Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16196
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡懷楨(Huai-Jen Tsai)
dc.contributor.authorMoo-Rung Looen
dc.contributor.author盧慕蓉zh_TW
dc.date.accessioned2021-06-07T18:04:37Z-
dc.date.copyright2012-08-01
dc.date.issued2012
dc.date.submitted2012-07-27
dc.identifier.citationAdams B.D., Furneaux H., White B.A. (2007)The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol. 21:1132-1147
Anderson C., Catoe H. and Werner R.(2006) MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res. 34:5863-5871
Blagden C.S., Fromm L. and Burden S.J. (2004) Accelerated response of the myogenin gene to denervation in mutant mice lacking phosphorylation of myogenin at threonine 87. Mol Cell Biol. 24:1983-1989
Boutz P.L., Chawla G., Stoilov P. and Black D.L. (2007) MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev. 21:71-84
Carthew Richard W. and Sontheimer Erik J. (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell. 136: 642–655
Chen J.F., Mandel E.M., Thomson J.M., Wu Q., Callis T.E., Hammond S.M., Conlon F.L. and Wang D.Z.(2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 38:228-233
Eva van Rooij, Daniel Quiat, Brett A. Johnson, Lillian B. Sutherland, Xiaoxia Qi, James A. Richardson, Robert J. Kelm Jr, and Eric N. Olson (2009) A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell. 17: 662–673
Gawantka V., Pollet N., Delius H., Vingron M., Pfister R., Nitsch R., Blumenstock C. and Niehrs C.(1998) Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning. Mech Dev.77:95-141.
Giraldez A.J., Mishima Y., Rihel J., Grocock R.J., Van Dongen S., Inoue K., Enright A.J. and Schier A.F. (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science. 312:75-79
Haas A.K., Yoshimura S., Stephens D.J., Preisinger C., Fuchs E., Barr F.A. (2007) Analysis of GTPase-activating proteins :Rab1 and Rab43 are key Rabs required to maintain afunctional Golgi complex in human cells. J Cell Sci. 120:2997-3010
Holley S.A., Geisler R. and Nüsslein-Volhard C. (2000) Control of her1 expression during zebrafish somitogenesis by a delta-dependent oscillator and an independent wave-front activity. Genes Dev. 14:1678-1690
Holley S.A.(2007) The genetics and embryology of zebrafish metamerism. Dev Dyn. 236:1422-1449
Hsu R.J., Yang H.J. and Tsai HJ. (2009) Labeled microRNA
pull-down assay system:an experimental approach for high-throughput identification of microRNA-target mRNAs. Nucleic Acids Res. 37:e77
Ikeda S., He A., Kong S.W., Lu J., Bejar R., Bodyak N., Lee K.H., Ma Q., Kang P.M., Golub T.R. and Pu W.T. (2009) MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol.29:2193-2204
John J. McCarthy, Karyn A. Esser, Charlotte A. Peterson and Esther E. Dupont-Versteegden (2009) Evidence of MyomiR network regulation of β-myosin heavy chain gene expression during skeletal muscle atrophy. Physiol Genomics. 39:219-226
Ketting Rene F., Fischer Sylvia E.J., Bernstein Emily, Sijen Titia, Hannon Gregory J. and Plasterk Ronald H.A. (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15: 2654–2659
Kim H.K., Lee Y.S., Sivaprasad U., Malhotra A.and Dutta A. (2006) Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol. 174:677-687
Taulli R., Bersani F., Foglizzo V., Linari A., Vigna E., Ladanyi M.and Tuschl T., Ponzetto C. (2009) The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation.J Clin Invest. 119:2366-2378
van Eeden F.J., Granato M., Schach U., Brand M., Furutani-Seiki M., Haffter P., Hammerschmidt M., Heisenberg C.P., Jiang Y.J., Kane D.A., Kelsh R.N., Mullins M.C.,Odenthal J., Warga R.M., Allende M.L., Weinberg E.S. and Nüsslein-Volhard C. (1996) Mutations affecting somite formation and patterning in the zebrafish, Danio rerio. Development. 123:153-164
van Rooij E., Sutherland L.B., Qi X., Richardson J.A., Hill J. and Olson E.N. (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 316:575-579
Vasudevan S., Tong Y. and Steitz J.A.(2007) Switching from repression to activation: microRNAs can up-regulate translation. Science. 318:1931-1934
Wheeler G., Ntounia-Fousara S., Granda B., Rathjen T. and Dalmay T. (2006) Identification of new central nervous system specific mouse microRNAs. FEBS Lett. 580:2195-2200
Wienholds E., Koudijs M.J., van Eeden F.J., Cuppen E. and Plasterk R.H. (2003) The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat. Genet. 35:217–218
Wienholds E., Kloosterman W.P., Miska E., Alvarez-Saavedra E., Berezikov E., de Bruijn E., Horvitz H.R., Kauppinen S. and Plasterk R.H. (2005) MicroRNA expression in zebrafish embryonic development. Science. 309:310-311
Yi R., Qin Y., Macara I.G.and Cullen B.R. (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17:3011-3016
Yu Z., Jian Z., Shen S.H., Purisima E. and Wang E. (2007) Global analysis of microRNA target gene expression reveals that miRNAtargets are lowerexpressed in mature mouse and Drosophila tissues than in the embryos. Nucleic Acids Res. 35:152-164
Zecchin E., Conigliaro A., Tiso N., Argenton F. and Bortolussi M.(2005) Expression analysis of jagged genes in zebrafish embryos. Dev Dyn. 233:638-645
Zhang L., Kendrick C., Jülich D. and Holley S.A. (2008) Cell cycle progression is required for zebrafish somite morphogenesisbut not segmentation clockfunction. Development. 135:2065-2070
Zhao B., Chun C., Liu Z., Horswill M.A., Pramanik K., Wilkinson G.A., Ramchandran R. and Miao R.Q. (2010) Nogo-B receptor is essential for angiogenesis in zebrafish via Akt pathway. Blood. 116:5423-5433
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16196-
dc.description.abstractMicroRNA-206 (miR-206)為骨骼肌專一表現之微型核醣核酸,調控肌肉纖維母細胞的增生與分化。藉由Labeled miRNA pull-down assay (LAMP)在斑馬魚胚胎發育早期骨骼肌增生與分化的過渡時期之16 hpf,篩選出miR-206的可能標的基因之一為reticulon (rtn)。在in vitro以及in vivo系統,發現 miR-206可經由rtn之三端非轉譯區抑制報導基因的表現,且於基因轉錄層次證實抑制miR-206會延緩rtn mRNA的降解使其表現量明顯提升。藉由全胚胎原位雜交實驗,抑制內生性miR-206以及過量表現rtn mRNA則可初步觀察到相似缺失的外表型。雖然已證實miR-206在mRNA層次上調控rtn mRNA,但其蛋白質層次上的調控以及在斑馬魚肌肉發育上的功能仍不清楚。因此首先藉由西方浸漬實驗,測定抑制內生性miR-206之胚胎,內生性Rtn蛋白質表現量具有顯著上升趨勢,證實內生性miR-206可在蛋白質層次調控內生性Rtn的表現。為了解miR-206調控rtn在斑馬魚肌肉發育上的功能,同時注射miR-206-MO以及三種rtn 亞型之mRNA至斑馬魚胚胎一細胞期,藉由phalloidin標定肌動蛋白絲,分析發育至48 hpf的胚胎肌肉細部結構,發現抑制內生性miR-206以及過量表現rtn皆會產生肌動蛋白絲橫跨體節的缺失,並且此缺失也會產生在rtn各亞型mRNA單獨過量表現之胚胎內。同時,我們也觀察到在肌動蛋白絲橫跨的部分,產生體節邊界 (somite boundary)結構的缺失,進一步統計其缺失比例,發現隨著發育時間的增加,此種體節邊界的缺失並不會在發育後期再被修復。若注射miR-206-MO以及rtn mRNA之細胞轉移至WT 的胚胎,發現轉移細胞在胚胎內發育成肌肉細胞,且轉移細胞之間的體節邊界會異常生長,使整體體節邊界結構產生缺失。總合上述研究結果顯示,rtn為miR-206的標的基因,並且miR-206會藉由抑制rtn的過度表現來調控斑馬魚胚胎發育初期之體節邊界的正常生成。zh_TW
dc.description.abstractmicroRNA-206 is a muscle-specific miRNA that regulate myoblast proliferation and differentiation. According to Labeled miRNA pull-down assay (LAMP), the candidate gene rtn was screened from 16-hpf zebrafish embryo which at the transition state between proliferation and differentiation of muscle cell. Through in vitro and in vivo system, we found out that miR-206 was able to repress reporter activity and up-regulated the expression of post-transcription level through delayed the degradation of rtn mRNA. Using whole-mount in situ hybridization (WISH), the similar defect of morphology was observed by repression of endogenous miR-206 and over-expression of rtn mRNA. Although the regulation of rtn mRNA by miR-206 was confirmed, the effect of protein level and the function in zebrafish muscle development has not been study yet. First, we used western blot and found out that knockdown of endogenous miR-206 resulted in the increase of endogenous rtn protein expression. We proved that miR-206 was able to down-regulate the protein level of rtn. To verify the function of miR-206 in zebrafish muscle development through rtn, rtn mRNA and miR-206-MO were injected into one-cell stage embryos separately. According to phalloidin labeling, knockdown of miR-206 and over-expression rtn mRNA caused actin filament crossing-over between somites. The same defect was also observed by over-expression particular rtn isoform. Then, we found out that the defect of actin filament crossing-over between somite accompanied with defective somite boundary. Further quantified the ratio of defect, we discovered that the defective somite boundary were not regenerate through developmental time. Furthermore, we transplanted rtn mRNA injected cell into WT embryos. The transplanted cell developed to muscle and caused somite boundary growth abnormally. Taken together, these results suggested that rtn is one of target gene of miR-206. Through silencing rtn, miR-206 regulate somite and somite boundary formation in zebrafish embryo early development.en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:04:37Z (GMT). No. of bitstreams: 1
ntu-101-R99b43001-1.pdf: 2543501 bytes, checksum: 7517d803cd9594820295325d6b84f1d2 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要……………………………………………………………4
英文摘要……………………………………………………………5
文獻回顧……………………………………………………………7
材料與方法…………………………………………………………24
結果…………………………………………………………………30
討論…………………………………………………………………35
總結…………………………………………………………………42
參考文獻……………………………………………………………43
圖表…………………………………………………………………50
附錄…………………………………………………………………64
dc.language.isozh-TW
dc.subject斑馬魚zh_TW
dc.subject肌肉發育zh_TW
dc.subject微型核醣核酸zh_TW
dc.subjectmuscle developmenten
dc.subjectzebafishen
dc.subjectmicroRNAen
dc.titlemicroRNA-206 藉由抑制其標的基因調控斑馬魚體節邊界的生成zh_TW
dc.titleMicroRNA-206 Regulates Somite Boundary Formation through Silencing the Target Gene in Zebrafish Embryosen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳盛良(Shen-Liang Chen),俞震亞(Jenn-Yah Yu),鄭邑荃(Yi-Chuan Cheng)
dc.subject.keyword肌肉發育,微型核醣核酸,斑馬魚,zh_TW
dc.subject.keywordmuscle development,microRNA,zebafish,en
dc.relation.page68
dc.rights.note未授權
dc.date.accepted2012-07-27
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved