請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16170
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳基旺 | |
dc.contributor.author | Fang-Yu Kan | en |
dc.contributor.author | 闞方妤 | zh_TW |
dc.date.accessioned | 2021-06-07T18:03:42Z | - |
dc.date.copyright | 2012-09-19 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-31 | |
dc.identifier.citation | 1.Information received from the Internet Homepages of the Department of Health, Taiwan, R. O. C. http://www.doh.gov.tw, Internet Communication 2012
2.Baylin, S. B.; Ohm, J. E. Epigenetic Gene Silencing in Cancer- A Mechanism for Early Oncogenic Pathway Addiction. Nat. Rev. Cancer 2006, 6, 107-116 3.Lund, A. H.; Van, L. M. Epigenetics and Cancer.Genes Dev. 2004, 18, 2315-2335 4.Bolden, J. E.; Peart, M. J.; Johnstone, R. W. Anticancer Activities of Histone Deacetylase Inhibitors. Nat. Rev. Drug Discov. 2006, 5, 769-784 5.Kim, T. Y.; Bang, Y. J.; Robertson, K. D. Histone Deacetylase Inhibitors for Cancer Therapy. Epigenetics 2006, 1, 14-23 6.Glozak, M. A.; Seto, E. Histone Deacetylases and Cancer. Oncogene 2007, 26, 5420-5432 7.Minucci, S.; Pelicci, P. G. Histone Deacetylase Inhibitors and The Promise of Epigenetic (and more) Treatments for Cancer. Nat. Rev. Cancer 2006, 6, 38-51 8.Xu, W. S.; Parmigiani, R. B.; Marks, P. A. Histone Deacetylase Inhibitors:Molecular Mechanisms of Action. Oncogene 2007, 26, 5541-5552 9.Yla-Herttuala, S.; Glass, C. K. Review Focus on Epigenetics and the Histone Code in Vascular Biology. Cardiovasc. Res. 2011, 90, 402-403 10.Zhang, Y.; Reinberg, D. Transcription Regulation by Histone Methylation:Interplay Between Different Covalent Modifications of The Core Histone Tails. Genes Dev. 2001, 15, 2343-2360 11.Sterner, D. E.; Berger, S. L. Acetylation of Histones and Transcription-Related Factors.Microbiol. Mol. Biol. Rev. 2000, 64, 435-459 12.Nowak, S. J.; Corces, V. G. Phosphorylation of Histone H3:A Balancing Act Between Chromosome Condensation and Transcriptional Activation. Trends Genet. 2004, 20, 214-220 13.Shilatifard, A. Chromatin Modifications By Methylation and Ubiquitination:Implications in the Regulation of Gene Expression. Annu. Rev. Biochem. 2006, 75, 243-269 14.Nathan, D.; Ingvarsdottir, K.; Sterner, D. E.; Bylebyl, G. R.; Dokmanovic, M.; Dorsey, J. A.; Whelan, K. A.; Krsmanovic, M.; Lane, W. S.; Meluh, P. B.; Johnson, E. S.; Berger, S. L. Histone Sumoylation Is A Negative Regulator in Saccharomyces Cerevisiae and Shows Dynamic Interplay with Positive-Acting Histone Modifications. Genes Dev. 2006, 20, 966-976 15.Hassa, P. O.; Haenni, S. S.; Elser, M.; Hottiger, M. O. Nuclear ADP-Ribosylation Reactions in Mammalian Cells:Where Are We Today and Where Are We Going? Microbiol. Mol. Biol. Rev. 2006, 70, 789-829 16.Cuthbert, G. L.; Daujat, S.; Snowden, A. W.; Erdjument-Bromage, H.; Hagiwara, T.; Yamada, M.; Schneider, R.; Gregory, P. D.; Tempst, P.; Bannister, A. J.; Kouzarides, T. Histone Deimination Antagonizes Arginine Methylation. Cell 2004, 118, 545-553 17.Nelson, C. J.; Santos-Rosa, H.; Kouzarides, T. Proline Isomerization of Histone H3 Regulates Lysine Methylation and Gene Expression. Cell 2006, 126, 905-916 18.Witt, O.; Deubzer, H. E.; Milde, T.; Oehme, I. HDAC Family:What Are The Cancer Relevant Targets? Cancer Lett. 2009, 277, 8-21 19.Vaquero, A.; Sternglanz, R.; Reinberg, D. NAD+-Dependent Deacetylation of H4 Lysine 16 by Class III HDACs. Oncogene 2007, 26, 5505-5520 20.Marson, C. M. Histone Deacetylase Inhibitors:Design, Structure-Activity Relationships, and Therapeutic Implications for Cancer. Anticancer Agents in Med. Chem. 2009, 9, 661-692 21.Acharya, M. R.; Sparreboom, A.; Venitz, J.; Figg, W. D. Rational Development of Histone Deacetylase Inhibitors as Anticancer Agents:A Review. Mol. Pharmacol. 2005, 68, 917-932 22.Yoshida, M.; Nomura, S.; Beppu, T. Effects of Trichostatins on Differentiation of Murine Erythroleukaemia Cells. Cancer Res. 1987, 47, 3688-3691 23.Marks, P. A.; Breslow, R. Dimethyl Sulfoxide to Vorinostat:Development of This Histone Deacetylase Inhibitor as An Anticancer Drug. Nat. Biotechnol. 2007, 25, 84-90 24.Poligone, B.; Lin, J.; Chung, C. Romidepsin:Evidence for Its Potential Use to Manage Previously Treated Cutaneous T Cell Lymphoma. Core Evidence 2011, 6, 1-12 25.Tsuji, N.; Kobashi, M.; Nagashima, K.; Wakisaka, Y.; Koizumi, K. A New Antifungal Antibiotic, Trichostatin. J. Antibiot. (Tokyo) 1976, 29, 1-6 26.Zhang, Y.; Feng, J.; Jia, Y.; Wang, X.; Zhang, L.; Liu, C.; Fang, H.; Xu, W Development of Tetrahydroisoquinoline-Based Hydroxamic Acid Derivatives: Potent HistoneDeacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities. J. Med. Chem. 2011, 54, 2823-2838 27.Furumai, R.; Matsuyama, A.; Kobashi, N.; Lee, K. H.; Nishiyama, M.; Nakajima, H.; Tanaka, A.; Komatsu, Y.; Nishino, N.; Yoshida, M.; Horinouchi, S. FK228 (Depsipeptide) as a Nature Prodrug That Inhibits Class I HistoneDeacetylase. Cancer Res. 2002, 62, 4916-4921 28.(a) Gottlicher, M.; Minucci, S.; Zhu, P.; Kramer, O. H.; Schimpf, A.; Giavara, S.; Sleeman, J. P.; Lo Coco, F.; Nervi, C.; Pelicci, P. G.; Heinzel, T. Valproric Acid Defines A Novel Class of HDAC Inhibitors Inducing Differentiation of Transformed Cells. EMBO J. 2001, 20, 6969-6978; (b) Riggs, M. G.; Whittaker, R. G.; Neumann, J. R.; Ingram, V. M. n-Butyrate Causes Histone Modification in HeLa and Friend Erythroleukaemia Cells. Nature 1977, 268, 462-464 29.Clinicaltrial. gov., A Phase 2 Multi-Center Study of Entinostat (SNDX-275) in Patient With Relapsed or Refractory Hodgkin's Lymphoma (http://clinicaltrials.gov/ct2/show/NCT00866333?term=MS-275&rank=12) 30.Clinicaltrial.gov., Azacitidine and MS-275 in Treating Patients With Recurrent Advanced Non-Small Cell Lung Cancer (http://clinicaltrials.gov/ct2/show/NCT00387465?term=MS-275&rank=1) 31.Clinicaltrial.gov., Study to Evaluate Erlotinib With or Without SNDX-275 in the Treatment of Patients With Advanced NSCLC (http://clinicaltrials.gov/ct2/show/NCT00602030?term=MS-275&rank=2) 32.Clinicaltrial.gov., A Trial to Evaluate Two Schedules of MS275 in Combination With 5AC in Elderly Patients With Acute Myeloid Leukaemia (AML) (http://clinicaltrials.gov/ct2/show/NCT01305499?term=MS-275&rank=15) 33.Kijima, M.; Yoshida, M.; Sugita, K.; Horinouchi, S.; Beppu, T. Trapoxin, An Antitumor Cyclic Tetrapeptide, is An Irreversible Inhibitor of Mammalian Histone Deacetylase. J. Biol. Chem. 1993, 268, 22429-22435 34.Monneret, C. Histone Deacetylase inhibitors. Eur. J. Med. Chem. 2005, 40, 1-13 35.Paris, M.; Porcelloni, M.; Binaschi, M.; Fattori, D. HistoneDeacetylase Inhibitors:From Bench to Clinic. J. Med. Chem. 2008, 51, 1505-1529 36.Grozinger, C. M.; Hassig, C. A.; Schreiber, S. L. Three Proteins Define A Class of Human Histone Deacetylases Relared to Yeast Hda1p. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 4868-4873 37.(a) Haggarty, S. J.; Koeller, K. M.; Wong, J. C.; Grozinger, C. M.; Schreiber, S. L. Domain-Selective Small-Molecule Inhibitor of Histone Deacetylase 6(HDAC6)-Mediated Tubulin Deacetylation. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 4389-4394; (b) Bali, P. et al. Inhibition of Histone Deacetylase 6 Acetylates and Disrupts The Chaperone Function of Heat Shock Protein 90:A Novel Basis for Antileukemia Activity of Histone Deacetylase Inhibitors. J. Biol. Chem. 2005, 280, 26729-26734; (c) Zhang, X.; Yuan, Z.; Zhang, Y.; Yong, S.; Salas-Burgos, A.; Koomen, J.; Olashaw, N.; Parsons, J. T.; Yang, X. J.; Dent, S. R.; Yao, T. P.; Lane, W. S.; Seto, E. HDAC6 Modulates Cell Motility by Altering The Acetylation Level of Cortactin. Mol. Cell 2007, 27, 197-213; (d) Parmigiani, R. B.; Xu, W. S.; Venta-Perez, G.; Erdjument-Bromage, H.; Yaneva, M.; Tempst, P; Marks, P. A. HDAC6 is a Specific Deacetylase of Peroxiredoxins and is Involved in Redox Regulation. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 9633-9638 38.Serrador, J. M.; Cabrero, J. R.; Sancho, D.; Mittelbrunn, M. A.; Urzainqui, A.; Sánchez-Madrid, F. HDAC6 Activity Links the Tubulin Cytoskeleton withImmune Synapse Organization. Immunity 2004, 20, 417-428 39.Lee, Y. S.; Lim, K. H.; Guo, X.; Kawaguchi, Y.; Gao, Y.; Barrientos, T.; Ordentlich, P.; Wang, X. F.; Counter, C. M.; Yao, T. P. The Cytoplasmic Deacetylase HDAC6 is Required for Efficient Oncogenic Tumorigenesis. Cancer Res. 2008, 68, 7561-7569 40.Namdar, M.; Perez, G.; Ngo, L.; Marks, P. A. Selective Inhibition of Histone Deacetylase 6(HDAC6)Induces DNA Damage and Sensitizes Transformed Cells to Anticancer Agents. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 20003-20008 41.Kazantsev, A. G.; Thompson, L. M. Therapeutic Application of Histone Deacetylase Inhibitors for Central Nervous System Disorders. Nat. Rev. Drug Discov. 2008,7, 854-868 42.Dompierre, J. P.; Godin, J. D.; Charrin, B. C.; Cordelieres, F. P.; King, S. J.; Humbert, S.; Saudou, F. Histone Deacetylase 6 Inhibition Compensates for The Transport Deficit in Huntington’s Disease by Increasing Tubulin Acetylation. J. Neurosci. 2007, 27, 3571-3583 43.(a) d’Ydewalle, C.; Krishnan, J.; Chiheb, D. M.; Van Damme, P.; Irobi, J.; Kozikowski, A.P.; Berghe, P. V.; Timmerman, V.; Robberecht, W.; Van Den Bosch, L. HDAC6 Inhibitors Reverse Axonal Loss in a Mouse Model of Mutant HSPB1-Induced Charcot-Marie-Tooth Disease. Nat. Med. 2011, 17, 968-974; (b) d’Ydewalle, C.; V. Benoy, et al. Charcot–Marie-Tooth disease: Emerging mechanisms and therapies. Int. J. Biochem. Cell Biol. [Article in press]. DOI:10.1016/ j.biocel.2012.04.020. Available Online: 30 April 2012. http://www.sciencedirect.com/science/article/pii/S1357272512001458(accepted 24 April 2012) 44.Kozikowski, A. P.; Tapadar, S.; Luchini, D. N.; Kim, K. H.; Billadeau, D. D. Use of The Nitrile Oxide Cycloaddition(NOC)Reaction for Molecular Probe Generation:A New Class of Enzyme Selective Histone Deacetylase Inhibitors(HDACIs)Showing Picomolar Activity at HDAC6. J. Med. Chem. 2008, 51, 4370-4373 45.(a) Suzuki, T.; Kouketsu, A.; Itoh, Y.; Hisakawa, S.; Maeda, S.; Yoshida, M.; Nakagawa, H.; Miyata, N. Highly Potent and Selective Histone Deacetylase 6 Inhibitors designed Based on a Small-Molecular Substrate. J. Med. Chem. 2006, 49, 4809-4812; (b) Itoh, Y.; Suzuki, T.; Kouketsu, A.; Suzuki, N.; Maeda, S.; Yoshida, M.; Nakagawa, H.; Miyata, N. Design, Synthesis, Structure-Activity Relationship, and Effect on Human Cancer Cells of A Novel Series of Histone Deacetylase 6 Selective Inhibitors. J. Med. Chem. 2007, 50, 5425-5438 46.Schafer, S.; Saunders, L.; Eliseeva, E.; Velena, A.; Jung, M.; Schwienhorst, A.; Strasser, A.; Dickmanns, A.; Ficner, R.; Schlimme, S.; Sippl, W.; Verdin, E. Phenylalanine-Containing Hydroxamic Acids as Selective Inhibitors of ClassIIb Histone Deacetylases (HDACs). Bioorg. Med. Chem. 2008, 16, 2011-2033 47.Schafer, S.; Saunders, L.; Schlimme, S.; Valkov, V.; Wagner, J. M.; Kratz, F.; Sippl, W.; Verdin, E.; Jung, M. Pyridylalanine-Containing Hydroxamic Acids as Selective HDAC6 Inhibitors. ChemMedChem 2009, 4, 283-290 48.Smil, D. V.; ManKu, S.; Chantigny, Y. A.; Leit, S.; Wahhab, A.; Yan, T. P.; Fournel, M.; Maroun, C.; Li, Z.; Lemieux, A. M.; Nicolescu, A.; Rahil, J.; Lefebvre, S.; Panetta, A.; Besterman, J. M.; Deziel, R. Novel HDAC6 Isoform Selective Chiral Small Molecule Histone Deacetylase Inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 688-692 49.Olsen, C. A.; Ghadiri, M. R. Discovery of Potent and Selective Histone Deacetylase Inhibitors via Focused Combinatorial Libraries of Cyclic alpha3beta-Tetrapeptides. J. Med. Chem. 2009, 52, 7836-7846 50.Butler, K. V.; Kalin, J.; Brochier, C.; Vistoli, G.; Langley, B.; Kozikowski, A. P.; Rational Design and Simple Chemistry Yield a Superior, Neuroprotective HDAC6 Inhibitor, Tubastatin A. J. Am. Chem. Soc. 2010, 132, 10842-10846 51.Chern, J. W.; Tao, P. L.; Yen, M. H.; Lu, G. Y.; Shiau, C. Y.;Lia, Y. J.; Chien, S. L.; Chan, C.H. Studies on Quinazolines. 5. 2,3-Dihydroimidazo[1,2-c]quinazoline Derivatives : A Novel Class of Potent and Selective α1-Adrenoceptor Antagonists and Antihypertensive Agents. J. Med. Chem. 1993, 36, 2196-2207 52.Chern, J. W.; Tao, P. L.;Wang, K. C.; Gutcait, A.; Liu, S. W.; Yen, M. H.; Chien, S. L.; Rong, J. K. Studies on Quinazolines and 1, 2, 4-Benzothiazine 1, 1-Dioxides. 8. Synthesis and Pharmacological Evaluation of Tricyclic Fused Quinazolines and 1, 2, 4-Benzothiazine 1,1-Dioxides as Potential α1-Adrenoceptor Antagonists. J. Med. Chem. 1998,41, 3128-3141 53.Jagtap, P. G.; Baloglu, E.; Southan, G. J.; Mabley, J. G.; Li, H. S.; Zhou, J.; van Duzer, J.; Salzman, A. L.; Szabó, C. Discovery of Potent Poly(ADP-ribose) Polymerase-1 Inhibitors From the Modification of Indeno[1, 2-c]isoquinolinone. J. Med. Chem. 2005, 48, 5100-5103 54.Guo, Z. X.; Cammidge, A. N.; McKillop, A.; Horwell, D. C. N- vs O- Alkylation in 2(1H)-Quinolinone Derivatives. Tetrahedron Lett. 1999, 40, 6999-7002 55.Chen, G. S.; Kalchar, S.; Kuo, C. W.; Chang, C. S.; Usifoh, C. O.; Chern, J. W. Studies on Quinazolines. 11. Intramolecular Imidate-Amide Rearrangement of 2-Substituted 4-(ω-Chloroalkoxy)quinazoline Derivatives. 1,3-O→N Shift of Chloroalkyl Groups via Cyclic 1, 3-Azaoxonium Intermediates. J. Org. Chem. 2003, 68, 2502-2505 56. Schlimme, S.; Hauser, A.-T. et al. Carbamate Prodrug Concept for Hydroxamate HDAC Inhibitors. ChemMedChem 2011, 6, 1193-1198 57. Wang, Z.; Zhang, Y.; Fu, H.; Jiang, Y.; Zhao, Y.; Efficient Intermolecular Iron-Catalyzed Amidation of C-H Bonds in the Presence of N-Bromosuccinimide. Org. Lett. 2008, 10, 1863-1866 58. Wu, X.; Larhed, M. Microwave-Enhanced Aminocarbonylations in Water. Org. Lett. 2005, 7, 3327-3329 59. Wu, X.; Wannberg, J.; Larhed, M. Hydroxylamine as an Ammonia Equivalent in Microwave-Enhanced Aminocarbonylations. Tetrahedron 2006,62, 4665-4670 60. Martinelli, J. R.; Watson, D. A.; Freckmann, D. M. M.; Barder, T. E.; Buchwald, S. L. Palladium-Catalyzed Carbonylation Reactions of Aryl Bromides at Atmospheric Pressure:A General System Based on Xantphos. J. Org. Chem. 2008, 73, 7102-7107 61. Bergman, J.; Brynolf, A.; Elman, B.; Vuorinen, E. Synthesis of Quinazolines. Tetrahedron 1986, 42, 3697-3706 62. Gediya, L. K.; Chopra, P.; Purushottamachar, P.; Maheshwari, N.; Njar, V. C. O. A New Simple and High-Yield Synthesis of Suberoylanilide Hydroxamic Acid and Its Inhibitory Effect Alone or in Combination with Retinoids on Proliferation of Human Prostate Cancer Cells. J. Med. Chem. 2005, 48, 5047-5051 63. Maeda, T.; Nagaoka, Y.; Kuwajima, Seno, C.; Maruyama, S. Kurotaki, M.; Uesato, S. Potent Histone Dacetylase Inhibitors:N-Hydroxybenzamides with Antitumor Activities. Bioorg. & Med. Chem. 2004, 12, 4351-4360 64. Shen, J.; Woodward, R.; Kedenburg, J. P.; Liu, X.; Chen, M.; Fang, L. Y.; Sun, D.; Wang, P. G. Histone Deacetylase Inhibitors Through Click Chemistry. J. Med. Chem. 2008, 51, 7417-7427 65. Paliakov, E.; Strekowiski, L. Boron Tribromide Mediated Debenzylation of Benzylamino and Benzyloxy Groups. Tetrahedron Lett. 2004, 45, 4093-4095 66. Okano, K.; Okuyama, K.-I.; Fukuyama, T.; Tokuyama, H. Mild Debenzylation of Aryl Benzyl Ether with BCl3 in the Presence of Pentamethylbenzene as a Non-Lewis-Basic Cation Scavenger. Synlett. 2008, 13, 1977-1980 67. Finnin, M. S.; Donigian, J. R.; Cohen, A.; Richon, V. M.; Rifkind, R. A.; Marks, P. A.; Breslow, R.; Pavletich, N. P. Structure of a Histone Deacetylase Homologue Bound to the TSA and SAHA Inhibitors. Nature 1999, 401, 188-193 68. Lawrence, S.; Melvin, J. R.; Graupe, M.; Venkataramani, C. Fused Heterocyclic Inhibitor Compounds. US 2010/ 0029638 A1 69. Mahboobi, S.; Sellmer, A.; Winkler, M.; Eichhorn, E.; Pongratz, H.; Ciossek, T.; Baer, T.; Maier, T.; Beckers, T. Novel Chimeric Histone Deacetylase Inhibitors:A Series of Lapatinib Hybrides as Potent Inhibitors of Epidermal Growth Factor Receptor(EGFR), Human Epidermal Growth Factor Receptor 2(HER2), and Histone Deacetylase Activity. J. Med. Chem. 2010, 53, 8546-8555 70. Thaler, F.; Colombo, A. et al. Synthesis and Biological Evaluation of N-Hydroxyphenylacrylamides and N-Hydroxypyridin-2-ylacrylamides as Novel Histone Deacetylase Inhibitors. J. Med. Chem. 2010, 53, 822-839 71. Kim, N. R.; Kang, S. K.; Ahn, H. H.; Kwon, S. W.; Park, W. S.; Kim, K. S.; Kim, S. S.; Jung, H. J.; Chio, S. U.; Ahn, J. H.; Kim, K. R. Discovery of a New and Efficient Small Molecule for Neuronal Differentiation from Mesenchymal Stem Cell. J. Med. Chem. 2009, 52, 7931-7933 72. Lai, M.J.; Huang, H. L.; Pan, S. L.; Liu, Y. M.; Peng, C. Y.; Lee, H. Y.; Yeh, T. K.; Huang, P. H.; Teng, C. M.; Chen, C. S.; Chuang, H. Y.; Liou, J. P. Synthesis and Biological Evaluation of 1-Arylsulfonyl-5-(N-hydroxyacrylamide)indoles as Potent Histone Deacetylase Inhibitors with Antitumor Activity in Vivo. J. Med. Chem.2012, 55, 3777-3791 73. Yu, C.-W. Design, Synthesis, and Biological Evaluation of Quinazolinone Derivatived as Histone Deacetylase (HDAC) Inhibitors. Doctoral Dissertation, National Taiwan University, Taiwan, R.O.C., 2012. 74. Chalterjec et al. J. Indian Chem. Soc.1969, 46, 103-108 75. Tschupachin et al. SU 1974/ 412195 (A1) 76. Caprathe, B. W.; Glase, S. A.; Konstantinou, Z.; Schelkun, R. M.; Sheehan, S. M.; Thomas, A. J.; Yuen, P.-W. Novel Norepinephrine Reuptake Inhibitors for the Treatment of Central Nervous System Disorders. US 2005/ 96327 A1 77. Kippenberg, H. Ueber einige arommeisohe Amidoelkohole und deren Derivate. Chemische Berichte 1897, 30, 1130-1140 78. Eli, Z.-C.; Karla, A.; Siegel, J. S. Synthesis of Arylbromides from Arenes and N-bromosuccinimide (NBS) in Acetonitrile — A Convenient Method for Aromatic Bromination. Can. J. Chem. 2009, 87, 440-447 79. Fong, T. A.; Mosmann, T. R. The role of IFN-gamma in delayed-type hypersensitivity mediated by Th1 clones. J. Immunol. 1989, 143, 2887-2893 80. Vichai, V.; Kirtikara, K. Sulforhodamine B Colorimetric Assay for Cytotoxicity Screening. Nature Protocols 2006, 1, 1112-1116 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16170 | - |
dc.description.abstract | 本論文主旨為設計與合成喹唑啉酮衍生物作為潛能第六亞型組蛋白去乙醯酶抑制劑及其相關活性研究。以喹唑啉-2-酮作為核心結構,並在其上加入該酵素表面作用官能基及鋅離子螯合基團。首先將鄰氨基苯甲腈與葛林納試劑經由親核加成反應後再與氯甲酸甲酯進行環化反應後得到帶有酵素表面作用官能基的喹唑啉-2-酮的主結構,之後將該主結構與帶有酯類官能基的側鏈接上,再將酯類官能基轉換成帶有酰基羥胺官能基之先導化合物22,最後,明確地找出對於不同的取代基所適合的不同路徑與其純化方法,希望能有利於後人減少開發路徑而可合成出更多更有效的目標化合物。
根據酵素抑制與細胞毒性實驗,化合物22表現出顯著的第六亞型組蛋白去乙醯酶抑制活性 (HDAC6 IC50=6.5 nM, HDAC1 IC50=1930 nM) 及相較於第一亞型將近300倍的選擇性;然而先導化合物22則是對於一般的癌細胞不具毒殺性。由此先導化合物之結果,喹唑啉-2-酮之上方苯環區預期會暴露在酵素活性中心之外,且各亞型的組蛋白去乙醯酶在此區域之胺基酸序列差異性較大,故我們對於第4號位上的苯環區進行構效關係之探討而合成出目標化合物34a-b, 47a-b, 與49a-c。再根據酵素抑制與細胞毒性實驗,化合物34a表現出顯著的第六亞型組蛋白去乙醯酶抑制活性及最好的選擇性 (HDAC6 IC50=2.85 nM;HDAC6/HDAC1, 1004倍;HDAC6/HDAC8, 171倍);然而已修飾過的目標化合物對於肺癌及大腸癌細胞具有較低的細胞毒殺效果。另外,化合物34a, 34b, 47b皆表現出一定程度的神經突觸活性、促進神經增生能力及神經軸突生長能力;然而在最大測試濃度25μM下並無發現神經細胞凋亡之現象。 | zh_TW |
dc.description.abstract | The aim of this thesis is to design and synthetic a series of quinazolinone derivatives as potential selective histone deacetylase 6 (HDAC6) inhibitors. The quinazolin-2-one was employed as core structure tethered with surface contacting cap group and zinc binding group (ZBG). Initially, o-aminobenzonitrile was reacted with Grignard reagent by nucleophilic addition and then with methyl chloroformate by cyclization to give quinazolin-2-one core structures with surface contacting cap group. Then, these core structures were coupled with side chain containing ester function group through N-alkylation. Subsequently ester groups were transformed to hydroxamic acid as ZBG to give lead compound 22. Several approaches were developed to synthesize and purify target compounds with different function groups.
On the basis of the result of enzyme-based and cytotoxicity assay, lead compound 22 showed significant enzyme inhibitory activity against HDAC6 and around 300 fold selectivity over HDAC1 (HDAC6 IC50=6.54 nM, HDAC1 IC50=1930 nM). However, compound 22 showed no cytotoxicity for general cancer cells. As these interesting results, 4-phenyl group of 4-aryl-quinazolin-2-one was presumed to be exposed out of HDAC active site and could influence its affinity with catalytic pocket, due to the amino acid differences of this region among HDAC subtypes. Further, to study SAR of 4-phenyl substitutions, we synthesized compound 34a-34b, 47a-47b, and 49a-c. From the result of enzyme-based and cytotoxicity assay, target compound 34a showed significant enzyme inhibitory activity against HDAC6 and also good selectivity (HDAC6 IC50=2.85 nM;HDAC6/HDAC1, 1004 fold;HDAC6/HDAC8, 171 fold). However, modification of compounds showed low cytotoxicity for lung cancer and colon cancer cells. In addition, compound 34a, 34b, 47b showed significant synaptic activity, neuroproliferation, and neurite outgrowth without neurotoxicity under 25μM. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T18:03:42Z (GMT). No. of bitstreams: 1 ntu-101-R99423013-1.pdf: 10539837 bytes, checksum: 6f6942a40165882d94c2b7018526b819 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 中文摘要﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒I
英文摘要﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒II 圖目錄 ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒V 表目錄 ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒VI 式目錄 ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒VII 縮寫表 ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒IX 壹、緒論 1.1 附基因調控﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒3 1.2 組蛋白去乙醯酶之分類及其抑制劑﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒5 1.3 選擇性抑制第六亞型組蛋白去乙醯酶及其抑制劑﹒﹒﹒﹒﹒﹒8 貳、 目標化合物之設計﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒12 參、 結果與討論 3.1 6-苯甲基咪唑[1,2-c]喹唑啉-5-酮之合成﹒﹒﹒﹒﹒﹒﹒﹒14 3.2 4-芳香基-1-苯甲基喹唑啉-2-酮之合成﹒﹒﹒﹒﹒﹒﹒﹒﹒22 3.3 4-芳香基-1-苯甲基喹唑啉-2-酮之構效關係﹒﹒﹒﹒﹒﹒﹒26 3.4 生物活性測試﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 33 肆、 結論﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒43 伍、 實驗部分 5.1 檢驗方法與實驗儀器﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒44 5.2 試藥及溶劑﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒45 5.3 實驗合成步驟﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒45 5.4 生物活性測試步驟﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒88 陸、 參考資料﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒95 柒、 附錄﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒105 圖目錄 圖一、100年十大死因﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒1 圖二、組蛋白去乙醯酶與組蛋白乙醯轉移酶在轉錄中所扮演的角色﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒4 圖三、組蛋白去乙醯酶抑制劑(HDACi)之分類與其結構﹒﹒﹒﹒﹒7 圖四、已知的第六亞型組蛋白去乙醯酶抑制劑﹒﹒﹒﹒﹒﹒﹒﹒﹒11 圖五、組蛋白去乙醯酶抑制劑之結構分析﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒12 圖六、第六亞型組蛋白去乙醯酶選擇性抑制劑之設計與分析﹒﹒﹒13 圖七、N-Hydroxy-4-((2-methyl-5-oxoimidazo[1,2-c]quinazolin-6(5H)-yl)-methyl)benzamide (8) 之逆合成分析﹒﹒﹒﹒﹒﹒﹒﹒14 圖八、N-Hydroxy-4-((2-(morpholinomethyl)-5-oxo-2,3-dihydroimidazo[1,2-c]-quinazolin-6(5H)-yl)methyl)benzamide (11) 之逆合成分析﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒15 圖九、N-Hydroxy-4-((2-oxo-4-phenylquinazolin-1(2H)-yl)methyl)benzamide (22) 之逆合成分析﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒22 圖十、組蛋白去乙醯酶與其抑制劑的構效關係分析﹒﹒﹒﹒﹒﹒﹒26 圖十一、目標化合物22, 34a, 34b, 47a, 47b, 49a-c之細胞凋亡型態圖﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒38 圖十二、目標化合物47a, 47b, 49a-c對於肝癌細胞之蛋白酶活化及活細胞蛋白酶活性的分析﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒39 圖十三、化合物51與目標化合物22, 34a, 34b, 47a, 47b, 49a-c之神經細胞生長之型態觀察﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒41 表目錄 表一、可被HDAC6調控的蛋白質與其相關的生物功能,及其潛在發生的疾病﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒8 表二、化合物51與目標化合物22之酵素抑制活性測試結果﹒﹒﹒﹒34 表三、化合物51與目標化合物22之細胞毒殺性測試結果﹒﹒﹒﹒﹒35 表四、目標化合物34a, 34b, 47a, 47b, 49a-c之酵素抑制活性測試結果﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒36 表五、目標化合物34a, 34b, 47a, 47b, 49a-c之細胞毒殺性測試結果﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒37 表六、化合物51與目標化合物22, 34a, 34b, 47a, 47b, 49a-c之神經細胞突觸活性、神經增生與神經軸突生長測試﹒﹒﹒﹒﹒﹒﹒﹒40 式目錄 式一、2-Methylimidazo[1,2-c]quinazolin-5(6H)-one (6) 之合成﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒14 式二、2-(Morpholinomethyl)-2,3-dihydroimidazo[1,2-c]quinazolin-5(6H)-one (9) 之合成﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒16 式三、6-(4-Bromobenzyl)-2-(morpholinomethyl)-2,3-dihydroimidazo[1,2-c]-quinazolin-5(6H)-one (11) 之合成﹒﹒17 式四、N-(Benzyloxy)-4-((2-(morpholinomethyl)-5-oxo-2,3-dihydroimidazo-[1,2-c]quinazolin-6(5H)-yl)methyl)benzamide (15) 之合成﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒19 式五、N-(Benzyloxy)-4-((2-methyl-5-oxoimidazo[1,2-c]quinazolin-6(5H)-yl)-methyl)benzamide (18) 之合成﹒﹒﹒﹒20 式六、N-Hydroxy-4-((2-methyl-5-oxoimidazo[1,2-c]quinazolin-6(5H)-yl)methyl)benzamide (8) 之合成﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒21 式七、Ethyl 4-((2-oxo-4-phenylquinazolin-1(2H)-yl)methyl)benzoate (21) 之合成﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 23 式八、N-(Benzyloxy)-4-((2-oxo-4-phenylquinazolin-1(2H)-yl)methyl)-benzamide (24) 之合成﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒23 式九、N-Hydroxy-4-((2-oxo-4-phenylquinazolin-1(2H)-yl)methyl)benzamide (22) 之合成﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒24 式十、N-Hydroxy-4-((2-oxo-4-phenylquinazolin-1(2H)-yl)methyl)benzamide (22) 之合成方法改良﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒25 式十一、N-Hydroxy-4-((2-oxo-4-phenylquinazolin-1(2H)-yl)methyl)benzamide (22) 之合成方法改良﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒25 式十二、N-Hydroxy-4-((4-(3-methoxyphenyl)-2-oxoquinazolin-1(2H)-yl)methyl)-benzamide (34a) 與N-Hydroxy-4-((4-(4-methoxyphenyl)-2-oxoquinazolin-1(2H)-yl)methyl)benzamide (34b) 之合成﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒27 式十三、N -Hydroxy-4-((4-(3-methoxyphenyl)-2-oxoquinazolin-1(2H)-yl)methyl)-benzamide (34a) 與N-Hydroxy-4-((4-(4-methoxyphenyl)-2-oxoquinazolin-1(2H)-yl)methyl)benzamide (34b)之合成方法改良﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒29 式十四、N-(Benzyloxy)-4-((4-(4-(dimethylamino)phenyl)-2-oxoquinazolin-1(2H)-yl)methyl)benzamide (40a), N-(Benzyloxy)-4-((2-oxo-4-(3-(trifluoromethyl)phenyl)quinazolin-1(2H)-yl)methyl)benzamide (40b), N-(Benzyloxy)-4-((4-(4-fluorophenyl)-2-oxoquinazolin-1(2H)-yl)-methyl)benzamide (45a), N-(Benzyloxy)-4-((2-oxo-4-m-tolyl-quinazolin-1(2H)-yl)methyl)benzamide (45b) 與 N-(Benzyloxy)-4-((2-oxo-4-p-tolylquinazolin-1(2H)-yl)methyl)benzamide (45c) 之合成﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒30 式十五、4-((4-(4-(Dimethylamino)phenyl)-2-oxoquinazolin-1(2H)-yl)methyl)-N-hydroxybenzamide (47a), N-Hydroxy-4-((2-oxo-4-(3-(trifluoromethyl)-phenyl)quinazolin-1(2H)-yl)methyl)benzamide (47b), 4-((4-(4-Fluoro-phenyl)-2-oxoquinazolin-1(2H)-yl)methyl)-N-hydroxybenzamide (49a), N-Hydroxy-4-((2-oxo-4-(m-tolyl)quinazolin-1(2H)-yl)methyl)benzamide (49b) 與N-Hydroxy-4-((2-oxo-4-(p-tolyl)quinazolin-1(2H)-yl)methyl)-benzamide(49c)之合成﹒﹒﹒﹒﹒﹒﹒﹒﹒ 32 式十六、2-Amino-5-bromobenzonitrile (50) 之合成﹒﹒﹒﹒﹒32 | |
dc.language.iso | zh-TW | |
dc.title | 設計與合成4-芳香基-1-苯甲基喹唑啉-2-酮類化合物作為第六亞型組蛋白去乙醯酶抑制劑之可行性 | zh_TW |
dc.title | Design and Synthesis of 4-Aryl-1-benzylquinazolin-2-one Derivatives as Potential Histone Deacetylase 6 (HDAC6) Inhibitors | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王光昭,顧記華,尤啟冬,陳香惠,忻凌偉 | |
dc.subject.keyword | 組蛋白去乙醯酶,抑制劑,喹,唑啉,-2-酮, | zh_TW |
dc.subject.keyword | HDAC Inhibitors,quinazolin-2-one, | en |
dc.relation.page | 155 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2012-07-31 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 10.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。