請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16163完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉致為 | |
| dc.contributor.author | Yen-Yeh Chen | en |
| dc.contributor.author | 陳彥燁 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:03:26Z | - |
| dc.date.copyright | 2012-08-10 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-31 | |
| dc.identifier.citation | Chapter 1.
[1] Joachim Luther, “Handbook of Photovoltaic Science and Engineering.”, 2003, p.45. [2] H.J. Moller, C. Funke, M. Rinio and S. Scholz, Multicrystalline silicon for solar cells” , Thin Solid Films 487 (2005), pp. 179–187. [3] Rech, B. and Wagner, H., 1999. Potential of amorphous silicon for solar cells. Appl. Phys. A 69, pp. 155–167. [4] Martin A. Green, Keith Emery, Yoshihiro Hishikawa and Wilhelm Warta, “Solar cell efficiency tables (version 37)”, Prog. Photovolt: Res. Appl. 2011; 19:84. [5] Yasufumi Tsunomura, Yukihiro Yoshimine, Mikio Taguchi, Toshiaki Baba, Toshihiro Kinoshita, Hiroshi Kanno, Hitoshi Sakata, Eiji Maruyama and Makoto Tanaka, “Twenty-two percent efficiency HIT solar cell”, Solar Energy Materials and Solar Cells, Volume 93, Issues 6-7, June 2009, Pages 670-673 [6] D. Macdonald and L. J. Geerligs, “Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon” , Appl. Phys. Lett. 85, 4061. Chapter 2. [1] S. Martinuzzi, O. Palais, M. Pasquinelli, D. Barakel, and F. Ferrazza, “n-type multicrystalline silicon wafers for solar cells,” in Proc. 31st IEEE Photovoltaic Spec. Conf., 2005, pp. 919–922. [2] K. Bothe, J. Schmidt, and R.Hezel, “Effective reduction of metastable defect concentration in Boron-doped Chochralski silicon for solar cells,” in Proc. 29th Photovoltaic Spec. Conf., 2002, pp. 194-197. [3] S. W. Glunz, S. Rein, J. Y. Lee, and W. Warta, “Minority carrier lifetime degradation in boro-doped Czochralski silicon“, Journal of Applied Physics 90, 2001, pp. 2397-2404. [4] J.D. Plummer, M.D. Deal, and P.B. Griffin, Silicon VLSI Technology (Prentice–Hall, Upper Saddle River, NJ, 2000), Chap. 8. [5] Yuan Taur, Tak H Ning, “ Fundamentals of modern VLSI devices”, p16. [6] Ronald A. Sinton , Andres Cuevas , Michael Stucking, “ Quasi-steady-state Photoconductance , A new method for solar cell material and device characterization”, Photovoltaic Specialists Conference, 1996., Conference Record of the Twenty Fifth IEEE. [7] Mark John Kerr, “Surface, emitter and bulk recombination in Silicon and development of Silicon Nitride passivated solar cells”, thesis submitted for degree of Doctor Philosophy od The Australian National University. [8] DE Kane, RM Swanson, “Measurement of the emitter saturation current by a contactless photoconductivity decay method”, IEEE photovoltaic specialists conference 18 (1985) Volume: 69, Publisher: IEEE, New York, 1985, Pages: 578–583. [9] C. Reichel, F. Granek, J. Benick-Wittmann, O. Schultz, S. W. Glunz, “Comparison of emitter saturation current densities determined by injection-dependent lifetime spectroscopy in high and low injection regimes”, Progress in Photovoltaics: Research and Applications Volume 20, Issue 1, pages 21–30, January 2012. [10] Mark J. Kerr and Andres Cuevas, “General parameterization of Auger recombination in crystalline silicon”, Journal of Applied Physics, Volume 91, Issue 4, INTERDISCIPLINARY AND GENERAL PHYSICS (PACS 1-41, 43-47, 79, 81-84, 89-99). Chapter 3. [1] Meier D.L., Chandrasekaran V., Davis H.H., Payne A.M., Xiaoyan Wang, Yelundur V., O'Neill E., Young-Woo Ok, Zimbardi F., Rohatgi, A. “N-Type, Ion-Implanted Silicon Solar Cells and Modules” Photovoltaics, IEEE Journal. [2] Richard R. King and Richard M. Swanson“Studies of diffused boron emitters: saturation current, bandgap narrowing, and surface recombination velocity” Electron Devices, IEEE Transactions on Volume: 38 , Issue: 6 1991. [3] Mark John Kerr, “Surface, emitter and bulk recombination in Silicon and development of Silicon Nitride passivated solar cells”, thesis submitted for degree of Doctor Philosophy od The Australian National University. [4] DE Kane, RM Swanson, “Measurement of the emitter saturation current by a contactless photoconductivity decay method”, IEEE photovoltaic specialists conference 18 (1985) Volume: 69, Publisher: IEEE, New York, 1985, Pages: 578–583. [5] Reichel, F. Granek, J. Benick-Wittmann, O. Schultz, S. W. Glunz, “Comparison of emitter saturation current densities determined by injection-dependent lifetime spectroscopy in high and low injection regimes”, Progress in Photovoltaics: Research and Applications Volume 20, Issue 1, pages 21–30, January 2012. [6] Mark J. Kerr and Andres Cuevas, “General parameterization of Auger recombination in crystalline silicon” , Journal of Applied Physics, Volume 91, Issue 4, INTERDISCIPLINARY AND GENERAL PHYSICS (PACS 1-41, 43-47, 79, 81-84, 89-99). Chapter 4. [1] Bean, K.E. “Anisotropic etching of silicon” Electron Devices, IEEE Transactions, 1978. [2] Osamu Tabata, Ryouji Asahi, Hirofumi Funabashi, Keiichi Shimaoka , Susumu Sugiyama “Anisotropicetching of silicon in TMAH solutions” Volume 34, Issue 1, July 1992, Pages 51–57. [3] Wei Ying Ou, Yao Zhang, Hai Ling Li, Lei Zhao, Chun Lan Zhou, Hong Wei Diao, Min Liu, Wei Ming Lu, Jun Zhang, Wen Jing Wang “Effects of IPA on Texturing Process for Mono-Crystalline Silicon Solar Cell in TMAH Solution” Materials Science Forum (Volume 685). [4] Irena Zubel, Małgorzata Kramkowska “The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions” Sensors and Actuators A: Physical Volume 93, Issue 2, 30 September 2001, Pages 138–147 [5] Hitoshi SAI, Homare FUJII, Koji ARAFUNE, Yoshio OHSHITA, Yoshiaki KANAMORI, Hiroo YUGAMI, and Masafumi YAMAGUCHI, “Wide-Angle Antireflection Effect of Subwavelength Structures for Solar Cells”, Jpn. J. Appl. Phys., Vol. 46, No. 6A (2007) [6] J.D. Plummer, M.D. Deal, P.B. Griffin, Silicon VLSI technology : fundamentals, practice, and modeling, Prentice Hall, Upper Saddle River, NJ, 2000. [7] C. Reichel, F. Granek, J. Benick, O. Schultz-Wittmann, S. W. Glunz, “Comparison of emitter saturation current densities determined by injection-dependent lifetime spectroscopy in high and low injection regimes”, Progress in Photovoltaics : Research and Applications Volume 20, Issue 1, pages 21–30, January 2012 [8] Bram Hoex, “Functional Thin Films for High-Efficiency” Ph. D Thesis. [9] Vermang Bart,Rothschild Aude,Kenis Karine,Wostyn Kurt,Bearda Twan,Racz A,Loozen Xavier,John Joachim,Mertens Paul,Poortmans Jef,Mertens Robert, “SURFACE PASSIVATION FOR SI SOLAR CELLS A COMBINATION OF ADVANCED SURFACE CLEANING AND THERMAL ATOMIC LAYER DEPOSITION OF Al2O3” 25th European Photovoltaic Solar Energy Conference - EPVSEC location:Valencia Spain date:6-sep-2010 [10] L. Breitenstein, A. Richter, M. Hermle, W. Warta,“Studies on Wet-Chemical Surface Conditioning for Al2o3 Passivation Layers Deposited with ALD”, Fraunhofer Institute for Solar Energy System 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16163 | - |
| dc.description.abstract | 由於矽晶太陽能電池的穩定性以及高轉換效率,使矽晶太陽能電池在太陽能產業上佔了極大部分,雖然此技術在量產上的結構已經發展的很完整,但是在高轉換效率的技術上能存在許多的挑戰。
本論文中,N型矽基板上同質接面太陽能電池的製程是利用離子佈值技術來製作硼射極以及磷背面電場。利用合適的退火條件,離子佈值中摻雜離子可以被活化,且佈值中造成的損害可以被修復。為了更佳的效率,基礎的分析是必要的,本論文中會分別用p+np+及用n+nn+的對稱性結構分析射極及基板的特性。 最後,我們在之前討論的都是表面平坦的太陽能電池,但是,要做出高效率的太陽能電池是不夠的。為了做出高效率的太陽能電池,表面結構是必要的。為了增加短路電流,我們要增加太陽能電池捕捉光的能力。但是這會增加太陽能電池的表面積,導致增加射極電流,進而降低開路電壓。本章再討論該如何解決這個問題。 | zh_TW |
| dc.description.abstract | Wafer based solar cell accounts for the production of a large part in photovoltaic industry due to its stability and high efficiency. Although the technology of wafer based solar cell has been well-developed for conventional structure, there are still numerous new challenges existing for the high efficiency solar cell.
In this thesis, the fabrication process of n-type silicon based homojunction solar cell is demonstrated by using ion implantation to form the boron emitter and phosphorous back surface field. By using appropriate annealing condition, The implanted dopants and damage introduced by the implantation can be activated and repaired, respectively. For better efficiency, fundamental analysis is necessary.Using p+np+ and n+nn+ symmetrical structure to analyze characteristic of emitter and base in the thesis. Finally, There are surface planar solar cells we discuss before. But it’s not enough to make high efficient solar cell. For high efficient solar cell, surface texture is necessary. In order to increase short circuit current, we should increase light trapping in our solar cell. But it will increase the total surface of solar cells, it will increase the emitter saturation current density and leads to lower open circuit voltage. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:03:26Z (GMT). No. of bitstreams: 1 ntu-101-R99941089-1.pdf: 2192427 bytes, checksum: ce91761dd8789ae65e5c52552d7290e1 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Chapter 1. Introduction
1.1 Background and Motivation 1 1.2 Organization 3 References 4 Chapter 2. Emitter recombination in Silicon solar cells 2.1 Introduction 5 2.2 Quasi-steady-state photoconductance 6 2.3 Theory of extracting emitter saturation current 9 2.4 Fabrication of symmetric emitter structure 15 2.5 Summary 20 References 22 Chapter 3. Base recombination in Silicon solar cells 3.1 Introduction 24 3.2 Theory of extracting base saturation current 25 3.3 Fabrication of symmetric BSF structure 27 3.4 Fabrication of planar cells 29 3.5 Summary 33 References 35 Chapter 4. Comparison of surface texture and planar ion implanted Silicon solar cells 4.1 Introduction 37 4.2 Fabrication of surface texture by TMAH 37 4.3 Emitter concentration on surface texture by implantation 41 4.4 Emitter saturation current on texture devices 46 4.5 Fabrication of texture cells 49 4.6 Summary 53 References 54 Chapter 5. Summary and Future Work 5.1 Summary 56 5.2 Future work 57 | |
| dc.language.iso | en | |
| dc.subject | 基極電流 | zh_TW |
| dc.subject | n型矽基 | zh_TW |
| dc.subject | 鈍化 | zh_TW |
| dc.subject | 準穩態光導 | zh_TW |
| dc.subject | 射極電流 | zh_TW |
| dc.subject | n-type silicon based | en |
| dc.subject | basecurrent | en |
| dc.subject | emitter current | en |
| dc.subject | QSSPC | en |
| dc.subject | passivation | en |
| dc.title | N型矽基板太陽能電池的製作,量測與理論分析 | zh_TW |
| dc.title | Fabrication, Measurement and Theoretical Analysis of N-type Si Based Solar ells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳偉銘,吳育任,張書通 | |
| dc.subject.keyword | n型矽基,鈍化,準穩態光導,射極電流,基極電流, | zh_TW |
| dc.subject.keyword | n-type silicon based,passivation,QSSPC,emitter current,basecurrent, | en |
| dc.relation.page | 58 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-07-31 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
