Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16184
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林讚標(Tsan-Piao Lin)
dc.contributor.authorWan-Ling Changen
dc.contributor.author張菀玲zh_TW
dc.date.accessioned2021-06-07T18:04:11Z-
dc.date.copyright2012-08-15
dc.date.issued2012
dc.date.submitted2012-07-27
dc.identifier.citationAbe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15: 63-78.
Apel, K., and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373-399.
Asada, K. (1999). The water-water cycle in chloroplast: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 601-639.
Archie, R. and Portis, J. (1992). Regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase activity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 415-437.
Ball, L., Accotto, G.P., Bechtold, U., Creissen, G., Funck, D., Jimenez, A., Kular, B., Leyland, N., Mejia-Carranza, J., Reynolds, H., Karpinski, S., and Mullineaux, P.M. (2004). Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16: 2448–2462.
Barroso, C., Romero, L.C., Cejudo, F.J., Vega, J.M., and Gotor, C. (1999). Salt-specific regulation of the cystosolic O-acetylserine(tilo)lyasegene from Arabidopsis thaliana is dependent on abscisic acid. Plant Mol. Biol 40:729–736.
Bielawski, W., and Joy, K.W. (1986). Reduced and oxidized glutathione and glutathione-reductase activity in tissues of Pisum sativum. Planta 169: 267–272.
Blum, R., Meyer, K.C., Wunschmann, J., Lendzian, K.J., and Grill, E. (2010). Cytosolic action of phytochelatin synthase. Plant Physiol. 153: 159-169.
Cairns, N.G., Pasternak, M., Wachter, A., Cobbett, C.S., and Meyer, A.J. (2006). Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol. 141: 446-455.
Chen, L., Song, Y., Li, S., Zhang, L., Zou, C., and Yu, D. (2012a). The role of WRKY transcription factors in plant abiotic stresses. Biochim. Biophys. Acta. 1819: 120-128.
Chen, J.H., Jiang, H.W., Hsieh, E.J., Chen, H.Y., Chien, C.T., Hsieh, H.L., and Lin, T.P. (2012b). Drought and salt stress tolerance of an Arabidopsis Glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol. 158: 340-351.
Daudi, A., Cheng, Z., O’Brien, J.A., Mammarella, N., Khan, S., Ausubel, F.M., and Bolwell, G.P. (2012). The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell 24: 275–287.
Dempsey, D.A., Vlot, A.C., Wildermuth, M.C., and Klessig, D.F. (2011). Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9: e0156.
Dietz, K.J., Jacob, S., Oelze, M.L., Laxa, M., Tognetti, V., de Miranda, S.M.N., Baier, M., and Finkemeier, I. (2006). The function of peroxiredoxins in plant organelle redox metabolism. J. Exp. Bot. 57: 1697-1709.
Dron, M., Clouse, S.D., Dixon, R.A., Lawton, M.A., and Lamb, C.J. (1988). Glutathione and fungal elicitor regulation of a plant defense gene promoter in electroporated protoplasts. Proc. Natl. Acad. Sci. USA 85: 6738-6742.
Edwards, R., Dixon, D.P., and Walbot, V. (2000). Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci. 5: 193-198.
Endo, A., Sawada, Y., Takahashi, H., Okamoto, M., Ikegami, K., Koiwai, H., Seo, M., Toyomasu, T., Mitsuhashi, W., Shinozaki, K., Nakazono, M., Kamiya, Y., Koshiba, T., and Nambara, E. (2008). Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol. 147: 1984-1993.
Foyer, C.H., and Noctor, G. (2011). Ascorbate and glutathione: The heart of the redox hub. Plant Physiol. 155: 2-18.
Frear, D.S., and Swanson, H.R. (1970). Biosynthesis of S-glutathione: partial purification and properties of glutathione S-transferase from corn. Phytochem. 9: 2123-2132.
Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., Ohme-Takagi, M., Tran, L. S. P., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2004). A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 39: 863–876.
Glazebrook, J., and Ausubel, F.M. (1994). Isolation of phytoalexindeficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proc. Natl. Acad. Sci. USA 91: 8955–8959.
Gill, S. S., and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48: 909-930.
Gomez, L.D., Noctor, G., Knight, M., and Foyer, C.H. (2004). Regulation of calcium signaling and gene expression by glutathione. J. Exp. Bot. 55: 1851-1859.
Griffith, O.W. (1980). Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106: 207-212.
Grill, E., Lffler, S., Winnacker, E.L., and Zenk, M.H. (1989). Phytochelatins, the heavy-metal binding peptides of plants, are synthesized from glutathione by a specific -γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc. Natl. Acad. Sci. USA 86: 6838-6842.
Grill, E., Winnacker, E.L., and Zenk, M.H. (1987). Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc. Natl. Acad. Sci. USA 84: 439-443.
Hagen, G., Uhrhammer, N., and Guilfoyle, T.J. (1988). Regulation of expression of an auxininduced soybean sequence by cadmium. J. Biol. Chem. 263: 6442-6446.
Holub, E.B., and Cooper, A. (2004). Matrix, reinvention in plants: how genetics is unveiling secrets of non-host disease resistance. Trends Plant Sci. 9: 211-214.
Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2001). Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 27: 325-333.
Knox, J.P., Lindstead, P.J., Peart, J., Cooper, C., and Roberts, K. (1991). Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation. Plant J. 1:317–326.
Koprivova, A., Mugford, S.T., and Kopriva, S. (2010). Arabidopsis root growth dependence on glutathione is linked to auxin transport. Plant Cell Rep. 29: 1157–1167.
Lee, K.H., Piao, H.L., Kim, H.Y., Choi, S.M., Jiang, F., Hartung, W., Hwang, I., Kwak, J.M., Lee, I.J., and Hwang, I. (2006). Activation of glucosidase via stress- induced polymerization rapidly increases active pools of abscisic acid. Cell 126: 1109–1120.
Lee, S.C., Lan, W., Buchanan, B.B., and Luan, S. (2009). A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc. Natl. Acad. Sci. USA 106: 21419-21424.
Leustek, T. (2002). Sulfate Metabolism. Arabidopsis Book 1: e0017.
Li, H., Jiang, H., Bu, Q., Zhao, Q., Sun, J., Xie, Q., and Li, C. (2011). The Arabidopsis RING finger E3 ligase RHA2b acts additively with RHA2a in regulating abscisic acid signaling and drought response. Plant Physiol. 156: 550–563.
Lim, P.O., Kim, H.J., and Nam, H.G. (2007). Leaf senescence. Annu. Rev. Plant Biol. 58: 115-136.
Lin, B.L., Wang, J.S., Liu, H.C., Chen, R.W., Meyer, Y., Barakat, A., and Delseny, M. (2001). Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones 6: 201–208.
May, M.J., Parker, J.E., Daniels, M.J., Leaver, C.J., and Cobbett C.S. (1996b). An Arabidopsis mutant depleted in glutathione shows unaltered responses to fungal and bacterial pathogens. Mol. Plant Microbe Interact. 9: 349-356.
Mittler, R., Vanderauwera, S., Gollery, M., and Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci. 9: 490-498.
Moore, J.P., Nguema-Ona, E., Chevalier, L., Lindsey, G.G., Brandt, W.F., Lerouge, P., Farrant, J.M., and Driouich, A. (2006). Response of the leaf cell wall to desiccation in the resurrection plant Myrothamnus flabellifolius. Plant Physiol. 141: 651–662.
Merkouropoulos, G., and Shirsat, A.H. (2003). The unusual Arabidopsis extensin gene atExt1 is expressed throughout plant development and is induced by a variety of biotic and abiotic stresses. Planta 217: 356–366.
Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15: 473.
Murray, S.L., Ingle, R.A., Petersen, L.N., and Denby, K.J. (2007). Basal resistance against Pseudomonas syringae in Arabidopsis involves WRKY53 and a protein with homology to a nematode resistance protein. Mol. Plant Microbe Intract. 20: 1431-1438.
Noctor, G., and Foyer, C.H. (1998). ASCORBATE AND GLUTATHIONE: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 249-279.
Noctor, G., Gomez, L., Vanacker, H., and Foyer, C.H. (2002). Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J. Exp. Bot. 53: 1283-1304.
Noctor, G., Queval, G., Mhamdi, A., Chaouch, S., and Foyer, C.H. (2011). Glutathione. Arabidopsis Book 9(1):1-32.
Ogawa, K. (2005). Glutathione-associated regulation of plant growth and stress responses. Antioxid. Redox Signal. 7: 973-81.
Palovaara, J., and Hakman, I. (2009). WOX2 and polar auxin transport during spruce embryo pattern formation. Plant Signal. Behav. 4(2): 153-155.
Parisy, V., Poinssot, B., Owsianowski, L., Buchala, A., Glazebrook, J., and Mauch, F. (2006). Identification of PAD2 as a c-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J. 49: 159–172.
Passardi, F., Tognolli, M., Meyer, M.D., Penel, C., and Dunand, C. (2006). Two cell wall associated peroxidases from Arabidopsis influence root elongation. Planta 223: 965-974.
Pasternak, M., Lim, B., Wirtz, M., Hell, R., Cobbett, C.S., and Meyer, A.J. (2008). Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. Plant J. 53: 999-1012.
Raffaele, S., Rivas, S., and Roby, D. (2006). An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Lett. 580: 3498–3504.
Ravilious, G.E., Nguyen, A., Francois, J.A., and Jez J.M. (2012). Structural basis and evolution of redox regulation in plant adenosine-5’-phosphosulfate kinase. Proc. Natl. Acad. Sci. USA 109: 309-314.
Saga, H., Ogawa, T., Kai, K., Suzuki, H., Ogata, Y., Sakurai, N., Shibata, D., and Ohta, D. (2012). Identification and characterization of ANAC042, a transcription factor family gene involved in the regulation of camalexin biosynthesis in Arabidopsis. Mol. Plant Microbe Interact. 25: 684-696.
Schwartz, S.H., Qin, X., and Zeevaart J.A.D. (2003). Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol. 131: 1591-1601.
Senda, K., and Ogawa, K. (2004). Induction of PR-1 accumulation accompanied by runaway cell death in the lsd1 mutant of Arabidopsis is dependent on glutathione levels but independent of the redox state of glutathione. Plant Cell Physiol. 45: 1578-1585.
Shen, H., He, H., Li, J., Chen, W., Wang, X., Guo, L., Peng, Z., He, G., Zhong, S., Qi, Y., Terzaghi, W., and Deng, X.W. (2012). Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 24: 875–892.
Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58: 221-227.
Shinozaki, K., Yamaguchi-Shinozaki, K., and Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 6: 410-417.
Su, T., Xu, J., Li, Y., Lei, L., Zhao, L., Yang, H., Feng, J., Liu, G., and Ren, D. (2011). Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana. Plant Cell 23: 364–380.
Tahtiharju, S., and Palva, T. (2001). Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana. Plant J. 26: 461-470.
Takahashi, M., and Asada, K. (1988). Superoxide production in aprotic interior of chloroplast thylakoids. Arch. Biochem. Biophy. 267: 714-722.
Thompson, J.E., and Barber, R.F. (1987). The role of free radicals in senescence and wounding. New Phytol. 105: 317-344.
Tran, L.S.P., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16: 2481-2498.
Umezawa, T., Okamoto, M., Kushiro, T., Nambara, E., Oono, Y., Seki, M., Kobayashi, M., Koshiba, T., Kamiya Y., and Shinozak, K. (2006). CYP707A3, a major ABA 8’-hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana. Plant J. 46: 171–182.
Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2000). Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Nati. Acad. Sci. USA 97: 11632.
Vicre, M., Lerouxel, O., Farrant, J., Lerouge, P., and Driouich, A. (2004). Composition and desiccation-induced alterations of the cell wall in the resurrection plant Craterostigma wilmsii. Physiol. Plantarum 120: 229–239.
Wachter, A., Wolf, S., Steiniger, H., Bogs, J., and Rausch, T. (2005). Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J. 41: 15-30.
Wei, G., Pan, Y., Lei, J., and Zhu, Y.X. (2005). Molecular cloning, phylogenetic analysis, expressional profiling and in vitro studies of TINY2 from Arabidopsis thaliana. J. Biochem. Mol. Biol. 38: 440-446.
Wingate, V.P., Lawton, M.A., and Lamb, C.J. (1988). Glutathione causes a massive and selective induction of plant defense genes. Plant Physiol. 87: 206-210.
Xiang, C., Werner, B.L., Christensen, E.M., and Oliver, D.J. (2001). The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol. 126: 564-574.
Xiong, L., and Zhu, J.K. (2003). Regulation of abscisic acid biosynthesis. Plant Physiol. 133: 29-36.
Xu, W., Purugganan, M.M., Polisensky, D.H., Antosiewicz, D.M., Fry, S.C., and Braam, J. (1995). Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 7: 1555-1567.
Yang, S.D., Seo, P.J., Yoon, H.K., and Park, C.M. (2011). The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell 23: 2155-2168.
Zhu, Y.L., Pilon-Smits, E.A.H., Jouanin, L., and Terry, N. (1999b). Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol. 119: 73-79.
Zhu, Y.L., Pilon-Smits, E.A.H., Tarun, A.S., Weber, S.U., Jouanin, L., and Terry, N. (1999a). Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol. 121: 1169-1177.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16184-
dc.description.abstract穀胱甘肽 (GSH) 是由三個胺基酸 (麩氨酸、半胱氨酸及甘氨酸) 組成的簡單含硫化物,是植物以及許多生物體內的主要非蛋白質硫醇化物。穀胱甘肽參與許多細胞反應,尤其穀胱甘肽的抗氧化功能在維持細胞內的氧化還原平衡扮演重要角色。根據我們先前觀察,外加GSH可以增進阿拉伯芥對於非生物性逆境的抗性,特別是乾旱及鹽逆境,然而,這方面的機制尚未明瞭。本研究針對外施GSH對阿拉伯芥之生理反應及基因調控層面進行深入探討。將野生型幼苗處理GSH 4天及12天後,以微陣列分析受到GSH影響的基因群,其結果顯示,外加GSH影響野生型植物的許多基因表現,尤其在ABA新陳代謝、生物性逆境及非生物性逆境方面,另外,外加GSH也可能增強細胞壁的生合成、讓細胞壁更有彈性。再者,ABA生合成之關鍵酵素NCED3的基因表現量於處理GSH 24小時左右被誘導、但之後表現量回歸至正常,故我們推測,在處理24小時內就可能影響ABA含量及訊息傳遞網絡。除此之外,外加GSH能夠增加葉片重量、延遲葉老化及延遲葉綠素衰退。特別是以GSH處理的植物株,其老化標幟基因SAG12及SEN4較對照組有顯著延遲表現的現象。葉光合作用能力之代表基因RbcS,在GSH處理植株中也有延遲衰退的現象。總而言之,阿拉伯芥外加GSH能夠藉由提升ABA含量、增加細胞壁彈性及延遲老化來增加逆境的耐受性。zh_TW
dc.description.abstractGlutathione (L-γ-glutamyl-L-cysteinyl-Gly) is a simple sulfur compound composed of three amino acids and is the major non-protein thiol in many organisms including plants. Glutathione is involved in a plethora of cellular processes in addition to its role as an antioxidant and in the maintenance of cellular redox homeostasis. According to our previous observation, exogenously applied glutathione reduced form (GSH) could improve abiotic stress tolerance of Arabidopsis, especially under drought and salt stress. However, the underlying mechanism has not been elucidated. The aim of this study was to investigate the physiological response and gene modulation of exogenously supplied GSH to the Arabidopsis. Here, the wild-type seedling treated with GSH for 4 and 12 days, were analyzed by using the microarray assay to find out the genes influenced by the GSH. Our microarray data showed that exogenous GSH has immense effects on gene expressions, especially the genes involved in ABA metabolism, biotic stress and abiotic stress in wild-type plants. In addition, exogenous GSH may enhance cell wall biosynthesis and kept the cell wall more flexible. The expression of NCED3, a key enzyme in ABA synthesis, was induced after treated with GSH for 24 hours, but returned to normal thereafter. We proposed that the ABA signal transduction networks and content were induced in the early hour of GSH treatments. Furthermore, exogenously applied GSH could increase leaf weight, delay leaf senescence and slow down chlorophyll degradation. In our data, SAG12 and SEN4, the senescence marker gene, exhibited significantly delayed induction in GSH treated plants. The RbcS, the photosynthetic capacity marker gene, also showed delayed decrease of gene expression level in GSH treated plants. In summary, exogenous GSH might enhance stress tolerance by elevating ABA level, promoting growth capacity, making cell wall more flexible, and delaying leaf aging in Arabidopsis.en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:04:11Z (GMT). No. of bitstreams: 1
ntu-101-R99b42003-1.pdf: 2635522 bytes, checksum: ea256f2c07b8d7b98c331435b2eb9380 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents摘要 1
Abstract 2
縮寫對照表 3
1.0 前言 4
1.1 GSH之結構與植物體內生合成機制 4
1.2 植物之硫同化作用 5
1.3 GSH能增加植物對於生物性逆境之抗性 5
1.4 GSH能增進植物對於非生物性逆境之抗性 6
1.5 乾旱逆境的訊息傳導 8
1.6 實驗策略與研究目標 9
第二章 材料與方法 10
2.1 植物材料及生長條件 10
2.2 野生型阿拉伯芥處理GSH之方法 11
2.3 Glutathione萃取 11
2.4 植物內生性ABA含量測量 12
2.5 RNA萃取、cDNA合成和reverse transcriptase PCR (RT-PCR) 12
2.6 即時定量聚合酶連鎖反應 (real-time PCR) 14
2.7 微陣列分析 (microarray analysis) 15
2.8 葉綠素含量測定 15
2.9 熱逆境下之生長情況測試 16
2.10 氧化逆境下之生長情況測試 16
第三章 結果 17
3.1 GSH處理植株之glutathione及ABA含量測量 17
3.2 處理GSH植株之微陣列分析及基因表現群歸類 17
3.3 以real-time PCR檢驗微陣列分析結果 18
3.4 GSH處理植株之外觀型態與葉綠素觀察 19
3.5 檢測處理GSH植株老化相關基因之表現量 19
3.6 處理GSH植株之根系發育、葉片重量與葉片長寬比值之觀察 19
3.7 處理GSH對於ABA生合成基因之影響 20
3.8 GSH處理植株於熱逆境的生長情形 20
3.9 GSH處理植株於甲基紫精 (MV) 逆境之生長情形 20
第四章 討論 21
4.1 處理GSH植株之glutathione及ABA含量普遍提升 21
4.2 GSH處理對於植株基因群之影響 22
4.3 GSH處理對於植株ABA生合成基因之影響 24
4.4 GSH能增加熱逆境之耐受性 25
4.5 處理GSH無法顯著增加植株對於MV逆境之耐受性 26
4.6 GSH可能在老化抑制上扮演重要的調控角色 26
4.7 GSH可以促進根部生長及增加葉重量 27
4.8 外處理GSH能夠增加植物之活力 (vigor) 28
4.9 總結論 28
參考文獻 29
圖表 39
附錄 55
dc.language.isozh-TW
dc.subject微陣列分析zh_TW
dc.subject老化zh_TW
dc.subject乾旱逆境zh_TW
dc.subject穀胱甘&#32957zh_TW
dc.subjectmicroarrayen
dc.subjectdrought stressen
dc.subjectsenescenceen
dc.subjectglutathioneen
dc.title探討外加穀胱甘肽如何增加阿拉伯芥對非生物性逆境之耐受性機制zh_TW
dc.titleStudy of the mechanism of exogenously applied glutathione on abiotic stress tolerance in Arabidopsisen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭石通(Shih-Tong Jeng),鄭萬興(Wan-Hsing Cheng),陳仁治(Jen-Chih Chen)
dc.subject.keyword穀胱甘&#32957,微陣列分析,乾旱逆境,老化,zh_TW
dc.subject.keywordglutathione,microarray,drought stress,senescence,en
dc.relation.page60
dc.rights.note未授權
dc.date.accepted2012-07-30
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved