Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16178
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠(Chih-Chung Yang)
dc.contributor.authorYi-Chiao Hsuen
dc.contributor.author徐翊喬zh_TW
dc.date.accessioned2021-06-07T18:03:59Z-
dc.date.copyright2020-08-04
dc.date.issued2020
dc.date.submitted2020-07-30
dc.identifier.citation1. Kim, J., Naik, G. V., Emani, N. K., Guler, U. Boltasseva, A. “Plasmonic Resonances in Nanostructured Transparent Conducting Oxide Films,” IEEE J. Select. Top. Quantum Electron. 19, 4601907 (2013).
2. Yao, Y. F., Yang, S., Lin, H. H., Chou, K. P., Weng, C. M., Liao, J. Y., Lin, C. H., Chen, H. T., Su, C. Y., Tu, C. G., Kiang, Y. W. Yang, C. C. “Anti-reflection Behavior of a Surface Ga-doped ZnO Nanoneedle Structure and the Controlling Factors,” Opt. Mater. Express 7, 4058-4072 (2017).
3. Hu, L., Kim, H. S., Lee, J. Y., Peumans, P. Cui, Y. “Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes,” ACS Nano 4, 2955-2963 (2010).
4. Langley, D., Giusti, G., Mayousse, C., Celle, C., Bellet, D. Simonato, J. P. “Flexible Transparent Conductive Materials Based on Silver Nanowire Networks: a Review,”Nanotechnology 24, 452001 (2013).
5. He, W. Ye, C. J. “Flexible Transparent Conductive Films on the Basis of Ag Nanowires: Design and Application: a Review,” Mater. Sci. Technol. 31, 581 (2015).
6. Bae, S., Kim, S. J., Shin, D., Ahn, J. H. Hon, B. H. “Towards Industrial Applications of Graphene Electrodes,” Phys. Scr. T146, 014024 (2012).
7. http://geomatec-sputtering.com/tech/ito/
8. Witten, T. A. Sander, L. M. “Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon,” Phys. Rev. Lett. 47, 1400-1403 (1981).
9. Witten, T. A. Sander, L. M. “Diffusion-limited Aggregation,” Phys. Rev. B 27, 5686-5697 (1983).
10. Huang, Y. B. Somasundaran, P. “Effects of Random-walk Size on the Structure of Diffusion-limited Aggregate,” Phys. Rev. A 36, 4518-4521 (1987).
11. Tang, J., Li, Z., Xia, Q. Williams, R. S. “Fractal Structure Formation from Ag Nanoparticle Films on Insulating Substrates,” Langmuir 25, 7222-7225 (2009).
12. Woehl, T. J. Prozorov, T. “The Mechanisms for Nanoparticle Surface Diffusion and Chain Self-assembly Determined from Real-time Nanoscale Kinetics in Liquid,” J. Phys. Chem. C 119, 21261-21269 (2015).
13. S. Yang, “Reorganization Behaviors of Surface Silver Nanoparticles through Hot Electron Induced Silver Atom Migration,” Master Thesis of National Taiwan University, Taipei, Taiwan, July 2017.
14. C. C. Teng, “Factors Controlling the Formation of a Surface Silver Nano-network Structure.” Master Thesis of National Taiwan University, Taipei, Taiwan, July 2018.
15. Y. F. Yao, S. Yang, C. C. Teng, K. P. Chou, C. W. Liu, Y. Kuo, Y. W. Kiang, and C. C. Yang, “Formation of Surface Silver Nano-network Structures through Hot Electron Regulated Diffusion-limited Aggregation,” Scientific Reports, 9, 6997 (2019).
16. J. Jiu, T. Araki, J. Wang, M. Nogi, T. Sugahara, S. Nagao, H. Koga, K. Suganuma, E. Nakazawa, M. Hara, H. Uchida, and K. Shinozaki, “Facile synthesis of very-long silver nanowires for transparent electrodes,” J. Mater. Chem. A 2, 6326–6330 (2014).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16178-
dc.description.abstract在本篇論文中,我們發展可進一步改善基於熱電子限制擴散聚集現象而形成銀奈米網絡的透明度及導電性之技術。與以前的銀奈米網絡研究相比,我們改變的製程條件如下:(1)使用可見光發光二極體代替紫外光發光二極體來照射氮化鎵基板上的銀奈米顆粒;(2)激發銀奈米顆粒的局域表面電漿子共振以產生熱電子;(3)將濕度提高到接近100%;(4)將銀沉積厚度增加到3-5奈米來形成銀奈米顆粒。與以前的結果相比,新的銀奈米網絡有較低的片電阻,可降低到約140歐姆。而可見光範圍內的漫透射率可高於80%。此外,我們也有一些發現。首先,靜電感應效應在限制擴散聚集現象過程中扮演重要角色。第二,在銀奈米網絡中發現氧成分,因此銀奈米網絡的成分包括銀和氧化銀。氧化銀的形成乃由於周圍的高濕度,這可能使得進一步降低片電阻變得困難。第三,電子穿隧現象可能是熱電子從銀奈米顆粒遷移到氮化鎵基板的重要機制。最後,銀奈米網絡的結構及其透明度和導電性可以通過照明條件來控制。zh_TW
dc.description.abstractIn this study, we further develop the techniques for improving the transparent conducting behavior of an Ag nano-network (NNW), which is formed based on the concept of hot electron regulated diffusion-limited aggregation (DLA). Compared with the previous NNW fabrication studies, our improved fabrication conditions include the following changes: (1) using visible light-emitting diodes (LEDs), instead of ultraviolet LEDs, for illuminating Ag nanoparticles (NPs) on GaN templates; (2) exciting the localized surface plasmon resonances of Ag NPs for generating hot electrons; (3) increasing the ambient humidity up to a level close to 100 %; and (4) increasing the Ag deposition thickness to 3-5 nm for forming Ag NPs. Compared to the previous results, new NNWs show reduced sheet resistance down to the level of ~140 /square while the diffused transmittance in the visible range is maintained to be higher than or close to 80 %. We also make a few discoveries. First, the electrostatic induction effect plays an important role in the DLA process. Second, the material compositions of an NNW include both Ag and AgO with a varied O content. The AgO forms because of the ambient high humidity. It may make the further reduction of sheet resistance difficult. Third, electron tunneling can be an important mechanism for hot electron migration from an Ag NP into a GaN template. Finally, the structure of an NNW and its transparent conducting behavior can be controlled by the illumination condition. A post-treatment of thermal annealing at a temperature lower than 406 oC does not change the morphology, transparency, and conductivity behavior of an NNW structure. However, when the annealing temperature exceeded 412 oC, the AgO portion in the NNW is evaporated and the conductivity is degraded. The NNW is formed by connecting existing Ag NPs with AgO for becoming a conductive network.en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:03:59Z (GMT). No. of bitstreams: 1
U0001-3007202015270400.pdf: 8194083 bytes, checksum: 9bc9557a7f566d0fe905a21127c713e3 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝...............................................i
摘要...............................................ii
Abstract...........................................iii
List of figure.....................................vi
Chapter 1 Introduction.............................1
1.1 Transparent conductors.........................1
1.2 Diffusion-limited aggregation..................1
1.3 Reviews on Ag nano-network formation...........2
1.4 Research motivations...........................4
1.5 Thesis structure...............................4
Chapter 2 Experimental Materials and Methods.......12
2.1 Silver nanostructures and light sources for illumination......12
2.2 Experimental setup............................................12
Chapter 3 Mechanisms of Ag Nano-network Formation.................17
3.1 Mechanism of diffusion-limited aggregation....................17
3.2 Mechanisms of hot electron generation and migration...........19
3.3 Composition of Ag nano-network................................21
Chapter 4 Ag Nanowire in Ag Nano-network Formation................37
4.1 Ag nano-network with Ag nanowires.............................37
4.2 Ag nano-network without Ag nanowire.......................38
4.3 Discussions...................................................39
Chapter 5 Comparison of Ag Nano-network Formation with different Ag Deposition Thicknesses..............................................49
5.1 Ag deposition of 3 nm in thickness..............................49
5.2 Ag deposition of 4 nm in thickness..............................49
5.3 Ag deposition of 5 nm in thickness..............................50
5.4 Discussions.....................................................51
Chapter 6 Post-treatment Effects....................................64
6.1 Thermal treatment effects.......................................64
6.2 Discussions.....................................................66
Chapter 7 Conclusions...............................................84
References..........................................................85
dc.language.isozh-TW
dc.subject銀奈米網絡結構zh_TW
dc.subject表面電漿子共振zh_TW
dc.subject限制擴散聚集現象zh_TW
dc.subjectSilver Nano-network Structuresen
dc.subjectSurface Plasmon Resonanceen
dc.subjectDiffusion-limited Aggregationen
dc.title以基於表面電漿子共振與靜電感應的限制擴散聚集現象來形成銀奈米網絡結構zh_TW
dc.titleSurface Plasmon Resonance and Electrostatic Induction Based Diffusion-limited Aggregation for Forming Silver Nano-network Structuresen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃建璋(JianJang Huang),陳奕君(I-Chun Cheng),郭仰(Yang Kao),江衍偉(Yean-Woei Kiang)
dc.subject.keyword表面電漿子共振,限制擴散聚集現象,銀奈米網絡結構,zh_TW
dc.subject.keywordSurface Plasmon Resonance,Diffusion-limited Aggregation,Silver Nano-network Structures,en
dc.relation.page86
dc.identifier.doi10.6342/NTU202002106
dc.rights.note未授權
dc.date.accepted2020-07-31
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-3007202015270400.pdf
  未授權公開取用
8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved