Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16166
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭明良(Min-Liang Kuo)
dc.contributor.authorYin-Lin Lien
dc.contributor.author李尹琳zh_TW
dc.date.accessioned2021-06-07T18:03:33Z-
dc.date.copyright2012-09-19
dc.date.issued2012
dc.date.submitted2012-07-30
dc.identifier.citation1. Greenlee, M.H., C.B. Roosevelt, and D.S. Sakaguchi, Differential localization of
SNARE complex proteins SNAP-25, syntaxin, and VAMP during development of
the mammalian retina. J Comp Neurol, 2001. 430(3): p. 306-20.
2. Steeg, P.S., Metastasis suppressors alter the signal transduction of cancer cells.
Nat Rev Cancer, 2003. 3(1): p. 55-63.
3. Boldo, E., et al., Health impact assessment of a reduction in ambient PM(2.5)
levels in Spain. Environ Int. 37(2): p. 342-8.
4. O'Reilly, K.M., et al., Asbestos-related lung disease. Am Fam Physician, 2007.
75(5): p. 683-8.
5. Takamizawa, J., et al., Reduced expression of the let-7 microRNAs in human
lung cancers in association with shortened postoperative survival. Cancer Res,
2004. 64(11): p. 3753-6.
6. Radon, K., et al., Passive smoking exposure: a risk factor for chronic bronchitis
and asthma in adults? Chest, 2002. 122(3): p. 1086-90.
7. Yesner, R. and D. Carter, Pathology of carcinoma of the lung. Changing patterns.
Clin Chest Med, 1982. 3(2): p. 257-89.
8. Sleeman, J.P., The lymph node as a bridgehead in the metastatic dissemination
of tumors. Recent Results Cancer Res, 2000. 157: p. 55-81.
9. Pepper, M.S., Lymphangiogenesis and tumor metastasis: myth or reality? Clin
Cancer Res, 2001. 7(3): p. 462-8.
10. Chambers, A.F., A.C. Groom, and I.C. MacDonald, Dissemination and growth of
cancer cells in metastatic sites. Nat Rev Cancer, 2002. 2(8): p. 563-72.
11. Fidler, I.J., Critical determinants of metastasis. Semin Cancer Biol, 2002. 12(2):
p. 89-96.
12. Woodhouse, E.C., R.F. Chuaqui, and L.A. Liotta, General mechanisms of
metastasis. Cancer, 1997. 80(8 Suppl): p. 1529-37.
13. Cairns, R.A., R. Khokha, and R.P. Hill, Molecular mechanisms of tumor
invasion and metastasis: an integrated view. Curr Mol Med, 2003. 3(7): p.
659-71.
14. Mareel, M. and A. Leroy, Clinical, cellular, and molecular aspects of cancer
invasion. Physiol Rev, 2003. 83(2): p. 337-76.
15. Wittekind, C. and M. Neid, Cancer invasion and metastasis. Oncology, 2005. 69
Suppl 1: p. 14-6.
16. Christofori, G., New signals from the invasive front. Nature, 2006. 441(7092): p.
444-50.
54
17. Gupta, G.P. and J. Massague, Cancer metastasis: building a framework. Cell,
2006. 127(4): p. 679-95.
18. Kopfstein, L. and G. Christofori, Metastasis: cell-autonomous mechanisms
versus contributions by the tumor microenvironment. Cell Mol Life Sci, 2006.
63(4): p. 449-68.
19. Cho, W.C., MicroRNAs: potential biomarkers for cancer diagnosis, prognosis
and targets for therapy. Int J Biochem Cell Biol. 42(8): p. 1273-81.
20. Cho, W.C., MicroRNAs in cancer - from research to therapy. Biochim Biophys
Acta. 1805(2): p. 209-17.
21. Filipowicz, W., S.N. Bhattacharyya, and N. Sonenberg, Mechanisms of
post-transcriptional regulation by microRNAs: are the answers in sight? Nat
Rev Genet, 2008. 9(2): p. 102-14.
22. Faller, M. and F. Guo, MicroRNA biogenesis: there's more than one way to skin
a cat. Biochim Biophys Acta, 2008. 1779(11): p. 663-7.
23. Edmonds, M.D., et al., Breast cancer metastasis suppressor 1 coordinately
regulates metastasis-associated microRNA expression. Int J Cancer, 2009.
125(8): p. 1778-85.
24. Li, Y., et al., miR-146a suppresses invasion of pancreatic cancer cells. Cancer
Res. 70(4): p. 1486-95.
25. Xia, H., et al., microRNA-146b inhibits glioma cell migration and invasion by
targeting MMPs. Brain Res, 2009. 1269: p. 158-65.
26. Wang, G., et al., Epidermal growth factor receptor-regulated miR-125a-5p--a
metastatic inhibitor of lung cancer. FEBS J, 2009. 276(19): p. 5571-8.
27. Burk, U., et al., A reciprocal repression between ZEB1 and members of the
miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep, 2008.
9(6): p. 582-9.
28. Wellner, U., et al., The EMT-activator ZEB1 promotes tumorigenicity by
repressing stemness-inhibiting microRNAs. Nat Cell Biol, 2009. 11(12): p.
1487-95.
29. Dykxhoorn, D.M., et al., miR-200 enhances mouse breast cancer cell
colonization to form distant metastases. PLoS One, 2009. 4(9): p. e7181.
30. Le, M.T., et al., MicroRNA-125b is a novel negative regulator of p53. Genes Dev,
2009. 23(7): p. 862-76.
31. Manni, I., et al., The microRNA miR-92 increases proliferation of myeloid cells
and by targeting p63 modulates the abundance of its isoforms. FASEB J, 2009.
23(11): p. 3957-66.
55
32. Papagiannakopoulos, T., A. Shapiro, and K.S. Kosik, MicroRNA-21 targets a
network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res,
2008. 68(19): p. 8164-72.
33. Bussing, I., F.J. Slack, and H. Grosshans, let-7 microRNAs in development, stem
cells and cancer. Trends Mol Med, 2008. 14(9): p. 400-9.
34. Davis-Smyth, T., et al., The far upstream element-binding proteins comprise an
ancient family of single-strand DNA-binding transactivators. J Biol Chem, 1996.
271(49): p. 31679-87.
35. Bomsztyk, K., et al., Diverse molecular interactions of the hnRNP K protein.
FEBS Lett, 1997. 403(2): p. 113-5.
36. Garcia-Mayoral, M.F., et al., The structure of the C-terminal KH domains of
KSRP reveals a noncanonical motif important for mRNA degradation. Structure,
2007. 15(4): p. 485-98.
37. Chen, C.Y., et al., AU binding proteins recruit the exosome to degrade
ARE-containing mRNAs. Cell, 2001. 107(4): p. 451-64.
38. Houseley, J. and D. Tollervey, The many pathways of RNA degradation. Cell,
2009. 136(4): p. 763-76.
39. Khabar, K.S., The AU-rich transcriptome: more than interferons and cytokines,
and its role in disease. J Interferon Cytokine Res, 2005. 25(1): p. 1-10.
40. Eberhardt, W., et al., Modulation of mRNA stability as a novel therapeutic
approach. Pharmacol Ther, 2007. 114(1): p. 56-73.
41. Gherzi, R., et al., A KH domain RNA binding protein, KSRP, promotes
ARE-directed mRNA turnover by recruiting the degradation machinery. Mol
Cell, 2004. 14(5): p. 571-83.
42. Chou, C.F., et al., Tethering KSRP, a decay-promoting AU-rich element-binding
protein, to mRNAs elicits mRNA decay. Mol Cell Biol, 2006. 26(10): p.
3695-706.
43. Trabucchi, M., et al., The RNA-binding protein KSRP promotes the biogenesis of
a subset of microRNAs. Nature, 2009. 459(7249): p. 1010-4.
44. Ruggiero, T., et al., LPS induces KH-type splicing regulatory protein-dependent
processing of microRNA-155 precursors in macrophages. FASEB J, 2009. 23(9):
p. 2898-908.
45. Newman, M.A., J.M. Thomson, and S.M. Hammond, Lin-28 interaction with the
Let-7 precursor loop mediates regulated microRNA processing. RNA, 2008.
14(8): p. 1539-49.
46. Piskounova, E., et al., Determinants of microRNA processing inhibition by the
56
developmentally regulated RNA-binding protein Lin28. J Biol Chem, 2008.
283(31): p. 21310-4.
47. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell,
2004. 116(2): p. 281-97.
48. Carleton, M., M.A. Cleary, and P.S. Linsley, MicroRNAs and cell cycle
regulation. Cell Cycle, 2007. 6(17): p. 2127-32.
49. Lau, N.C., et al., An abundant class of tiny RNAs with probable regulatory roles
in Caenorhabditis elegans. Science, 2001. 294(5543): p. 858-62.
50. Boehm, M. and F. Slack, A developmental timing microRNA and its target
regulate life span in C. elegans. Science, 2005. 310(5756): p. 1954-7.
51. Alvarez-Garcia, I. and E.A. Miska, MicroRNA functions in animal development
and human disease. Development, 2005. 132(21): p. 4653-62.
52. Landthaler, M., A. Yalcin, and T. Tuschl, The human DiGeorge syndrome critical
region gene 8 and Its D. melanogaster homolog are required for miRNA
biogenesis. Curr Biol, 2004. 14(23): p. 2162-7.
53. Jin, P., R.S. Alisch, and S.T. Warren, RNA and microRNAs in fragile X mental
retardation. Nat Cell Biol, 2004. 6(11): p. 1048-53.
54. Lu, J., et al., MicroRNA expression profiles classify human cancers. Nature,
2005. 435(7043): p. 834-8.
55. Volinia, S., et al., A microRNA expression signature of human solid tumors
defines cancer gene targets. Proc Natl Acad Sci U S A, 2006. 103(7): p.
2257-61.
56. Esquela-Kerscher, A. and F.J. Slack, Oncomirs - microRNAs with a role in
cancer. Nat Rev Cancer, 2006. 6(4): p. 259-69.
57. Steeg, P.S., Tumor metastasis: mechanistic insights and clinical challenges. Nat
Med, 2006. 12(8): p. 895-904.
58. Hurst, D.R., M.D. Edmonds, and D.R. Welch, Metastamir: the field of
metastasis-regulatory microRNA is spreading. Cancer Res, 2009. 69(19): p.
7495-8.
59. Briata, P., et al., KSRP, many functions for a single protein. Front Biosci. 16: p.
1787-96.
60. Tong, A.W. and J. Nemunaitis, Modulation of miRNA activity in human cancer:
a new paradigm for cancer gene therapy? Cancer Gene Ther, 2008. 15(6): p.
341-55.
61. Michael, M.Z., et al., Reduced accumulation of specific microRNAs in colorectal
neoplasia. Mol Cancer Res, 2003. 1(12): p. 882-91.
62. Akao, Y., Y. Nakagawa, and T. Naoe, let-7 microRNA functions as a potential
growth suppressor in human colon cancer cells. Biol Pharm Bull, 2006. 29(5): p.
903-6.
63. Takamizawa, J., et al., Reduced expression of the let-7 microRNAs in human
lung cancers in association with shortened postoperative survival. Cancer Res,
2004. 64(11): p. 3753-6.
64. Brueckner, B., et al., The human let-7a-3 locus contains an epigenetically
regulated microRNA gene with oncogenic function. Cancer Res, 2007. 67(4): p.
1419-23.
65. Motoyama, K., et al., Clinical significance of high mobility group A2 in human
gastric cancer and its relationship to let-7 microRNA family. Clin Cancer Res,
2008. 14(8): p. 2334-40.
66. Sampson, V.B., et al., MicroRNA let-7a down-regulates MYC and reverts
MYC-induced growth in Burkitt lymphoma cells. Cancer Res, 2007. 67(20): p.
9762-70.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16166-
dc.description.abstract肺癌高居世界十大癌症死因之首,導致肺癌死亡率居高不下、治癒率低的主要
元凶為癌細胞遠端轉移所造成的治療失敗。因此研究抑制癌細胞轉移之機轉在癌
症治療領域中占有極重要的角色。癌細胞轉移的病理機制包括細胞移動、浸襲、
血管新生、及細胞增生。不同型態的細胞轉移會受到不同的機轉調控。找出抑制
腫瘤浸襲基因並釐清其機制,可作為病理診斷上的新方法,及提供未來治療癌症
的方向。
KSRP 在過去研究中已知可以藉由促進訊息核糖核酸降解及促進微型核糖核酸
成熟調控基因表現,並參與許多生物性功能如細胞增生、分化、凋亡等。因此,
我們試圖探討KSRP 在肺癌發展及轉移浸襲中的重要性及其調控機轉。在本篇研
究中,我們發現KSRP 在肺腫瘤周邊的正常組織的表現量遠高於腫瘤組織,臨床
上分析KSRP 表現量較高的病人,與較長存活時間有正相關性。在體外細胞株實
驗當中,KSRP 的核糖核酸及蛋白質表現量和轉移浸襲能力有高度負相關性。在
KSRP 過度表現之轉殖細胞株中發現顯著降低細胞的轉移及浸襲能力;相反的在
KSRP 表現降低的轉殖細胞株中則促進癌細胞轉移能力。動物實驗結果也證明,持
續抑制KSRP 表現導致腫瘤快速生長並且轉移浸襲致其他肺葉,證明KSRP 無論
是在體外及活體內實驗都能有抑制腫瘤轉移浸襲的能力。
進一步探討KSRP 所調控之浸襲能力之機轉則發現,KSRP 可藉由調控let-7a、
miR-23a 及miR-25*等抑癌微型核糖核酸成熟,導致標的基因蛋白表現量下降,進而抑制其所調控之轉移浸襲能力。因此,KSRP 為一個新發現之抑癌基因並可作為將來治療癌症轉移的標的因子。
zh_TW
dc.description.abstractLung cancer is the most common cause of cancer-related death worldwide, and metastasis is the major cause of treatment failure and mortality in cancer patients. The pathogenesis of cancer metastasis involves cell migration, invasion, angiogenesis, and cell proliferation. Different types of cell migration are regulated by different mechanisms. Identification of novel tumor metastasis-associated genes and elucidation of their mechanism of action may provide new insights into the pathogenesis and management of cancer metastasis. KH-type splicing regulatory protein (KSRP) has been shown to be an essential factor for the rapid decay of mRNAs containing AU-rich elements and involved in the
biogenesis of a subset of miRNAs, to regulate a variety of biological processes, including cell cycle, differentiation, development, and metabolism. The purpose of this
study is to investigate the regulatory role of KSRP in lung cancer metastasis and invasion. In the present study, we found that KSRP was expressed higher in non-tumor
part than matched tumor part of lung cancer patients and inversely correlated with the patient’s survival, as well as migration and invasion abilities in lung cancer cell lines.
By using transwell migration and invasion assay, we found that KSRP inhibited lung cancer cell-induced migratory and invasive abilities. In addition, in vivo orthotopic mouse model showed that KSRP inhibited tumor growth, intrapulmonary metastasis and distal organ metastasis.
We further demonstrated that KSRP depletion results in down regulation of several tumor suppressive miRNAs including let-7a, miR-23a and miR-25*. KSRP may suppressed cancer cell invasion and metastasis through promoting the maturation of
these miRNAs, which may result in reduction of downstream genes. In conclusion, we considered KSRP as a tumor suppressor gene and it inhibited cancer cell invasion and
metastasis. Therefore, KSRP may be a potential target for cancer treatment.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:03:33Z (GMT). No. of bitstreams: 1
ntu-101-R99447009-1.pdf: 2154350 bytes, checksum: 36bc715f1a184f7a115156ee8a3c1ffc (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要 ....................................................................................................... 2
Abstract ........................................................................................................ 3
Introduction ................................................................................................. 5
Materials and Methods .............................................................................. 12
Results ........................................................................................................ 19
KSRP expression is reduced in human lung cancer ............................... 20
KSRP suppresses the mobility and metastasis of lung cancer ............... 20
KSRP inhibits tumor growth and metastasis ......................................... 23
MMPs are not involved in KSRP mediated invasion and metastasis ..... 24
miRNAs expression levels were affected by KSRP, and may be involved
in KSRP inhibition on invasion and metastasis ..................................... 25
Discussion ................................................................................................... 27
Figures and figure legends ......................................................................... 32
Reference .................................................................................................... 52
dc.language.isozh-TW
dc.subject微型核糖核酸zh_TW
dc.subjectKH-type splicing regulatory protein (KSRP)zh_TW
dc.subject肺癌zh_TW
dc.subject轉移zh_TW
dc.subject浸襲zh_TW
dc.subjectinvasionen
dc.subjectlung canceren
dc.subjectmigrationen
dc.subjectmicroRNAen
dc.subjectKH-type splicing regulatory protein (KSRP)en
dc.titleKSRP 在人類肺癌轉移浸襲之角色探討zh_TW
dc.titleThe role of KH-type splicing regulatory protein (KSRP)
in lung cancer invasion and metastasis.
en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林明燦,蕭宏昇,嚴孟祿
dc.subject.keywordKH-type splicing regulatory protein (KSRP),肺癌,轉移,浸襲,微型核糖核酸,zh_TW
dc.subject.keywordKH-type splicing regulatory protein (KSRP),lung cancer,migration,invasion,microRNA,en
dc.relation.page57
dc.rights.note未授權
dc.date.accepted2012-07-31
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved