Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16212
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂良鴻(Liang-Hung Lu)
dc.contributor.authorChi-Jung Chungen
dc.contributor.author鍾其融zh_TW
dc.date.accessioned2021-06-07T18:05:16Z-
dc.date.copyright2020-08-07
dc.date.issued2020
dc.date.submitted2020-07-31
dc.identifier.citation[1] U. G. Kyle et al., 'Bioelectrical impedance analysis-part II: utilization in clinical practice,' (in eng), Clin Nutr, vol. 23, no. 6, pp. 1430-53, Dec 2004, doi: 10.1016/j.clnu.2004.09.012.
[2] J. M. Van De Water, T. W. Miller, R. L. Vogel, B. E. Mount, and M. L. Dalton, 'Impedance cardiography: the next vital sign technology?,' (in eng), Chest, vol. 123, no. 6, pp. 2028-33, Jun 2003, doi: 10.1378/chest.123.6.2028.
[3] M. Ring, C. Lohmueller, M. Rauh, J. Mester, and B. M. Eskofier, 'A Temperature-Based Bioimpedance Correction for Water Loss Estimation During Sports,' IEEE Journal of Biomedical and Health Informatics, vol. 20, no. 6, pp. 1477-1484, 2016.
[4] M. Guermazi, A. Fendri, O. Kanoun, and N. Derbel, 'Potential of impedance spectroscopy for real-time assessing of food quality,' IEEE Instrumentation Measurement Magazine, vol. 21, no. 6, pp. 44-48, 2018, doi: 10.1109/MIM.2018.8573593.
[5] A. Chowdhury, T. K. Bera, D. Ghoshal, and B. Chakraborty, 'Studying the electrical impedance variations in banana ripening using electrical impedance spectroscopy (EIS),' in Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT), 7-8 Feb. 2015 2015, pp. 1-4.
[6] G. Qiao, W. Wang, W. Duan, F. Zheng, A. J. Sinclair, and C. R. Chatwin, 'Bioimpedance Analysis for the Characterization of Breast Cancer Cells in Suspension,' IEEE Transactions on Biomedical Engineering, vol. 59, no. 8, pp. 2321-2329, 2012.
[7] R. Casanella, O. Casas, and R. Pallàs-Areny, 'Differential synchronous demodulator for modulating sensors and impedance measurements,' Measurement Science and Technology, vol. 16, no. 8, pp. 1637-1643, 2005/07/11 2005, doi: 10.1088/0957-0233/16/8/014.
[8] M. Min, T. Parve, A. Ronk, P. Annus, and T. Paavle, 'Synchronous Sampling and Demodulation in an Instrument for Multifrequency Bioimpedance Measurement,' IEEE Transactions on Instrumentation and Measurement, vol. 56, no. 4, pp. 1365-1372, 2007.
[9] P. Kassanos, I. F. Triantis, and A. Demosthenous, 'A CMOS Magnitude/Phase Measurement Chip for Impedance Spectroscopy,' IEEE Sensors Journal, vol. 13, no. 6, pp. 2229-2236, 2013.
[10] C.-W. Kuo, 'Design of High-PSRR CMOS Impedance Measurement IC based on Coherent Technique,' 2018. Graduate Institute of Electronics Engineering, National Taiwan University.
[11] Z. Li, Z. Xu, C. Ren, W. Wang, D. Zhao, and H. Zhang, 'Study of Voltage Control Current Source in Electrical Impedance Tomography System,' in 2010 4th International Conference on Bioinformatics and Biomedical Engineering, 18-20 June 2010 2010, pp. 1-4.
[12] A. Worapishet, A. Demosthenous, and X. Liu, 'A CMOS Instrumentation Amplifier With 90-dB CMRR at 2-MHz Using Capacitive Neutralization: Analysis, Design Considerations, and Implementation,' IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 4, pp. 699-710, 2011.
[13] N. Tadic and D. Gobovic, 'A voltage-controlled resistor in CMOS technology using bisection of the voltage range,' IEEE Transactions on Instrumentation and Measurement, vol. 50, no. 6, pp. 1704-1710, 2001.
[14] S. Kazeminia, M. Mousazadeh, K. Hadidi, and A. Khoei, 'High-speed low-power Single-Stage latched-comparator with improved gain and kickback noise rejection,' in 2010 IEEE Asia Pacific Conference on Circuits and Systems, 6-9 Dec. 2010 2010, pp. 216-219.
[15] I. F. Triantis, A. Demosthenous, M. Rahal, H. Hong, and R. Bayford, 'A multi-frequency bioimpedance measurement ASIC for electrical impedance tomography,' in 2011 Proceedings of the ESSCIRC (ESSCIRC), 12-16 Sept. 2011 2011, pp. 331-334.
[16] S. Lee and C. Cheng, 'Systematic Design and Modeling of a OTA-C Filter for Portable ECG Detection,' IEEE Transactions on Biomedical Circuits and Systems, vol. 3, no. 1, pp. 53-64, 2009.
[17] R. J. Baker, CMOS Circuit Design, Layout, and Simulation. Wiley-IEEE Press, 2010.
[18] P. Kassanos, L. Constantinou, I. F. Triantis, and A. Demosthenous, 'An Integrated Analog Readout for Multi-Frequency Bioimpedance Measurements,' IEEE Sensors Journal, vol. 14, no. 8, pp. 2792-2800, 2014.
[19] M. Zamani, Y. Rezaeiyan, O. Shoaei, and W. A. Serdijn, 'A 1.55 μW Bio-Impedance Measurement System for Implantable Cardiac Pacemakers in 0.18 μm CMOS,' IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no. 1, pp. 211-221, 2018.
[20] Y.-K. Tsai, 'Utilization of Relaxation Oscillators in Low-Power Wireless Sensing Applications,' 2018. Graduate Institute of Electronics Engineering, National Taiwan University.
[21] P. R. Gray, Analysis and Design of Analog Integrated Circuits. Wiley Publishing, 2009.
[22] Y. Tokunaga, S. Sakiyama, A. Matsumoto, and S. Dosho, 'An On-Chip CMOS Relaxation Oscillator With Voltage Averaging Feedback,' IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1150-1158, 2010.
[23] M. Takhti, Y. Teng, and K. Odame, 'A 10 MHz Read-Out Chain for Electrical Impedance Tomography,' IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no. 1, pp. 222-230, 2018.
[24] H. Huang and S. Palermo, 'A TDC-based front-end for rapid impedance spectroscopy,' in 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS), 4-7 Aug. 2013 2013, pp. 169-172.
[25] H. Jafari, L. Soleymani, and R. Genov, '16-Channel CMOS Impedance Spectroscopy DNA Analyzer With Dual-Slope Multiplying ADCs,' IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 5, pp. 468-478, 2012.
[26] J. L. Damez, S. Clerjon, S. Abouelkaram, and J. Lepetit, 'Dielectric behavior of beef meat in the 1-1500 kHz range: Simulation with the Fricke/Cole-Cole model,' (in eng), Meat Sci, vol. 77, no. 4, pp. 512-519, 2007/12// 2007, doi: 10.1016/j.meatsci.2007.04.028.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16212-
dc.description.abstract本篇論文針對阻抗量測電路提出了新的技巧,改善傳統方法所遇到的問題。阻抗量測器在日常生活中很常見,例如體脂機,而在生物醫療方面也能夠用來進行癌細胞檢測,除了上述中較常見的應用之外,只要是物質的阻抗有變化時都能夠使用阻抗量測器進行檢測,例如酒類的釀造或是肉品的腐敗之類的。為了能在各種應用中能更準確的觀察阻抗的細微變化,阻抗量測器的精確度需要被考量,而因為在各個應用中的環境溫度並不相同,所以阻抗量測器受環境溫度所影響的問題也是需要被注意。本論文提出使用相位誤差抵銷技巧,改善了傳統架構中在阻抗的相位量測上精確度較差的問題。並且在系統中加入了溫度補償技巧以及積分類比數位轉換器,避免阻抗量測器受到環境溫度所影響而且輸出為數位信號可以讓後端電腦能夠直接分析資料。本論文的阻抗數位轉換器以0.18-μm互補式金屬氧化物半導體製程製作並驗證。此阻抗數位轉換器使用1.8V的供應電壓源,消耗的功率為7.92mW,在輸出結果為類比信號時,阻抗振幅量測誤差為+1.03%/-0.93%,阻抗相位的量測誤差為+0.87°/-0.73°,在輸出結果為數位信號時,阻抗振幅量測誤差為+1.35%/-1.23%,阻抗相位的量測誤差為+1.06°/-0.89°,在溫度範圍25°C至100°C時,阻抗振幅端的溫度係數為180 ppm/°C,阻抗相位端的溫度係數為156 ppm/°C。zh_TW
dc.description.abstractAn improved mechanism for impedance measurement analyzer is presented in this thesis to solve the problem in the traditional measurement technique. Impedance measurement analyzer is commonly used in daily life, such as the body fat monitor. In biomedical applications, it can be used to detect cancer cells. In addition to the common applications mentioned above, as long as the impedance of the substance changes, it can be detected by the impedance measurement analyzer, such as wine brewing or the corruption of foods…etc. To more accurately observe small changes in impedance, the accuracy of the impedance measurement analyzer needs to be considered. Another point that needs to be improved is that the impedance measurement analyzer is affected by temperature. Because the temperature in each application is not the same, the measurement results may have errors. The phase error cancellation technique is presented in this thesis to improve the problem of the phase error in phase measurement.
Besides, the temperature compensation technique is used in the system to reduce the influence of temperature. In the end, the integrating analog-to-digital converter is integrated into the system to implement an impedance-to-digital converter. The impedance-to-digital converter is fabricated in the 0.18-μm CMOS process. The power of chip is 7.92mW. In the analog output mode, the error of magnitude measurement is +1.03%/-0.93%. The error of phase measurement is +0.87°/-0.73°. In the digital output mode, the error of magnitude measurement is +1.35%/-1.23%. The error of phase measurement is +1.06°/-0.89°. In the temperature range from 25°C to 100°C, the temperature coefficient of magnitude measurement is 180 ppm/°C. The phase coefficient of phase measurement is 156 ppm/°C.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:05:16Z (GMT). No. of bitstreams: 1
U0001-3007202013274200.pdf: 6224921 bytes, checksum: cc137fbbc75c4a3e7383f7539e242c9d (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘要 i
Abstract iii
Contents v
List of Figures ix
List of Tables xiii
Chapter 1 Introduction 1
1.1 Motivation 2
1.2 Thesis Organization 4
Chapter 2 Background of Impedance Analyzer 5
2.1 Traditional Measurement Function 6
2.1.1 The Volt-Ohm-Milliammeter 6
2.1.2 Wheatstone bridge 7
2.1.3 Synchronous Detection (SD) 8
2.1.4 Synchronous Sampling (SS) 9
2.2 Novel Measurement Function 10
2.2.1 The Magnitude/Phase Measurement System 10
Chapter 3 A High-Accuracy Impedance Measurement System 15
3.1 Overview 16
3.2 Proposed Architecture 16
3.2.1 The Integration Method for Magnitude Extraction 17
3.2.2 The Integration Method for Phase Extraction 18
3.2.3 The Coherent Method 21
3.2.4 Phase Error Cancellation Method 23
3.3 Linearity Consideration 26
3.3.1 Voltage Controlled Current Source (VCCS) 26
3.3.2 Instrumentation Amplifier (IA) 30
3.3.3 Comparator 31
3.3.4 Switch Modulator 33
3.3.5 Magnitude Measurement 34
3.3.6 Phase Measurement 34
3.4 Circuit Implementation 35
3.4.1 Voltage Controlled Current Source (VCCS) 35
3.4.2 Instrumentation Amplifier (IA) 38
3.4.3 Comparator 40
3.4.4 Switch Modulator 42
3.4.5 Peak Detector 43
3.4.6 Transconductance Amplifier 44
3.4.7 Phase Detector 45
3.4.8 Integrator 47
3.4.9 Digital Controller 51
3.5 Noise Consideration 52
3.5.1 Thermal noise 52
3.5.2 Flicker Noise 53
3.6 Measurement Results 55
3.6.1 Device under test 55
3.6.2 Impedance measurement system 56
3.7 Remarks 62
Chapter 4 Temperature Compensation Technique 63
4.1 Overview 64
4.2 Proposed Impedance-to-Digital Converter 64
4.2.1 Magnitude Extraction 65
4.2.2 Phase Extraction 66
4.2.3 Temperature Compensation Technique 68
4.3 Circuit Implementation 74
4.3.1 Impedance Measurement System 74
4.3.2 Integrating ADC 74
4.3.3 Relaxation Oscillator With Voltage Averaging Feedback 79
4.3.4 Temperature Compensation 83
4.3.5 Digital Controller 86
4.4 Noise Consideration 87
4.4.1 Noise of relaxation oscillator 87
4.5 Measurement Results 89
4.5.1 Device under test 89
4.5.2 Impedance-to-digital converter 90
4.6 Remarks 98
Chapter 5 Application 99
5.1 Overviews 100
5.2 Measurement Results 101
Chapter 6 Conclusion 103
Bibliography 105
dc.language.isoen
dc.subject阻抗量測zh_TW
dc.subject溫度補償zh_TW
dc.subjecttemperature compensationen
dc.subjectimpedance spectroscopyen
dc.title使用溫度補償技術的高精確度阻抗數位轉換器之設計zh_TW
dc.titleDesign of High-Accuracy Impedance-to-Digital Converter with Temperature Compensation Techniqueen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳巍仁(Wei-Zen Chen),鄭裕庭(Yu-Ting Cheng),黃俊郎(Jiun-Lang Huang)
dc.subject.keyword阻抗量測,溫度補償,zh_TW
dc.subject.keywordimpedance spectroscopy,temperature compensation,en
dc.relation.page108
dc.identifier.doi10.6342/NTU202002096
dc.rights.note未授權
dc.date.accepted2020-08-02
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-3007202013274200.pdf
  未授權公開取用
6.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved