arabidopsis B-BOX32 interacts with CONSTANS-LIKE3 to regulate flowering. Proceedings of the National Academy of Sciences 114, 172-177. Tsaftaris, A.S., Polidoros, A.N., Koumproglou, R., Tani, E., Kovacevic, N., and Abatzidou, E. (2005). Epigenetic mechanisms in plants and their implications in plant breeding. In the wake of the double helix: from the green revolution to the gene revolution. Avenue Media, Bologna, 157-171. Tsagaratou, A., Lio, C.W.J., Yue, X., and Rao, A. (2017). TET methylcytosine oxidases in T cell and B cell development and function. Frontiers in Immunology 8, 220. Turner, B.M. (2000). Histone acetylation and an epigenetic code. Bioessays 22, 836-845. Uzogara, S.G. (2000). The impact of genetic modification of human foods in the 21st century: A review. Biotechnology Advances 18, 179-206. Wang, B.-j., XU, H.-x., Zheng, X.-s., Qiang, F., and LU, Z.-x. (2010). High temperature modifies resistance performances of rice varieties to brown planthopper, Nilaparvata lugens (Stål). Rice Science 17, 334-338. Wang, C., Ivanov, A., Chen, L., Fredericks, W.J., Seto, E., Rauscher, F.J., and Chen, J. (2005). MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. The EMBO Journal 24, 3279-3290. Wang, Z., Cao, H., Chen, F., and Liu, Y. (2014). The roles of histone acetylation in seed performance and plant development. Plant Physiology and Biochemistry 84, 125-133. Winston, F., and Allis, C.D. (1999). The bromodomain: a chromatin-targeting module? Nature Structural Biology 6, 601-604. Xu, D., Jiang, Y., Li, J., Lin, F., Holm, M., and Deng, X.W. (2016). BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation. Proceedings of the National Academy of Sciences 113, 7655-7660. Yan, L., Wei, S., Wu, Y., Hu, R., Li, H., Yang, W., and Xie, Q. (2015). High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Molecular Plant 8, 1820-1823. Yang, X., Kundariya, H., Xu, Y.-Z., Sandhu, A., Yu, J., Hutton, S.F., Zhang, M., and Mackenzie, S.A. (2015). MutS HOMOLOG1-derived epigenetic breeding potential in tomato. Plant Physiology 168, 222-232. Yoshiyama, K.O. (2015). SOG1: a master regulator of the DNA damage response in plants. Genes Genetic Systems, 15-00011. Yuan, J., Chen, S., Jiao, W., Wang, L., Wang, L., Ye, W., Lu, J., Hong, D., You, S., and Cheng, Z. (2017). Both maternally and paternally imprinted genes regulate seed development in rice. New Phytologist 216, 373-387. Zhang, H., Cui, F., Wu, Y., Lou, L., Liu, L., Tian, M., Ning, Y., Shu, K., Tang, S., and Xie, Q. (2015). The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-INTERACTING PROTEIN1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis. The Plant Cell 27, 214-227. Zhang, X., Germann, S., Blus, B.J., Khorasanizadeh, S., Gaudin, V., and Jacobsen, S.E. (2007). The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation. Nature Structural Molecular Biology 14, 869-871. Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S.W.-L., Chen, H., Henderson, I.R., Shinn, P., Pellegrini, M., and Jacobsen, S.E. (2006). Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126, 1189-1201. Zicola, J., Liu, L., Tänzler, P., and Turck, F. (2019). Targeted DNA methylation represses two enhancers of FLOWERING LOCUS T in Arabidopsis thaliana. Nature Plants 5, 300-307. Zlotorynski, E. (2015). Epigenetics: Characterizing enhancers with dCas9. Nature Reviews Molecular Cell Biology 16, 266. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16235 | - |
| dc.description.abstract | 表觀遺傳學 (Epigenetics) 乃透過DNA甲基化程度或組織蛋白的修飾,在不改變基因序列下調控基因表現並影響作物外表型。基因型相同的個體,若具有不同的表觀遺傳修飾或修飾程度差別會產生不一樣的變異,此現象稱『表觀遺傳變異 (Epigenetic variation)』。在遺傳育種中,可以做為另一路徑提供作物外表型變異的新來源。除了透過自然產生、逆境誘導,現今還可利用分子技術創造表觀遺傳變異個體,並根據表觀遺傳修飾位置是否具有專一性區分為標靶或非標靶表觀遺傳修飾 (Targeted or Non-targeted epigenetic modification)。本研究目的主要在探討利用小鼠染色質修飾因子mTRIM28是否能應用於阿拉伯芥,作為發展新的非標靶表觀遺傳修飾工具。若能利用染色質修飾因子mTRIM28作為非標靶表觀遺傳修飾工具,透過隨機影響基因組中表觀遺傳修飾狀態,便可以創造出具有不同變異的族群 (Epi-mutant pool)。為達此目的,首先根據胺基酸序列比對結果,發現阿拉伯芥中並沒有如mTRIM28具有多功能區域的單一蛋白質,而是由具有不同個別相似功能域之諸多蛋白質。進而透過次細胞表現部位結果顯示mTRIM28的核定位訊號可以透過阿拉伯芥importin α1/importin β轉運至細胞核中,接著以異位表現mTRIM28於阿拉伯芥了解mTRIM28是否可透過表觀遺傳修飾影響生長與發育,透過正常或非生物逆境下外表型分析,並以及酵母菌雙雜交系統篩選是否有可能與mTRIM28結合之蛋白質。推測在植物體中可能因為缺乏KRAB-或KRAB-Like鋅指轉錄因子而無法調控基因表現。故若直接以mTRIM28作為非標靶表觀遺傳學修飾工具較不可行。但未來若能利用dCAS9-KRAB解決植物缺乏KRAB-鋅指轉錄因子問題,並發展為標靶表觀遺傳修飾工具。藉由dCAS9-KRAB透過匯集mTRIM28並與阿拉伯芥中組織蛋白修飾酶、染色質重塑蛋白形成異染色質複合物,在不影響基因序列下精準抑制目標基因表現的標靶表觀遺傳修飾系統,將可成為具有發展潛能的新植物育種技術 (New Plant Breeding Technology, NPBT)。 | zh_TW |
| dc.description.abstract | Epigenetics is used for describing the heritable phenotype changes of crops caused by DNA methylation and histone modification without altering the intrinsic DNA sequences, in which phenotypic variation has formed epigenetic diversity for plant breeding. Depending on different extents of epigenetic modification, the individuals can display variation on phenotypic diversity. This represents a new and alternative tool for modern crop improvement. In addition to natural generation and stress induction, nowadays molecular techniques are used to create epigenetic variation, including the target or non-target epigenetic modifications. Based on this, the purpose of this study is to explore whether we can take the chromatin-modifying factor mTRIM28 (Mus musculus Tripartite Motif Containing 28) as a new molecular tool for non-target epigenetic modifications in Arabidopsis. Once the chromatin-modifying factor mTRIM28 can be used as a non-target epigenetic modification tool, an epi-mutant population with epigenetic variation can be created for changing the epigenetic status in the plant genome. Thus, we conducted an amino acid sequence homologous search, there is no single protein with multifunctional domains like mTRIM28 in Arabidopsis. Instead, the genome in Arabidopsis consists of many different proteins with corresponding similar functional domains of mTRIM28. Next, we showed that the nuclear localization signal of TRIM28 can efficiently transport the protein into the nucleus through the Arabidopsis importin α1/importin β system. Furthermore, phenotypic investigation and yeast two-hybrid analysis were performed to explore whether TRIM28 can cause growth and development abnormalities through epigenetic modification, and screen for proteins that are likely to interact with mTRIM28 in Arabidopsis thaliana. As a result, it suggests that Arabidopsis may lack KRAB- or KRAB-Like zinc finger transcription factors; thus it prevents mTRIM28 from silencing gene expression, making TRIM28 non-target epigenetic modification tool is less feasible. However, from my study for future application of mTRIM28 on crop epigenetic breeding, using dCAS9-KRAB/ TRIM28 will be good for targeted epigenetic medication. We expect that this targeted epigenetic modification system holds up the potential for accurately blocking the target gene expression without altering the DNA sequence and represents a possible New Plant Breeding Technology (NPBT) for crop improvement in near future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:06:08Z (GMT). No. of bitstreams: 1 U0001-3007202011444300.pdf: 8091777 bytes, checksum: 32cc465835b3593a7dd8fe38bb05b9de (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 摘要 I Abstract II 縮寫字對照 IV 目錄 VII 第一章 前人研究 1 一、表觀遺傳學調控作物在生長發育及逆境下之反應 2 二、表觀遺傳學機制 3 1.DNA甲基化 3 2.組蛋白修飾 5 三、表觀遺傳學育種 6 1.非標靶表觀遺傳修飾 (Non targeted epigenetic modification) 策略 7 2.標靶表觀遺傳修飾 (Targeted epigenetic modification) 策略 8 四、哺乳動物中TRIM28扮演的生理角色與作用分子機制 10 五、研究目的 11 第三章 材料與方法 14 一、mTRIM28在阿拉伯芥中同源蛋白質搜尋之分析 14 二、試驗材料 14 1. 基因轉殖阿拉伯芥 14 1.1 基因轉殖阿拉伯芥構築與流程 14 1.2 電穿孔法 14 1.3 阿拉伯界基因轉殖-花序感染法 15 1.4 基因轉殖阿拉伯芥種子消毒以及栽培方式 15 1.5 基因轉殖阿拉伯芥篩選同質結合子植株 15 三、阿拉伯芥轉殖株之分子鑑定 16 1.植物基因體DNA抽取 16 2.聚合酶連鎖反應 16 3. RNA抽取與製備 16 4.半定量聚合酶連鎖反應(Semi-quantitative PCR, RT-PCR) 16 5.即時聚合酶連鎖反應 (Real time polymerase chain reaction, qPCR) 17 四、阿拉伯芥外表型調查 17 1.正常處理下外表型調查 17 2.非生物逆境處理下外表型調查 17 五、mTRIM28蛋白質之次細胞表現部位 18 1.短暫表現質粒之構築 18 2.阿拉伯芥原生質體之分離分法 18 3.阿拉伯芥原生質體PEG基因轉殖法 19 4.以共軛焦顯微鏡觀察mTRIM28蛋白質之次細胞表現部位 20 六、阿拉伯芥轉殖株之全基因體表現量分析 20 七、酵母菌雙雜合系統 21 1.pGBKT7- mTRIM28質粒之構築 21 2.勝任酵母菌制備 21 3.勝任酵母菌PEG基因轉殖法 22 4.酵母菌雙雜交系統與篩選 22 4.1 Y2HGold Yeast Strain [pGBKT7- mTRIM28]自我活化測試 22 4.2 酵母菌雙雜交系統 23 八、統計分析方法 24 第四章 結果 25 一、阿拉伯芥中具有mTRIM28相似功能區域蛋白質 25 二、mTRIM28蛋白質之次細胞表現位置 25 三、異位表現mTRIM28基因之阿拉伯芥轉殖株分子鑑定 25 四、異位表現mTRIM28對阿拉伯芥生長發育之影響 26 1. mTRIM28轉殖株之根系調查 26 2. mTRIM28轉殖株開花期調查 26 3. mTRIM28轉殖株營養生長期調查 27 4.乾旱逆境下mTRIM28轉殖株之外表型調查 27 5.高鹽逆境下mTRIM28轉殖株幼苗之外表型調查 27 五、異位表現mTRIM28阿拉伯芥轉殖株之全基因體表現分析 27 六、酵母菌雙雜交系統篩選阿拉伯芥中與mTRIM28交互作用之蛋白質 28 第五章 討論 30 一、阿拉伯芥中具有與mTRIM28相似功能區域蛋白質 30 二、mTRIM28蛋白質可能透過阿拉伯芥importin α1/importin β進入細胞核 32 三、探討mTRIM28應用於非標靶表觀遺傳修飾工具的可行性 34 四、人造KRAB轉錄因子協調mTRIM28於阿拉伯芥發揮表觀遺傳修飾功36 五、人造KRAB轉錄因子/mTRIM28標靶表觀遺傳修飾工具應用於表觀遺傳育種 37 第六章 未來研究 39 一、dCAS9-KRAB載體設計 39 二、PDS3作為標靶表觀遺傳修飾位點以及gRNA設計 39 三、建立dCAS9-KRAB/ mTRIM28系統於阿拉伯芥轉殖株中 40 第七章 結論 41 參考文獻 42 圖目錄 圖1、mTRIM28胺基酸序列比對阿拉伯芥基因組。 54 圖2、mTRIM28蛋白質之次細胞表現部位 55 圖3、異位過量表現mTRIM28阿拉伯芥轉殖株分子鑑定 56 圖4、異位過量表現mTRIM28阿拉伯芥轉殖株外表型調查 57 圖5、異位過量表現mTRIM28阿拉伯芥轉殖株逆境外表型調查 58 圖6、異位過量表現mTRIM28阿拉伯芥轉殖株與野生型差異表現基因分析 59 圖7、酵母菌雙雜交系統鑑定mTRIM28交互作用蛋白 60 圖8、酵母菌雙雜交系統篩選mTRIM28交互作用之蛋白質 61 圖9、mTRIM28轉運進入細胞核預測模型 62 圖10、小鼠與阿拉伯芥中同源基因結構圖 63 圖11、小鼠與阿拉伯芥中TRIM28作用機制圖。 64 圖12、dCAS9-KRAB/mTRIM28標靶表觀遺傳修飾系統於阿拉伯芥中預測模型 65 表目錄 表1、TRIM28胺基酸序列比對阿拉伯芥基因表。 66 表2、小鼠與阿拉伯芥同源基因功能表。 67 附錄 附錄1、小鼠TRIM28蛋白質結構 68 附錄2、TRIM28蛋白在哺乳類動物中作用機制 69 附錄3、mTRIM28序列優化 76 附錄4、高通量分析阿拉伯芥葉面積 77 附錄5、本研究基因轉殖之載體圖表 78 附錄6、上調基因資訊表 79 附錄7、下調基因資訊表 80 附錄8、本研究所使用引子表-1 81 附錄9、本研究所使用引子表-2 82 附錄10、gRNA序列以及位置 83 附錄11、pCAMBIA1305.1和pSMAB704載體 84 附錄12、D-Clone載體 85 | |
| dc.language.iso | zh-TW | |
| dc.subject | NPBT | zh_TW |
| dc.subject | 表觀遺傳育種 | zh_TW |
| dc.subject | 表觀遺傳修飾工具 | zh_TW |
| dc.subject | TRIM28 | zh_TW |
| dc.subject | dCAS9 | zh_TW |
| dc.subject | dCAS9 | en |
| dc.subject | Epigentic breeding | en |
| dc.subject | Epigenetic modification tools | en |
| dc.subject | NPBT | en |
| dc.subject | TRIM28 | en |
| dc.title | 染色質修飾因子mTRIM28應用於阿拉伯芥表觀遺傳育種的可行性探討 | zh_TW |
| dc.title | Exploring the Possible Application of a Chromatin-Modifying Factor mTRIM28 in Epigenetic Breeding of Arabidopsis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 洪傳揚(Chwan-Yang Hong),謝旭亮(Hsu-Liang Hsieh),鄭萬興(Wan-Hsing Cheng),侯新龍(Shin-Lon Ho) | |
| dc.subject.keyword | 表觀遺傳育種,表觀遺傳修飾工具,TRIM28,dCAS9,NPBT, | zh_TW |
| dc.subject.keyword | Epigentic breeding,Epigenetic modification tools,TRIM28,dCAS9,NPBT, | en |
| dc.relation.page | 85 | |
| dc.identifier.doi | 10.6342/NTU202002086 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-14 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3007202011444300.pdf 未授權公開取用 | 7.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
