Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16151
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞峰(Ruey-Feng Chang)
dc.contributor.authorMING-HONG KUOen
dc.contributor.author郭明宏zh_TW
dc.date.accessioned2021-06-07T18:02:59Z-
dc.date.copyright2012-08-10
dc.date.issued2012
dc.date.submitted2012-07-31
dc.identifier.citation[1] C. J. Chiang, Y. C. Chen, C. J. Chen, S. L. You, M. S. Lai, and T. C. R. T. Force, 'Cancer Trends in Taiwan,' Japanese Journal of Clinical Oncology, vol. 40, pp. 897-904, Oct 2010.
[2] R. Siegel, D. Naishadham, and A. Jemal, 'Cancer Statistics, 2012,' Ca-a Cancer Journal for Clinicians, vol. 62, pp. 10-29, Jan-Feb 2012.
[3] N. F. Boyd, H. Guo, L. J. Martin, L. M. Sun, J. Stone, E. Fishell, R. A. Jong, G. Hislop, A. Chiarelli, S. Minkin, and M. J. Yaffe, 'Mammographic density and the risk and detection of breast cancer,' New England Journal of Medicine, vol. 356, pp. 227-236, Jan 18 2007.
[4] N. F. Boyd, J. W. Byng, R. A. Jong, E. K. Fishell, L. E. Little, A. B. Miller, G. A. Lockwood, D. L. Tritchler, and M. J. Yaffe, 'Quantitative Classification of Mammographic Densities and Breast-Cancer Risk - Results from the Canadian National Breast Screening Study,' Journal of the National Cancer Institute, vol. 87, pp. 670-675, May 3 1995.
[5] N. Boyd, L. Martin, A. Gunasekar, O. Melnichouk, G. Maudsley, C. Peressotti, M. Yaffe, and S. Minkin, 'Mammographic Density and Breast Cancer Risk: Evaluation of a Novel Method of Measuring Breast Tissue Volumes,' Cancer Epidemiology Biomarkers & Prevention, vol. 18, pp. 1754-1762, Jun 2009.
[6] L. Titus-Ernstoff, A. N. A. Tosteson, C. Kasales, J. Weiss, M. Goodrich, E. E. Hatch, and P. A. Carney, 'Breast cancer risk factors in relation to breast density (United States),' Cancer Causes & Control, vol. 17, pp. 1281-1290, Dec 2006.
[7] V. A. McCormack and I. D. S. Silva, 'Breast density and parenchymal patterns as markers of breast cancer risk: A meta-analysis,' Cancer Epidemiology Biomarkers & Prevention, vol. 15, pp. 1159-1169, Jun 2006.
[8] K. E. Martin, M. A. Helvie, C. Zhou, M. A. Roubidoux, J. E. Bailey, C. Paramagul, C. E. Blane, K. A. Klein, S. S. Sonnad, and H. P. Chan, 'Mammographic density measured with quantitative computer-aided method: Comparison with radiologists' estimates and BI-RADS categories,' Radiology, vol. 240, pp. 656-665, Sep 2006.
[9] B. T. Nicholson, A. P. LoRusso, M. Smolkin, V. E. Bovbjerg, G. R. Petroni, and J. A. Harvey, 'Accuracy of assigned BI-RADS breast density category definitions,' Academic Radiology, vol. 13, pp. 1143-1149, Sep 2006.
[10] S. van Engeland, P. R. Snoeren, H. Huisman, C. Boetes, and N. Karssemeijer, 'Volumetric breast density estimation from full-field digital mammograms,' IEEE Transactions on Medical Imaging, vol. 25, pp. 273-282, Mar 2006.
[11] R. A. Smith, D. Saslow, K. A. Sawyer, W. Burke, M. E. Costanza, W. P. Evans, R. S. Foster, E. Hendrick, H. J. Eyre, and S. Sener, 'American cancer society guidelines for breast cancer screening: Update 2003,' Ca-a Cancer Journal for Clinicians, vol. 53, pp. 141-169, May-Jun 2003.
[12] W. A. Berg, Z. Zhang, D. Lehrer, R. A. Jong, E. D. Pisano, R. G. Barr, M. Bohm-Velez, M. C. Mahoney, W. P. Evans, L. H. Larsen, M. J. Morton, E. B. Mendelson, D. M. Farria, J. B. Cormack, H. S. Marques, A. Adams, N. M. Yeh, G. Gabrielli, and A. Investigators, 'Detection of Breast Cancer With Addition of Annual Screening Ultrasound or a Single Screening MRI to Mammography in Women With Elevated Breast Cancer Risk,' Jama-Journal of the American Medical Association, vol. 307, pp. 1394-1404, Apr 4 2012.
[13] C. Biesheuvel, W. Heindel, and S. Weigel, 'Digital Mammography Screening - Evidence of Incremental Breast Cancer Detection by Bilateral Ultrasound at Assessment,' European Journal of Cancer, vol. 48, pp. S72-S72, Mar 2012.
[14] B. Jakovljevic, M. Vasovic, M. Dimcic, A. Jaric, T. Pavlovic, and V. Lazic, 'Mammography, ultrasound and Magnetic Resonance Features of Triple Negative Breast Cancer,' European Journal of Cancer, vol. 48, pp. S73-S73, Mar 2012.
[15] X. X. Ying, Y. P. Lin, X. T. Xia, B. Hu, Z. H. Zhu, and P. Q. He, 'A Comparison of Mammography and Ultrasound in Women with Breast Disease: A Receiver Operating Characteristic Analysis,' Breast Journal, vol. 18, pp. 130-138, Mar-Apr 2012.
[16] W. K. Moon, Y. W. Shen, C. S. Huang, S. C. Luo, A. Kuzucan, J. H. Chen, and R. F. Chang, 'Comparative study of density analysis using automated whole breast ultrasound and MRI,' Medical Physics, vol. 38, pp. 382-389, Jan 2011.
[17] J. H. Chen, C. S. Huang, K. C. C. Chien, E. Takada, W. K. Moon, J. H. K. Wu, N. Cho, Y. F. Wang, and R. F. Chang, 'Breast density analysis for whole breast ultrasound images,' Medical Physics, vol. 36, pp. 4933-4943, Nov 2009.
[18] C. Zechmann, L. Martincich, M. Faivre-Pierret, S. Corcione, H. van den Bosch, F. Gilbert, F. Pediconi, and F. Sardanelli, 'Does Breast Parenchyma Density Affect the Detection of Malignant Lesions on Gadobenate Dimeglumine-Enhanced MRI Compared to Gadopentetate Dimeglumine-Enhanced MRI, Mammography, and Ultrasound?,' American Journal of Roentgenology, vol. 198, May 2012.
[19] S. M. Jud, L. Haberle, P. A. Fasching, K. Heusinger, C. Hack, F. Faschingbauer, M. Uder, T. Wittenberg, F. Wagner, M. Meier-Meitinger, R. Schulz-Wendtland, M. W. Beckmann, and B. R. Adamietz, 'Correlates of mammographic density in B-mode ultrasound and real time elastography,' European Journal of Cancer Prevention, vol. 21, pp. 343-349, Jul 2012.
[20] R. Steel, T. L. Poepping, R. S. Thompson, and C. Macaskill, 'Origins of the edge shadowing artefact in medical ultrasound imaging (vol 30, pg 1153, 2004),' Ultrasound in Medicine and Biology, vol. 31, pp. 135-135, Jan 2005.
[21] S. Chuai-Aree, C. Lursinsap, P. Sophasathit, and S. Siripant, 'Fuzzy C-mean: A statistical feature classification of text and image segmentation method,' International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, vol. 9, pp. 661-671, Dec 2001.
[22] W. Bocker, D. Hungermann, and T. Decker, 'Anatomy of the breast,' Pathologe, vol. 30, pp. 6-12, Feb 2009.
[23] J. C. Dunn, 'Graph Theoretic Analysis of Pattern-Classification Via Tamuras Fuzzy Relation,' IEEE Transactions on Systems Man and Cybernetics, vol. Smc4, pp. 310-313, 1974.
[24] J. C. Dunn, 'A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters,' Journal of Cybernetics, pp. 32-57, Mar, 3 1974.
[25] J. C. Bezdek, R. Ehrlich, and W. Full, 'Fcm - the Fuzzy C-Means Clustering-Algorithm,' Computers & Geosciences, vol. 10, pp. 191-203, 1984.
[26] B. Uyamker, R. Rajapakshe, P. Gordon, and S. Silver, 'Quest for a 'gold standard' for breast density evaluation,' Medical Physics, vol. 36, pp. 4305-4305, Sep 2009.
[27] V. Milani, S. M. Goldman, F. Finguerman, M. Pinotti, C. S. Ribeiro, N. Abdalla, and J. Szejnfeld, 'Presumed prevalence analysis on suspected and highly suspected breast cancer lesions in Sao Paulo using BIRADS (R) criteria,' Sao Paulo Medical Journal, vol. 125, pp. 210-214, Jul 5 2007.
[28] C. Balleyguier, S. Ayadi, K. Van Nguyen, D. Vanel, C. Dromain, and R. Sigal, 'BIRADS (TM) classification in mammography,' European Journal of Radiology, vol. 61, pp. 192-194, Feb 2007.
[29] L. Levy, M. Suissa, J. F. Chiche, G. Ternan, and B. Martin, 'BIRADS ultrasonography,' European Journal of Radiology, vol. 61, pp. 202-211, Feb 2007.
[30] A. A. Tardivon, A. Athanasiou, F. Thibault, and C. El Khoury, 'Breast imaging and reporting data system (BIRADS): Magnetic resonance imaging,' European Journal of Radiology, vol. 61, pp. 212-215, Feb 2007.
[31] E. Wenkel, M. Heckmann, M. Heinrich, S. A. Schwab, M. Uder, R. Schulz-Wendtland, W. A. Bautz, and R. Janka, 'Automated breast ultrasound: Lesion detection and BI-RADS (TM) classification - a pilot study,' Rofo-Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren, vol. 180, pp. 804-808, Sep 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16151-
dc.description.abstract根據中華民國行政院國民健康局的統計報告,2008年女性乳癌為女性癌症發生率的首位,死亡率為第四位。且著名期刊“A Cancer Journal for Clinicians”內所載的 “Cancer statistics 2012”指出美國女性乳癌發生率為第一位,死亡率高居第二位。另有許多研究指出乳癌發生率和乳房密度有高度的正相關性,因此如何量化計算分析出乳房的密度資訊成為一門重要的研究方向。
當前乳房密度分析的影像來源常見的有,乳房X光攝影(mammography)、3-D核磁共振掃描(3-D MRI)、以及3-D全乳房自動超音波(3-D automatic whole breast ultrasound, ABUS)等,然而在乳房X光攝影方面,其影像為2-D的資訊,乳房中的腺體脂肪皆被投射在2-D平面上,並不能表示出乳房的立體模型,無法反映出真實的乳房密度,此外有曝露在放射線之下的風險。另外3-D MRI雖可清楚描繪出乳房的完整三維影像,並且反映出真實的乳房密度並且無放射線,但拍攝費用相當昂貴。而超音波影像無侵入性,也無放射線的特質,較被一般民眾接受。因此本篇研究乃使用3-D全乳房自動超音波影像來做乳房密度量化分析。
在3-D超音波影像中將乳房區域與非乳房區域完整分割需要複雜的運算,另外一方面,必須經由多次的3-D全乳房自動超音波影像掃描才足以涵蓋整個乳房的範圍,因此必須將各次掃描的結果組成完整乳房之後才供密度分析使用,但在組成的過程中會因為每次掃描時的擠壓以及掃描所造成的重複區域而使得組合後的影像與真實的乳房有所誤差,因此本篇論文所提出的方法不需要組合多次掃描的影像,而是只取各次掃描的部分區域影像來做密度分析這些區域分別為AP PASS 乳頭的六點鐘及十二點鐘方位的VOI以及LAT PASS乳頭側面方位的VOI,並分別將各區域的結果以及三個區域總和結果與核磁共振掃描影像以及取完整區域的乳房組織的3-D全乳房自動超音波影像所分析出來的密度作比較。
總計有67筆乳房影像分析資料,關於結果的比較我們使用的是相關係數以及線性迴歸分析。而比較的結果在與乳房X光攝影比較方面,三區域總合結果、12點鐘方位VOI、6點鐘方位VOI以及側邊方位的相關係數R2分別為0.630、0.574、0.584、0.611;與完整乳房的3-D超音波影像方面,三區域總合結果、12點鐘方位VOI、6點鐘方位VOI以及側邊方位的相關係數R2分別為0.963、0.925、0.882、0.919;與核磁共振影像方面,三區域總合結果、12點鐘方位VOI、6點鐘方位VOI以及側邊方位的相關係數R2分別為0.832、0.731、0.783、0.819。結果顯示即便在不同的影像來源能有高度相關性,也能有合理的結果作為診斷參考。
zh_TW
dc.description.abstractAccording to the Taiwan Cancer Registry (2006-2008) of Bureau of Health Promotion, Department of Health, R.O.C. (Taiwan), the first place of the ten leading cancers for females is breast cancer, and the death rates is at the fourth place. Likewise, in United States breast cancer is the most commonly diagnosed cancer for females and it is in the second position of the top ten deadliest cancers. Therefore, the research for quantization and analysis of breast density is more and more important.
In recent years, some studies have suggested that breast density is highly associative with the incidence rates of breast cancer. Mammography, magnetic resonance imaging (MRI), and ultrasound are commonly used for breast cancer examination. However, mammographic images are two-dimension (2-D), the volume is not represented truly and all tissues are overlapped. Consequently, the breast density may be overestimated. The automated breast ultrasound (ABUS) is developed as a screening tool and is used to support the diagnosis of mammography. Therefore, research of breast density analysis with ABUS becomes more and more popular. In ABUS, several passes were needed to scan the whole breast. The multi-pass images are manually merged as a whole breast image by using the nipple as the landmark to align the overlapped regions. However, the shape of the breast might be deformed due to the pressure during the scanning. That is, some regions may be overlapped or lost which cause the error of density estimation in the merged images. Besides, some shadows under the nipple and distortion near the boundary of images which may cause the failure of density estimation for ABUS.
In this study, only parts of the automated whole breast image were extracted for density analysis. Three volumes of interest (VOIs) were extracted from the 12, 6 o’clock, and lateral position of nipple. Finally, the fuzzy c-means classifier was applied to differentiate the fibroglandular and fat tissues for density estimation. The results were compared with the results of mammography, whole ABUS, and MRI. The linear regression coefficients between the three positions (12 o’clock VOI, 6 o’clock VOI, and lateral VOI) and mammography are 0.574, 0.584, 0.611 respectively. Averaging the three positions obtained the coefficient of 0.630 for the correlation with mammography. The linear regression coefficients between the three positions (12 o’clock VOI, 6 o’clock VOI, and lateral VOI) and ABUS are 0.925, 0.882, and 0.919, respectively. Averaging the three positions obtained the coefficient of 0.963 for the correlation with ABUS. The linear regression coefficients between the three positions (12 o’clock VOI, 6 o’clock VOI, and lateral VOI) and MRI are 0.731, 0.783, and 0.819, respectively. Averaging the three positions obtained the coefficient of 0.832 for the correlation with MRI
en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:02:59Z (GMT). No. of bitstreams: 1
ntu-101-R95922113-1.pdf: 2025694 bytes, checksum: 7c0c0448e47ea24d1813eca370963cbc (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsACKNOWLEDGEMENTS i
摘要 ii
ABSTRACT iv
TABLE OF CONTENT vii
LIST OF FIGURES viii
LIST OF TABLES xii
Chapter 1 Introduction 1
Chapter 2 Background 3
2.1 Materials 3
2.2 Fuzzy c-means algorithm 6
Chapter 3 The Proposed Density Analysis Method 8
3.1 Segmentation stage 9
3.2 First FCM pass 13
3.3 Second FCM pass 14
Chapter 4 Experimental Result 17
4.1 Density comparison between PVDA and whole ABUS 17
4.2 Density comparison between PVDA and MRI 23
4.3 Density comparison between PVDA and mammography 27
4.4 The density correlation for different BI-RADS categories 31
4.5 Discussion 35
Chapter 5 Conclusion and Future Work 38
References 39
dc.language.isoen
dc.title在乳房超音波影像之部分區域使用模糊分群法
分析乳房密度
zh_TW
dc.titleBreast density analysis with partial volume of whole breast ultrasound images using fuzzy c-meansen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張允中(Yeun-Chung Chang),黃俊升(Chiun-Sheng Huang)
dc.subject.keyword密度分析,乳房超音波,模糊分群,核磁共振造影,乳房X光攝影,zh_TW
dc.subject.keywordbreast density,fuzzy c-means,ABUS,MRI,mammography,en
dc.relation.page44
dc.rights.note未授權
dc.date.accepted2012-08-01
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
1.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved