Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16194
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊顯
dc.contributor.authorCheng-Han Linen
dc.contributor.author林承翰zh_TW
dc.date.accessioned2021-06-07T18:04:33Z-
dc.date.copyright2012-07-27
dc.date.issued2012
dc.date.submitted2012-07-27
dc.identifier.citation1. Mudgal, V.; Madaan, N.; Mudgal, A.; Singh, R. B.; Mishra, S. Effect of Toxic Metals on Human Health Open Nutra. J. 2010, 3, 94-99.
2. Yunice, A. A., Ultratrace Metal Analysis in Biological Sciences and Environment. McGraw-Hill: Oklahoma City, 1979; pp. 230-258.
3. Şenyuva, H. Z.; Sarica, D. Y.; Özden, T. Simultaneous Determination of Fe(II) and Fe(III) in Pharmaceutical Samples by Post-Column Derivatization/HPLC Turk. J. Chem. 2002, 26, 425-430.
4. http://www.thermoscientific.com/ecomm/servlet/home?storeId=11152.
5. Stoyanova, A. M.; Michailov, V. P.; Alexiev, A. A. Catalytic Photometric Determination of Serum Ion Bull. Chem. Technol. Macedonia 2000, 19, 35-40.
6. Chan, Y.-H.; Jin, Y.; Wu, C.; Chiu, D. T. Copper(II) and Iron(II) Ion Sensing with Semiconducting Polymer Dots Chem. Commun. 2011, 47, 2820-2822.
7. http://yibian.hopto.org/diag/ill/?illno=1175.
8. Glenn, M. T.; Savory, J. Graphite Rod Atomizer in Atomic Absorption Spectrometry for Direct Determination of Iron in Serum Anal. Chem. 1973, 45, 203-205.
9. Selvaraju, R.; Raman, R. G.; Narayanaswamy, R.; Valliappan, R.; Baskaran, R. Trace Element Analysis in Hepatitis B Affected Human Blood Serum by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) Romanian J. Biophys. 2009, 19, 35-42.
10. Vanhoe, H.; Vandecasteele, C.; Versieck, J.; Dams, R. Determination of Trace Elements in a Human Serum Reference Material by Inductively Coupled Plasma Mass Spectrometry Mikrochim. Acta 1989, 3, 373-379.
11. Lytton, S. D.; Mester, B.; Libman, J.; Shanzer, A.; Cabantchik, Z. I. Monitoring of Iron(lll) Removal from Biological Sources Using a Fluorescent Siderophore Anal. Biochem. 1992, 205, 326-333.
12. Sumner, J. P.; Kopelman, R. Alexa Fluor 488 as an Iron Sensing Molecule and Its Application in PEBBLE Nanosensors Analyst 2005, 130, 528-533.
13. Wang, B.; Hai, J.; Liu, Z.; Wang, Q.; Yang, Z.; Sun, S. Selective Detection of Iron(III) by Rhodamine-Modified Fe3O4 Nanoparticles Angew. Chem. Int. Ed. 2010, 49, 4576-4579.
14. Anguiano, D. I.; García, M. G.; Ruíz, C.; Torres, J.; Alonso-Lemus, I.; Alvarez-Contreras, L.; Verde-Gómez, Y.; Bustos, E. Electrochemical Detection of Iron in a Lixiviant Solution of Polluted Soil Using a Modified Glassy Carbon Electrode Int. J. Electrochem. 2012, 2012, 1-6.
15. Shervedani, R. K.; Hatefi-Mehrjardi, A.; Asadi-Farsani, A. Sensitive Determination of Iron(III) by Gold Electrode Modified with 2-Mercaptosuccinic Acid Self-assembled Monolayer Anal. Chim. Acta 2007, 601, 164-171.
16. Kaur, N.; Kumar, S. Colorimetric Metal Ion Sensors Tetrahedron 2011, 67, 9233-9264.
17. Wu, S.-P.; Chen, Y.-P.; Sung, Y.-M. Colorimetric Detection of Fe3+ Ions Using Pyrophosphate Functionalized Gold Nanoparticles Analyst 2011, 136, 1887-1891.
18. Guan, J.; Jiang, L.; Li, J.; Yang, W. pH-Dependent Aggregation of Histidine-Functionalized Au Nanoparticles Induced by Fe3+ Ions J. Phys. Chem. C 2008, 112, 3267-3271.
19. Apilux, A.; Dungchai, W.; Siangproh, W.; Praphairaksit, N.; Henry, C. S.; Chailapakul, O. Lab-on-Paper with Dual Electrochemical/ Colorimetric Detection for Simultaneous Determination of Gold and Iron Anal. Chem. 2010, 82, 1727-1732.
20. Jafarian-Dehkordi, A.; Saghaie, L.; Movahedi, N. A New Spectrophotometric Method for Direct Determination of Iron(III) in Serum DARU J. Pharm. Sci. 2008, 16, 76-82.
21. Walshe, J. M. Penicillamine, a New Oral Therapy for Wilson's Disease Am. J. Med. 1956, 4, 487-495.
22. http://www.genes-at-taiwan.com.tw/genehelp/database/disease/Menkes
_disease_940816.htm
23. http://www.genes-at-taiwan.com.tw/genehelp/database/disease/Wilson
_940422.htm.
24. Edwards, P. P.; Thomas, J. M. Gold in a Metallic Divided State—From Faraday to Present-Day Nanoscience Angew. Chem. Int. Ed. 2007, 46, 5480-5486.
25. Kuo, C.-T.; Liu, Y.-M.; Wu, S.-H.; Lin, C.-H.; Lin, C.-M.; Chen, C.-h. Visual Semiquantification via the Formation of Phase Segregation Anal. Chem. 2011, 83, 3765-3769.
26. Rigo, A.; Corazza, A.; di Paolo, M. L.; Rossetto, M.; Ugolini, R.; Scarpa, M. Interaction of Copper with Cysteine: Stability of Cuprous Complexes and Catalytic Role of Cupric Ions in Anaerobic Thiol Oxidation J. Inorg. Biochem. 2004, 98, 1495-1501.
27. Pecci, L.; Montefoschi, G.; Musci, G.; Cavallini, D. Novel Findings on the Copper Catalysed Oxidation of Cysteine Amino Acids 1997, 13, 355-367.
28. Vortisch, V.; Kroneck, P.; Hemmerich, P. Model Studies on the Coordination of Copper in Enzymes. IV. Structure and Stability of Cuprous Complexes with Sulfur-Containing Ligands J. Am. Chem. Soc. 1976, 98, 2821-2826.
29. Smith, G. F.; McCurdy, W. H. 2,9-Dimethyl-1,10-phenanthroline Anal. Chem. 1952, 24, 371-373.
30. Lappin, A. G.; Youngblood, M. P.; Margerum, D. W. Electron-Transfer Reactions of Copper(I) and Copper(III) Complexes Inorg. Chem. 1980, 19, 407-413.
31. Xiao, Z.; Loughlin, F.; George, G. N.; Howlett, G. J.; Wedd, A. G. C-Terminal Domain of the Membrane Copper Transporter Ctr1 from Saccharomyces cerevisiae Binds Four Cu(I) Ions as a Cuprous-Thiolate Polynuclear Cluster: Sub-femtomolar Cu(I) Affinity of Three Proteins Involved in Copper Trafficking J. Am. Chem. Soc. 2004, 126, 3081-3090.
32. http://www.epa.gov.tw/.
33. Tereshin, G. S.; Tananaev, I. V. Determination of Ethylenediaminetetra-Acetic Acid and Rare Earths when They are Present Together Zhur. Anal. Khim. 1962, 17, 526-527.
34. http://140.110.203.42/EFD.php?num=233.
35. Herring, W. B.; Leavell, B. S.; Paixao, L. M.; Yoe, J. H. Trace Metals in Human Plasma and Red Blood Cells Am. J. Clin. Nutr. 1960, 8, 846-854.
36. Vanhoe, H.; Vandecasteele, C.; Versieck, J.; Dams, R. Determination of Iron, Cobalt, Copper, Zinc, Rubidium, Molybdenum, and Cesium in Human Serum by Inductively Coupled Plasma Mass Spectrometry Anal. Chem. 1989, 61, 1851-1857.
37. Wei, J.; Teshima, N.; Ohno, S.; Sakai, T. Catalytic Flow-Injection Determination of Sub-ppb Copper(II) Using the Redox Reaction of Cysteine with Iron(III) in the Presence of 2,4,6-Tris(2-pyridyl)-1,3,5-triazine Anal. Sci. 2003, 19, 731-735.
38. Harris, D. C., Quantitative Chemical Analysis. W. H. Freeman: New York, 2007; ap. 15.
39. Stadtherr, L. G.; Martin, R. B. Iron(II) and Iron(III) Complexes of Penicillamine Inorg. Chem. 1972, 11, 92-94.
40. Harris, D. C. Serum Iron Determination: A Sensitive Colorimetric Experiment J. Chem. Educ. 1978, 55, 539-540.
41. http://staff.ustc.edu.cn/~liuyz/methods/buffer.htm.
42. Hirai, T.; Fukushima, K.; Kumamoto, K.; Iwahashi, H. Effects of Some Naturally Occurring Iron Ion Chelators on In Vitro Superoxide Radical Formation Biol. Trace Elem. Res. 2005, 108, 77-85.
43. Paul, J. M.; Birker, W. L.; Freeman, H. C. Structure, Properties, and Function of a Copper(I)-Copper(II) Complex of D-Penicillamine: Pentathallium(I) u8-Chloro-dodeca(D-penicillaminato)-octacuprate(I)- hexacuprate(II) n-Hydrate J. Am. Chem. Soc. 1977, 99, 6890-6899.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16194-
dc.description.abstract本論文以目視觀察相變化(phase segregation)偵測特定濃度範圍的鐵離子。反應試劑包含imidazole緩衝溶液及具有硫醇官能基(-SH)之青黴胺(penicillamine),與鐵離子產生棉絮狀物質,使溶液呈不勻相,利用鐵離子與青黴胺之莫耳數比值((mFe3+/mpenicillamine)0)可界定出三個相(phases)的變化:當(mFe3+/mpenicillamine)0小於0.3時,形成不勻相需時超過20分鐘(phase I);當(mFe3+/mpenicillamine)0介於0.3~1.0時,20分鐘內形成不勻相(phase II);當(mFe3+/mpenicillamine)0大於1.0時,溶液不形成不勻相(phase III)。此分析方法的目標樣品為人體血清(人體血清鐵離子的正常濃度範圍:9.0~31.3 uM),探討其他金屬離子是否對本分析鐵離子系統造成影響,實驗發現只有[Cu2+]0會影響反應試劑與鐵離子形成不勻相之濃度範圍,但在Cu2+存在時,仍可用(mFe3+/mpenicillamine)0區別三相變化,且可更快速觀察到不勻相的形成,如phase II於2分鐘內形成不勻相。樣品濃度達mM時,可直接以肉眼觀察到不勻相的形成;而當樣品濃度為uM時,不勻相的形成量減少,肉眼辨識困難,應用庭得耳效應(Tyndall effect)可利用雷射投影筆產生之光徑幫助肉眼觀察相變化。藉由觀察2分鐘內不勻相形成與否,判斷鐵離子的濃度範圍。實驗參數如pH值、溫度及離子強度亦會影響不勻相的形成,推測原因與imidazole的pKa、反應活化能及不勻相之表面電荷斥力有關。在參數最佳化的條件下,此方法可簡單、快速判定人體血清鐵離子濃度是否正常。為了瞭解形成不勻相之原因,利用國家同步輻射中心的X光吸收光譜、還原劑ascorbic acid及螯合劑ferrozine (針對Fe2+)與bathocuproinedisulfonic acid disodium salt (bcs,針對Cu+)探討形成不勻相之反應機制。zh_TW
dc.description.abstractVisual detection triggered by sensing reagents has been one of the central themes in contemporary chemistry. This thesis work develops a rapid screening scheme to determine whether the amount of Fe3+ falls into a diagnostic concentration range (9.0~31.3 uM) in human serum samples by the naked eye. It is important for applications under circumstances where instruments are not readily available. The goal is achieved by the formation of flocculates within a certain range of Fe3+-to-penicillamine mole ratios ((mFe3+/mpenicillamine)0). Experimental results show that flocculates formed less than 2 minutes for (mFe3+/mpenicillamine)0 ranging from 0.3 to 1.0 when Cu2+ exists. Outside the range, the solution appears homogeneous. With a handy laser pointer, Tyndall effect that the light is scattered by colloidal suspension is adapted to realize semi-quantification of Fe3+. The reaction depends on solution pH, temperature, ionic strength, and (mFe3+/mpenicillamine)0 mole ratios. Under the optimized experimental conditions, the visual sensing method is applied to serum Fe3+ detection. To investigate the mechanisms of forming flocculates, X-ray absorption spectrometer, reducing agent (ascorbic acid for Fe3+) and chelators (ferrozine for Fe2+, bathocuproinedisulfonic acid disodium salt for Cu+) were used in this study.en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:04:33Z (GMT). No. of bitstreams: 1
ntu-101-R99223109-1.pdf: 2082555 bytes, checksum: e7e4f48d8c13ceb4ce20dce7318a8e1c (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents謝誌 i
中文摘要 iii
Abstract iV
目錄 V
圖目錄 Viii
第一章 緒論 1
1-1 前言 1
1-2 鐵離子的相關介紹 2
1-2-1 鐵離子對人體重要性簡介 2
1-2-2 鐵離子分析方法回顧 3
1-3 青黴胺(penicillamine)的簡介 8
1-4 庭得耳效應(Tyndall effect)的簡介 9
1-5 目視辨識Cu2+的方法開發 10
1-5-1 簡述本實驗室發展的Cu2+-cysteine半定量分析方法 10
1-5-2 反應機制導證 12
1-5-3 實驗參數探討 13
1-5-4 真實樣品檢測 18
1-6 本論文研究目的 20
第二章 實驗部分 21
2-1 實驗藥品 21
2-2 實驗器材 23
2-3 實驗儀器設備 24
2-4 溶液的配製 25
2-5 儀器量測 27
2-5-1 粒徑量測 27
2-5-2 穿透式電子顯微鏡(TEM)量測 27
2-5-3 X光吸收近邊緣結構(X-ray Absorption Near Edge Structure, XANES)與延伸X光吸收細微結構(Extended X-ray Absorption Fine Structure, EXAFS)量測 28
2-6 鐵離子造成相變化之配方 32
2-7 人體血清樣品的前處理 33
第三章 結果與討論 34
3-1 以青黴胺與鐵離子反應形成不勻相辨識鐵離子 34
3-2 不勻相之影像 38
3-3 實驗參數的最佳化 40
3-4 應用庭得耳效應(Tyndall effect)於分析人體血清中的鐵離子 43
3-5 形成不勻相之機制探討 46
3-5-1 調整反應試劑組成以確認形成不勻相之配方 46
3-5-2 Fe3+與imidazole緩衝溶液(Fe-imi)反應形成不勻相之機 制探討 48
3-5-3 Fe3+與青黴胺反應(Fe-pen)形成不勻相之機制探討 53
3-5-4 Fe3+與Cu2+共存(Cu-Fe-pen)形成不勻相之機制探討 56
第四章 結論 64
第五章 參考文獻 65
dc.language.isozh-TW
dc.subject目視法zh_TW
dc.subject血清鐵離子zh_TW
dc.subject半定量zh_TW
dc.subjectserum ironen
dc.subjectvisual detectionen
dc.subjectsemi-quantificationen
dc.title利用不勻相的形成目視偵測特定濃度範圍鐵離子zh_TW
dc.titleVisual Detection of a Tunable Concentration Range of Fe3+ by the Formation of Phase Segregationen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何佳安,劉春櫻
dc.subject.keyword血清鐵離子,目視法,半定量,zh_TW
dc.subject.keywordserum iron,visual detection,semi-quantification,en
dc.relation.page69
dc.rights.note未授權
dc.date.accepted2012-07-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved