Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16219
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏伯勳
dc.contributor.authorWan-Chen Chenen
dc.contributor.author陳宛貞zh_TW
dc.date.accessioned2021-06-07T18:05:33Z-
dc.date.copyright2012-09-19
dc.date.issued2012
dc.date.submitted2012-07-25
dc.identifier.citation[1] Bloch, D.B., Nakajima, A., Gulick, T., Chiche, J.D., Orth, D., de La Monte, S.M., and Bloch, K.D. (2000). Sp110 localizes to the PML-Sp100 nuclear body and may function as a nuclear hormone receptor transcriptional coactivator. Mol Cell Biol 20, 6138-6146.
[2] Aasland, R., Gibson, T.J., and Stewart, A.F. (1995). The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem Sci 20, 56-59.
[3] Jeanmougin, F., Wurtz, J.M., Le Douarin, B., Chambon, P., and Losson, R. (1997). The bromodomain revisited. Trends Biochem Sci 22, 151-153.
[4] Tosh, K., Campbell, S.J., Fielding, K., Sillah, J., Bah, B., Gustafson, P.K., Lisse, I., Sirugo, G., Bennett, S., Aaby, P., McAdam, K.P., Bah‐Sow, O., Lienhardt, C., Kramnik, I., and Hill, A.V. (2006). Variants in the SP110 gene are associated with genetic susceptibility to tuberculosis in West Africa. Proc Natl Acad Sci 103, 10364-10368.
[5] Roscioli, T., Cliffe, S.T., Bloch, D.B., Bell, C.G., Mullan, G., Taylor, P.J., Sarris, M., Wang, J., Donald, J.A., Kirk, E.P., Ziegler, J.B., Salzer, U., McDonald, G.B., Wong, M., Lindeman, R., and Buckley, M.F. (2006). Mutations in the gene encoding the PML nuclear body protein Sp110 are associated with immunodeficiency and hepatic veno-occlusive disease. Nature Genetics 38, 620-622.
[6] Cliffe, S.T., Wong, M., Taylor, P.J., Ruga, E., Wilcken, B., Lindeman, R., Buckley, M.F., Roscioli, T. (2007). The first prenatal diagnosis for veno-occlusive disease and immunodeficiency syndrome, an autosomal recessive condition associated with mutations in SP110. Prenat Diagn 27, 674-676.
[7] Pan, H., Yan, B.S., Rojas, M., Shebzukhov, Y.V., Zhou, H., Kobzik, L., Higgins, D., Daly, M., Bloom, B.R., and Kramnik, I. (2005). Ipr1 gene mediates innate immunity to tuberculosis. Nature 434, 767-772.
[8] Watashi, K., Hijikata, M., Tagawa, A., Doi, T., Marusawa, H., and Shimotohno, K. (2003). Modulation of retinoid signaling by a cytoplasmic viral protein via sequestration of Sp110b, a potent transcriptional corepressor of retinoic acid receptor, from the nucleus. Mol Cell Biol 23, 7498-7508.
[9] Lane, D.P., and Crawford, L.V. (1979). T antigen is bound to a host protein in SV40-transformed cells. Nature 278, 261-263.
[10] Daniel, I.H., Linzer, and Levine, A.J. (1979). Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17, 43-52.
[11] Kuroda, T., Murayama, A., Katagiri, N., Ohta, Y.M., Fujita, E., Masumoto, H., Ema, M., Takahashi, S., Kimura, K., and Yanagisawa, J. (2011). RNA content in the nucleolus alters p53 acetylation via MYBBP1A. The EMBO Journal 30, 1054-1066.
[12] Villunger, A., Michalak, E.M., Coultas, L., Mullauer, F., Bock, G., Ausserlechner, M.J., Adams, J.M., and Strasser, A. (2003). p53- and drug- induced apoptosis responses Mediated by BH3-only protein Puma and Noxa. Science 302, 1036-1038.
[13] Iyer, N.G., Chin, S.F., Ozdag, H., Daigo, Y., Hu, D.E., Cariati, M., Brindle, K., Aparicio, S., and Caldas, C. (2004). p300 regulates p53-dependent apoptosis after DNA damage in colorectal cancer cells by modulation of PUMA/p21 levels. PNAS 101, 7386-7391.
[14] Hainaut, P., Soussi, T., Shomer, B., Hollstein, M., Greenblatt, M., Hovig, E., Harris, C.C., and Montesano, R. (1997). Database of p53 gene somatic mutations in human tumors and cell lines: updated compilation and future prospects. Nucl Acids Res 25, 151-157.
[15] Wyllie, A.H. (1980). Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555-556.
[16] Han, H., Pan, Q., Zhang, B., Li, J., Deng, X., Lian, Z., and Li,N. (2007). 4-NQO induced apoptosis via p53-dependent mitochondrial signaling pathway. Toxicology 230, 151-163.
[17] Strasser, A., Harris, A.W., Jacks, T., and Cory, S. (1994). DNA damage can induced apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by bcl2. Cell 79, 329-339.
[18] Subramanian, T., Tarodi, B., and Chinnadurai, G. (1995). p53-independent apoptotic and necrotic cell deaths induced by adenovirus infection: suppression by E1B 19K and Bcl2 protein. Cell Growth and Differentiation 6, 131-137.
[19] Urist, M., Tanaka, T., Poyurovsky, M.V., and Prives, C. (2004). p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev 18, 3041-3054.
[20] Konstantinidis, K., Whelan, R.S., and Kitsis, R.N. (2012). Mechanisms of cell death in heart disease. Arterioscler Thromb Vase Biol 2012 July.
[21] Salmena, L., and Pandolfi, P.P. (2007). Changing venues for tumour suppression: balancing destruction and localization by monoubiquitylation. Nature Reviews Cancer 7, 409-413.
[22] Chang, J.T., Chang, G.C., Ko, J.L., Liao, H.Y., Liu, H.J., Chen, C.C., Su, J.M., Lee, H., and Sheu, G.T. (2006). Induction of tubulin by docetaxel is associated with p53 status in human non small cell lung cancer cell lines. Int J Cancer 118, 317-325.
[23] Cai, L., Pan, H., Trzciuski, K., Thompson, C.M., Wu, Q., and Kramnik, I. (2010). MYBBP1A: a new Ipr1’s binding protein in mice. Mol Biol Rep 37, 3863-3868.
[24] Choi, J.H., Ahn, K.S., Kim, J., and Hong, Y.S. (2000). Enhanced induction of Bax gene expression in H460 and H1299 cells with the combined treatment of cisplatin and adenoviruss mediated wt-p53 gene transfer. Exp Mol Med 32, 23-28.
[25] Choi, Y.J., Oh, J.M., Kim, S.Y., Seo, M., and Juhnn, Y.S. (2009). Stimulatory heterotrimeric GTP-binding protein augments cisplatin-induced apoptosis by upregulating Bak expression in human lung cancer cells. Cancer Sci 100, 1067-1074.
[26] Li, Z., Musich, P.R., and Zou, Y. (2011). Differential DNA damage responses in p53 proficient and deficient cells: cisplatin-induced nuclear import of XPA is independen of ATR checkpoint in p53-deficient lung cancer cells. Int J Biochem Mol Biol 2(2), 138-145.
[27] Sun, N.K., Huang, S.L., Chien, K.Y., and Chao, C.C.K. (2012). Golgi-SNARE GS28 potentiates cisplatin-induced apoptosis by forming GS28-MDM2-p53 complexes and preventing the ubiquitination and degradation of p53. Biochem J 444, 303-314.
[28] Inoue, A., Narumi, K., Matsubara, N., Sugawara, S.I., Saijo, Y., Satoh, K., and Nukiwa, T. (2000). Administration of wild-type p53 adenoviral vector synergistically enhances the cytotoxicity of anti-cancer drugs in human lung cancer cells irrespective of the status of p53 gene. Cancer Letters 157, 105-112.
[29] Nishizaki, M., Meyn, R.E., Levy, L.B., Atkinson, E.N., White, R.A., Roth, J.A., and Ji, L. (2001). Synergistic inhibition of human lung cancer cell growth by adenovirus-mediated wild-type p53 gene transfer in combination with docetaxel and radiation therapeutics in vitro and in vivo. Clinical Cancer Research 7, 2887-2897.
[30] Chuang, J.C., Sheu, G.T., Wangc, P.C., Liao, F.T., Liu, W.S., Huang, C.F., Tseng, M.H., Wue, M.F. (2012). Docetaxel and 5-fluorouracil induce human p53 tumor suppressor gene transcription via a short sequence at core promoter element. Toxicology in Vitro 2012.
[31] Kruse, J.P., and Gu, W. (2009). Modes of p53 regulation. Cell 137,609-622.
[32] Cai, Q., Xiao, B., Si, H., Cervini, A., Gao, J.,Lu, J., Upadhyay, S.K., Verma, S.C., and Robertson, E.S. (2012). Kaposi's sarcoma herpesvirus upregulates Aurora A expression to promote p53 phosphorylation and ubiquitylation. PLoS Pathog 8, 1-13.
[33] Blaydes, J.P., Luciani, M.G., Pospisilova, S., Ball, H.M., Vojtesek, B., and Hupp, T.R. (2001). Stoichiometric phosphorylation of human p53 at Ser315 stimulates p53-dependent transcription. J Biol Chem 7, 4699-4708.
[34] Sakaguchi, K., Sakamoto, H., Xie, D., Erickson, J.W., Lewis, M.S., Anderson, C.W., and Appella, E. (1997). Effect of phosphorylation on tetramerization of the tumor suppressor protein p53. J Protein Chem 5, 553-556.
[35] Fogal, V., Hsieh, J.K., Royer, C., Zhong, S., Lu, X. (2005). Cell cycle-dependent nuclear retention of p53 by E2F1 requires phosphorylation of p53 at Ser315. EMBO J 15, 2768-2782.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16219-
dc.description.abstract人類的SP110 基因為小鼠Ipr1基因的同源體 (Ortholoque)。這兩個基因所對應產生的Ipr1 和SP110 蛋白質均是屬於核蛋白。目前已知 Ipr1 在調節宿主對抗肺結核感染時的免疫反應上扮演重要的角色。SP110 主要有三種不同的異構體 (Isoforms),分別是 SP110a、SP110b及SP110c,其中又以 SP110b 和 Ipr1 的相似性最高。SP110 在人體中主要的角色是調節基因轉錄作用和免疫反應,但是這三種 Isoforms 實際在人體內所扮演的角色目前還不太清楚。p53 是一種抑癌基因,它的功能包括調節細胞週期、細胞凋亡和細胞老化的現象。在這篇研究中,我們發現 SP110b蛋白和 p53蛋白之間有交互作用,且它們在細胞核中有(共位) Co-localization的現象。此外,當這兩個蛋白共同表現四天後,p53 在細胞中的分布會因 SP110b 蛋白的表現而改變,使得 p53 在細胞的位置由原本分布在整個細胞變成只分布在細胞核內。我們發現這樣的影響,可能導致 SP110b 抑制 p53 在細胞中的功能,使得癌細胞的死亡情形降低。我們接著加入抗癌藥物,發現在抗癌藥物的處理之下,SP110b 同樣也會抑制 p53 造成的細胞死亡。但是,我們發現在沒有 p53 的存在時無論有無藥物的處理之下,SP110b 反而是會增加癌細胞的死亡。根據 Real-time PCR 的結果,我們發現 SP110b 抑制 p53 造成的細胞死亡不是透過調控它的下游基因所導致的。然而,利用 LC MS/MS 的分析,我們發現 SP110b 會改變 p53 的後轉譯修飾作用。由以上這些結果我們可以推測,SP110b 是透過改變 p53 的後轉譯修飾作用,進而影響p53在細胞中的分布,使得p53在細胞中的功能受到調控。另外,在沒有 p53 的存在時,SP110b 則是透過 p53 非依賴型的細胞凋亡而造成細胞死亡。zh_TW
dc.description.abstractSP110, a component of nuclear bodies, is the human orthologue of mouse Ipr1 protein, which plays an important role in the regulation of host innate immunity to Mycobacterium tuberculosis infection. SP110 has three major isoforms: SP110a, SP110b, and SP110c. Among these isoforms, SP110b is the closest human homologue to mouse Ipr1 protein. SP110 has functions in regulating gene transcription and immune response, but the distinct functions of individual SP110 isoform are still under investigation. p53, a tumor suppressor, has functions in regulating cell cycle, apoptosis, and senescence as well as conserving the genome stability by preventing genome mutation. In the studies, we demonstrated that SP110b protein interacted with p53 and that both proteins were partially co-localized in the nucleus. We also found that in the presence of SP110b the cellular distribution of p53 was changed from cytoplasm to nucleus 4 days post expression of both proteins. Ectopic expression of p53 in H1299 cells, which are p53 deficient, induced apoptotic cell death; however, the expression of SP110b inhibited the apoptosis induced by p53 in H1299 cells. Moreover, overexpression of SP110b suppressed the late apoptosis of p53-expressing H1299 cells treated with anti-cancer chemotherapy drugs, Cisplatin or Docetaxel. To further investigate the effect of SP110 on cancer cell death, we expressed SP110b in H1299 cells to observe whether and how SP110b affected cell survival in the absence of p53. The results showed that SP110b increased apoptosis of cancer cells in the absence of p53. According to real-time PCR analysis, SP110b didn’t significantly change the expression of p53 target genes including p21 and Puma in H1299 cells. Finally, we found that expression of SP110b caused phosphorylation of p53 at Thr312 assessed by LC MS/MS, suggesting that SP110b regulated p53 function through post-translation modification of p53. Taken together, the results indicated that SP110b interacted with p53 and negatively modulated the p53-dependent apoptotic cell death and, in the absence of p53 expression, SP110b induced a p53-independent apoptotic cell death.en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:05:33Z (GMT). No. of bitstreams: 1
ntu-101-R99442022-1.pdf: 6238834 bytes, checksum: ae11d8e3bcc9fe305fa141bf46f43c38 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsAcknowledgements i
Chinese Abstract ii
English Abstract iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 SP110 1
1.2 p53 2
1.3 Cell death 3
1.3.1 Apoptosis 3
1.3.2 Necrosis 4
1.4 Specific aims 4
Chapter 2 Materials and Methods 5
2.1 Preparation of JM109 competent cells 5
2.2 Construction of single vectors 5
2.3 Cell culture 5
2.4 Transfection 6
2.5 Cell lysis 6
2.6 Co-immunoprecipitation 7
2.7 Western blot 7
2.8 Fluorescence assay 8
2.9 FACS analysis 8
2.10 MTT assay 8
2.11 cDNA synthesis and real-time PCR 9
2.12 Generation of lentivirus 9
2.13 Lentiviral transduction 10
2.14 Magnetic selection 10
2.15 Coomassie blue staining 11
2.16 LC MS/MS 11
Chapter 3 Results 12
3.1 p53-V5 interacts with Flag-SP110a/b/c in 293T cells 12
3.2 DsRed-p53 is partially co-localized with eGFP-SP110b in nucleus of H1299 cells 12
3.3 SP110b changes p53 cellular distributions in H1299 cells 13
3.4 Overexpression of p53 causes cell death of H1299 cells 14
3.5 SP110b decreases p53-dependent cell death 15
3.6 Anti-cancer agents Cisplatin and Docetaxel increase cell death of lung cancer cells 15
3.7 SP110b decreases p53-dependent cell death of H1299 cells treated with anti-cancer agents 17
3.8 SP110b increases cell death of H1299 cells in the absence of p53 18
3.9 SP110b increases cell death of H1299 cells treated with anti-cancer agents in the absence of p53 expression 19
3.10 SP110b affects p53 target gene expression in H1299 cells 21
3.11 Establishment of inducible stable clones of p53-Flag and eGFP-SP110b in 293T cells 22
3.12 SP110b changes post-translational phosphorylation of p53 in 293T cells 23
Chapter 4 Discussion 24
4.1 SP110b changes p53 cellular distributions 24
4.2 SP110b has different functions in H1299 cells with/without p53 expression 25
4.3 Anti-cancer agents play a role in transfected H1299 cells 26
4.4 SP110b affects p53 function through post-translational modifications 27
Chapter 5 References 29
Chapter 6 Figures 34
Chapter 7 Tables 58
Chapter 8 Appendix 59
dc.language.isozh-TW
dc.subjectp53zh_TW
dc.subjectSP110bzh_TW
dc.titleSP110b調節p53造成的細胞死亡zh_TW
dc.titleSP110b modulates p53-dependent cell deathen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee俞松良,陳美齡
dc.subject.keywordSP110b,p53,zh_TW
dc.relation.page59
dc.rights.note未授權
dc.date.accepted2012-07-25
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
6.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved