請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16166完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭明良(Min-Liang Kuo) | |
| dc.contributor.author | Yin-Lin Li | en |
| dc.contributor.author | 李尹琳 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:03:33Z | - |
| dc.date.copyright | 2012-09-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-30 | |
| dc.identifier.citation | 1. Greenlee, M.H., C.B. Roosevelt, and D.S. Sakaguchi, Differential localization of
SNARE complex proteins SNAP-25, syntaxin, and VAMP during development of the mammalian retina. J Comp Neurol, 2001. 430(3): p. 306-20. 2. Steeg, P.S., Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Cancer, 2003. 3(1): p. 55-63. 3. Boldo, E., et al., Health impact assessment of a reduction in ambient PM(2.5) levels in Spain. Environ Int. 37(2): p. 342-8. 4. O'Reilly, K.M., et al., Asbestos-related lung disease. Am Fam Physician, 2007. 75(5): p. 683-8. 5. Takamizawa, J., et al., Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res, 2004. 64(11): p. 3753-6. 6. Radon, K., et al., Passive smoking exposure: a risk factor for chronic bronchitis and asthma in adults? Chest, 2002. 122(3): p. 1086-90. 7. Yesner, R. and D. Carter, Pathology of carcinoma of the lung. Changing patterns. Clin Chest Med, 1982. 3(2): p. 257-89. 8. Sleeman, J.P., The lymph node as a bridgehead in the metastatic dissemination of tumors. Recent Results Cancer Res, 2000. 157: p. 55-81. 9. Pepper, M.S., Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res, 2001. 7(3): p. 462-8. 10. Chambers, A.F., A.C. Groom, and I.C. MacDonald, Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer, 2002. 2(8): p. 563-72. 11. Fidler, I.J., Critical determinants of metastasis. Semin Cancer Biol, 2002. 12(2): p. 89-96. 12. Woodhouse, E.C., R.F. Chuaqui, and L.A. Liotta, General mechanisms of metastasis. Cancer, 1997. 80(8 Suppl): p. 1529-37. 13. Cairns, R.A., R. Khokha, and R.P. Hill, Molecular mechanisms of tumor invasion and metastasis: an integrated view. Curr Mol Med, 2003. 3(7): p. 659-71. 14. Mareel, M. and A. Leroy, Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev, 2003. 83(2): p. 337-76. 15. Wittekind, C. and M. Neid, Cancer invasion and metastasis. Oncology, 2005. 69 Suppl 1: p. 14-6. 16. Christofori, G., New signals from the invasive front. Nature, 2006. 441(7092): p. 444-50. 54 17. Gupta, G.P. and J. Massague, Cancer metastasis: building a framework. Cell, 2006. 127(4): p. 679-95. 18. Kopfstein, L. and G. Christofori, Metastasis: cell-autonomous mechanisms versus contributions by the tumor microenvironment. Cell Mol Life Sci, 2006. 63(4): p. 449-68. 19. Cho, W.C., MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int J Biochem Cell Biol. 42(8): p. 1273-81. 20. Cho, W.C., MicroRNAs in cancer - from research to therapy. Biochim Biophys Acta. 1805(2): p. 209-17. 21. Filipowicz, W., S.N. Bhattacharyya, and N. Sonenberg, Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet, 2008. 9(2): p. 102-14. 22. Faller, M. and F. Guo, MicroRNA biogenesis: there's more than one way to skin a cat. Biochim Biophys Acta, 2008. 1779(11): p. 663-7. 23. Edmonds, M.D., et al., Breast cancer metastasis suppressor 1 coordinately regulates metastasis-associated microRNA expression. Int J Cancer, 2009. 125(8): p. 1778-85. 24. Li, Y., et al., miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res. 70(4): p. 1486-95. 25. Xia, H., et al., microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Res, 2009. 1269: p. 158-65. 26. Wang, G., et al., Epidermal growth factor receptor-regulated miR-125a-5p--a metastatic inhibitor of lung cancer. FEBS J, 2009. 276(19): p. 5571-8. 27. Burk, U., et al., A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep, 2008. 9(6): p. 582-9. 28. Wellner, U., et al., The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol, 2009. 11(12): p. 1487-95. 29. Dykxhoorn, D.M., et al., miR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS One, 2009. 4(9): p. e7181. 30. Le, M.T., et al., MicroRNA-125b is a novel negative regulator of p53. Genes Dev, 2009. 23(7): p. 862-76. 31. Manni, I., et al., The microRNA miR-92 increases proliferation of myeloid cells and by targeting p63 modulates the abundance of its isoforms. FASEB J, 2009. 23(11): p. 3957-66. 55 32. Papagiannakopoulos, T., A. Shapiro, and K.S. Kosik, MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res, 2008. 68(19): p. 8164-72. 33. Bussing, I., F.J. Slack, and H. Grosshans, let-7 microRNAs in development, stem cells and cancer. Trends Mol Med, 2008. 14(9): p. 400-9. 34. Davis-Smyth, T., et al., The far upstream element-binding proteins comprise an ancient family of single-strand DNA-binding transactivators. J Biol Chem, 1996. 271(49): p. 31679-87. 35. Bomsztyk, K., et al., Diverse molecular interactions of the hnRNP K protein. FEBS Lett, 1997. 403(2): p. 113-5. 36. Garcia-Mayoral, M.F., et al., The structure of the C-terminal KH domains of KSRP reveals a noncanonical motif important for mRNA degradation. Structure, 2007. 15(4): p. 485-98. 37. Chen, C.Y., et al., AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell, 2001. 107(4): p. 451-64. 38. Houseley, J. and D. Tollervey, The many pathways of RNA degradation. Cell, 2009. 136(4): p. 763-76. 39. Khabar, K.S., The AU-rich transcriptome: more than interferons and cytokines, and its role in disease. J Interferon Cytokine Res, 2005. 25(1): p. 1-10. 40. Eberhardt, W., et al., Modulation of mRNA stability as a novel therapeutic approach. Pharmacol Ther, 2007. 114(1): p. 56-73. 41. Gherzi, R., et al., A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol Cell, 2004. 14(5): p. 571-83. 42. Chou, C.F., et al., Tethering KSRP, a decay-promoting AU-rich element-binding protein, to mRNAs elicits mRNA decay. Mol Cell Biol, 2006. 26(10): p. 3695-706. 43. Trabucchi, M., et al., The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature, 2009. 459(7249): p. 1010-4. 44. Ruggiero, T., et al., LPS induces KH-type splicing regulatory protein-dependent processing of microRNA-155 precursors in macrophages. FASEB J, 2009. 23(9): p. 2898-908. 45. Newman, M.A., J.M. Thomson, and S.M. Hammond, Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA, 2008. 14(8): p. 1539-49. 46. Piskounova, E., et al., Determinants of microRNA processing inhibition by the 56 developmentally regulated RNA-binding protein Lin28. J Biol Chem, 2008. 283(31): p. 21310-4. 47. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-97. 48. Carleton, M., M.A. Cleary, and P.S. Linsley, MicroRNAs and cell cycle regulation. Cell Cycle, 2007. 6(17): p. 2127-32. 49. Lau, N.C., et al., An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 2001. 294(5543): p. 858-62. 50. Boehm, M. and F. Slack, A developmental timing microRNA and its target regulate life span in C. elegans. Science, 2005. 310(5756): p. 1954-7. 51. Alvarez-Garcia, I. and E.A. Miska, MicroRNA functions in animal development and human disease. Development, 2005. 132(21): p. 4653-62. 52. Landthaler, M., A. Yalcin, and T. Tuschl, The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol, 2004. 14(23): p. 2162-7. 53. Jin, P., R.S. Alisch, and S.T. Warren, RNA and microRNAs in fragile X mental retardation. Nat Cell Biol, 2004. 6(11): p. 1048-53. 54. Lu, J., et al., MicroRNA expression profiles classify human cancers. Nature, 2005. 435(7043): p. 834-8. 55. Volinia, S., et al., A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A, 2006. 103(7): p. 2257-61. 56. Esquela-Kerscher, A. and F.J. Slack, Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer, 2006. 6(4): p. 259-69. 57. Steeg, P.S., Tumor metastasis: mechanistic insights and clinical challenges. Nat Med, 2006. 12(8): p. 895-904. 58. Hurst, D.R., M.D. Edmonds, and D.R. Welch, Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res, 2009. 69(19): p. 7495-8. 59. Briata, P., et al., KSRP, many functions for a single protein. Front Biosci. 16: p. 1787-96. 60. Tong, A.W. and J. Nemunaitis, Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy? Cancer Gene Ther, 2008. 15(6): p. 341-55. 61. Michael, M.Z., et al., Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res, 2003. 1(12): p. 882-91. 62. Akao, Y., Y. Nakagawa, and T. Naoe, let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull, 2006. 29(5): p. 903-6. 63. Takamizawa, J., et al., Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res, 2004. 64(11): p. 3753-6. 64. Brueckner, B., et al., The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res, 2007. 67(4): p. 1419-23. 65. Motoyama, K., et al., Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 microRNA family. Clin Cancer Res, 2008. 14(8): p. 2334-40. 66. Sampson, V.B., et al., MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res, 2007. 67(20): p. 9762-70. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16166 | - |
| dc.description.abstract | 肺癌高居世界十大癌症死因之首,導致肺癌死亡率居高不下、治癒率低的主要
元凶為癌細胞遠端轉移所造成的治療失敗。因此研究抑制癌細胞轉移之機轉在癌 症治療領域中占有極重要的角色。癌細胞轉移的病理機制包括細胞移動、浸襲、 血管新生、及細胞增生。不同型態的細胞轉移會受到不同的機轉調控。找出抑制 腫瘤浸襲基因並釐清其機制,可作為病理診斷上的新方法,及提供未來治療癌症 的方向。 KSRP 在過去研究中已知可以藉由促進訊息核糖核酸降解及促進微型核糖核酸 成熟調控基因表現,並參與許多生物性功能如細胞增生、分化、凋亡等。因此, 我們試圖探討KSRP 在肺癌發展及轉移浸襲中的重要性及其調控機轉。在本篇研 究中,我們發現KSRP 在肺腫瘤周邊的正常組織的表現量遠高於腫瘤組織,臨床 上分析KSRP 表現量較高的病人,與較長存活時間有正相關性。在體外細胞株實 驗當中,KSRP 的核糖核酸及蛋白質表現量和轉移浸襲能力有高度負相關性。在 KSRP 過度表現之轉殖細胞株中發現顯著降低細胞的轉移及浸襲能力;相反的在 KSRP 表現降低的轉殖細胞株中則促進癌細胞轉移能力。動物實驗結果也證明,持 續抑制KSRP 表現導致腫瘤快速生長並且轉移浸襲致其他肺葉,證明KSRP 無論 是在體外及活體內實驗都能有抑制腫瘤轉移浸襲的能力。 進一步探討KSRP 所調控之浸襲能力之機轉則發現,KSRP 可藉由調控let-7a、 miR-23a 及miR-25*等抑癌微型核糖核酸成熟,導致標的基因蛋白表現量下降,進而抑制其所調控之轉移浸襲能力。因此,KSRP 為一個新發現之抑癌基因並可作為將來治療癌症轉移的標的因子。 | zh_TW |
| dc.description.abstract | Lung cancer is the most common cause of cancer-related death worldwide, and metastasis is the major cause of treatment failure and mortality in cancer patients. The pathogenesis of cancer metastasis involves cell migration, invasion, angiogenesis, and cell proliferation. Different types of cell migration are regulated by different mechanisms. Identification of novel tumor metastasis-associated genes and elucidation of their mechanism of action may provide new insights into the pathogenesis and management of cancer metastasis. KH-type splicing regulatory protein (KSRP) has been shown to be an essential factor for the rapid decay of mRNAs containing AU-rich elements and involved in the
biogenesis of a subset of miRNAs, to regulate a variety of biological processes, including cell cycle, differentiation, development, and metabolism. The purpose of this study is to investigate the regulatory role of KSRP in lung cancer metastasis and invasion. In the present study, we found that KSRP was expressed higher in non-tumor part than matched tumor part of lung cancer patients and inversely correlated with the patient’s survival, as well as migration and invasion abilities in lung cancer cell lines. By using transwell migration and invasion assay, we found that KSRP inhibited lung cancer cell-induced migratory and invasive abilities. In addition, in vivo orthotopic mouse model showed that KSRP inhibited tumor growth, intrapulmonary metastasis and distal organ metastasis. We further demonstrated that KSRP depletion results in down regulation of several tumor suppressive miRNAs including let-7a, miR-23a and miR-25*. KSRP may suppressed cancer cell invasion and metastasis through promoting the maturation of these miRNAs, which may result in reduction of downstream genes. In conclusion, we considered KSRP as a tumor suppressor gene and it inhibited cancer cell invasion and metastasis. Therefore, KSRP may be a potential target for cancer treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:03:33Z (GMT). No. of bitstreams: 1 ntu-101-R99447009-1.pdf: 2154350 bytes, checksum: 36bc715f1a184f7a115156ee8a3c1ffc (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 中文摘要 ....................................................................................................... 2
Abstract ........................................................................................................ 3 Introduction ................................................................................................. 5 Materials and Methods .............................................................................. 12 Results ........................................................................................................ 19 KSRP expression is reduced in human lung cancer ............................... 20 KSRP suppresses the mobility and metastasis of lung cancer ............... 20 KSRP inhibits tumor growth and metastasis ......................................... 23 MMPs are not involved in KSRP mediated invasion and metastasis ..... 24 miRNAs expression levels were affected by KSRP, and may be involved in KSRP inhibition on invasion and metastasis ..................................... 25 Discussion ................................................................................................... 27 Figures and figure legends ......................................................................... 32 Reference .................................................................................................... 52 | |
| dc.language.iso | zh-TW | |
| dc.subject | 微型核糖核酸 | zh_TW |
| dc.subject | KH-type splicing regulatory protein (KSRP) | zh_TW |
| dc.subject | 肺癌 | zh_TW |
| dc.subject | 轉移 | zh_TW |
| dc.subject | 浸襲 | zh_TW |
| dc.subject | invasion | en |
| dc.subject | lung cancer | en |
| dc.subject | migration | en |
| dc.subject | microRNA | en |
| dc.subject | KH-type splicing regulatory protein (KSRP) | en |
| dc.title | KSRP 在人類肺癌轉移浸襲之角色探討 | zh_TW |
| dc.title | The role of KH-type splicing regulatory protein (KSRP)
in lung cancer invasion and metastasis. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林明燦,蕭宏昇,嚴孟祿 | |
| dc.subject.keyword | KH-type splicing regulatory protein (KSRP),肺癌,轉移,浸襲,微型核糖核酸, | zh_TW |
| dc.subject.keyword | KH-type splicing regulatory protein (KSRP),lung cancer,migration,invasion,microRNA, | en |
| dc.relation.page | 57 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-07-31 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
