Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16131
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭士康
dc.contributor.authorChuan-Yau Chanen
dc.contributor.author陳傳祐zh_TW
dc.date.accessioned2021-06-07T18:02:13Z-
dc.date.copyright2012-08-09
dc.date.issued2012
dc.date.submitted2012-08-03
dc.identifier.citation[1] T. Ahonen and K. Lemstr‥om. Identifying cover songs using normalized compression
distance. In Int.Workshop on Machine Learning and Music, MML (July 2008), 2008.
[2] T.E. Ahonen, K. Lemstr‥om, and S. Linkola. Compression-based similarity measures
in symbolic, polyphonic music. In Proc. ISMIR, volume 11, 2011.
[3] Teppo E. Ahonen. Combining chroma features for cover version identification. In
ISMIR, pages 165–170, 2010.
[4] T. Bertin-Mahieux and D.P.W. Ellis. Large-scale cover song recognition using
hashed chroma landmarks. In Applications of Signal Processing to Audio and Acoustics
(WASPAA), 2011 IEEE Workshop on, pages 117–120. IEEE, 2011.
[5] T. Bertin-Mahieux, D.P.W. Ellis, B. Whitman, and P. Lamere. The million song
dataset. In Proceedings of the 12th International Conference on Music Information
Retrieval (ISMIR 2011), 2011.
[6] J. Bonada. Automatic technique in frequency domain for near-lossless time-scale
modification of audio. In Proceedings of International Computer Music Conference,
pages 396–399. Citeseer, 2000.
[7] P. Cano, E. Batle, T. Kalker, and J. Haitsma. A review of algorithms for audio
fingerprinting. In Multimedia Signal Processing, 2002 IEEE Workshop on, pages
169–173. Ieee, 2002.
[8] M.A. Casey, C. Rhodes, and M. Slaney. Content-based music information retrieval:
Current directions and future challenges. Proceedings of the IEEE, 96(4), 2008.
[9] A. Egorov and G. Linetsky. Cover song identification with if-f0 pitch class profiles.
MIREX extended abstract, 2008.
[10] D.P.W. Ellis. Beat tracking by dynamic programming. Journal of New Music Research,
36(1):51–60, 2007.
[11] D.P.W. Ellis. The” covers80” cover song data set, 2007.
[12] D.P.W. Ellis and C. Cotton. The 2007 labrosa cover song detection system. MIREX
extended abstract, 2007.
[13] D.P.W. Ellis and G.E. Poliner. Identifyingcover songs’ with chroma features and
dynamic programming beat tracking. In Acoustics, Speech and Signal Processing,
2007. ICASSP 2007. IEEE International Conference on, volume 4, pages IV–1429.
IEEE, 2007.
[14] T. Fujishima. Realtime chord recognition of musical sound: a system using common
lisp music. In Proceedings of the International Computer Music Conference, pages
464–467, 1999.
[15] E.G. Guti′errez. Tonal description of music audio signals. PhD thesis, Universitat
Pompeu Fabra, 2006.
[16] C. Harte, M. Sandler, and M. Gasser. Detecting harmonic change in musical audio.
In Proceedings of the 1st ACM workshop on Audio and music computing multimedia,
pages 21–26. ACM, 2006.
[17] Perfecto Herrera. Automatic extraction of tonal metadata from polyphonic audio
recordings. In Audio Engineering Society Conference: 25th International Conference:
Metadata for Audio, 6 2004.
[18] J.H. Jensen, M.G. Christensen, D.P.W. Ellis, and S.H. Jensen. A tempo-insensitive
distance measure for cover song identification based on chroma features. In Acoustics,
Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference
on, pages 2209–2212. IEEE, 2008.
[19] J.H. Jensen, M.G. Christensen, and S.H. Jensen. A chroma-based tempo-insensitive
distance measure for cover song identification using the 2d autocorrelation. MIREX
extended abstract, 2008.
[20] H. Kantz, T. Schreiber, and R.S. Mackay. Nonlinear time series analysis, volume
2000. Cambridge university press Cambridge, 1997.
[21] S. Kim and S. Narayanan. Dynamic chroma feature vectors with applications to
cover song identification. In Multimedia Signal Processing, 2008 IEEE 10th Workshop
on, pages 984–987. Ieee, 2008.
[22] M. Lagrange and J. Serra. Unsupervised accuracy improvement for cover song detection
using spectral connectivity network. In Proc. of the Int. Soc. for Music Information
Retrieval Conf.(ISMIR), pages 595–600, 2010.
[23] C. Larkin et al. The encyclopedia of popular music. Macmillan, 1998.
[24] M. Marolt. A mid-level representation for melody-based retrieval in audio collections.
Multimedia, IEEE Transactions on, 10(8):1617–1625, 2008.
[25] K. Mosser. “cover songs”: Ambiguity, multivalence, polysemy. Popular Musicology
Online, 2, 2008.
[26] M. Muller and S. Ewert. Towards timbre-invariant audio features for harmony-based
music. Audio, Speech, and Language Processing, IEEE Transactions on, 18(3):649–
662, 2010.
[27] H. Nagano, K. Kashino, and H. Murase. Fast music retrieval using polyphonic
binary feature vectors. In Multimedia and Expo, 2002. ICME’02. Proceedings. 2002
IEEE International Conference on, volume 1, pages 101–104. IEEE, 2002.
[28] S. Ravuri and D.P.W. Ellis. Cover song detection: from high scores to general
classification. In Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE
International Conference on, pages 65–68. IEEE, 2010.
[29] A. Russ. Digital rights management overview. Security Essentials, 1, 2001.
[30] C. Sailer and K. Dressler. Finding cover songs by melodic similarity. MIREX extended
abstract, 2006.
[31] J. Serr`a. Identification of versions of the same musical composition by processing
audio descriptions. PhD thesis, PhD thesis, Universitat Pompeu Fabra, Barcelona,
2011.
[32] J. Serra, E. G′omez, and P. Herrera. Transposing chroma representations to a common
key. In IEEE CS Conference on The Use of Symbols to Represent Music and
Multimedia Objects, pages 45–48. Citeseer, 2008.
[33] J. Serra, E. G′omez, and P. Herrera. Audio cover song identification and similarity:
background, approaches, evaluation, and beyond. Advances in Music Information
Retrieval, pages 307–332, 2010.
[34] J. Serra, H. Kantz, X. Serra, and G. Andrzejak. Predictability of music descriptor
time series and its application to cover song detection. Audio, Speech, and Language
Processing, IEEE Transactions on, (99):1–1, 2010.
[35] J. Serr`a, X. Serra, and R.G. Andrzejak. Cross recurrence quantification for cover
song identification. New Journal of Physics, 11:093017, 2009.
[36] J. Serr`a, M. Zanin, and R.G. Andrzejak. Cover song retrieval by cross recurrence
quantification and unsupervised set detection. 2009.
[37] J. Serra, M. Zanin, C. Laurier, and M. Sordo. Unsupervised detection of cover song
sets: Accuracy improvement and original identification. In International Society for
Music Information Retrieval Conference. Citeseer, 2009.
[38] X. Serra. Musical sound modeling with sinusoids plus noise. Musical signal processing,
pages 91–122, 1997.
[39] W.H. Tsai, H.M. Yu, and H.M. Wang. A query-by-example technique for retrieving
cover versions of popular songs with similar melodies. In Int. Symp. on Music
Information Retrieval (ISMIR), pages 183–190. Citeseer, 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16131-
dc.description.abstract辨認翻唱歌曲對人類來說是一件輕而易舉的事情。然而對電腦來說,有效率又準確的辨認翻唱歌曲並不是一件簡單的事情。一首歌曲可以用各種不同的方式來翻唱,例如:重新混音編曲,現場演奏,或是純樂器演奏版本等等,而這些版本和原唱版本之間又有各種不同的聲音特性的差異。本論文中討論了各種不同的Chromagram在翻唱歌曲辨識系統中的效能,並提出了一個基於節拍同步和音色不變量之音色頻譜和交叉遞回圖分析的翻唱歌曲辨識系統。這個系統在covers80 資料集的八十首歌中成功的辨識出六十二首歌。zh_TW
dc.description.abstractIdentifying cover version of a song is easy and straightforward for human.
However, it still can not perform accurately by a computer. Every music
recording can be covered in various ways, such as live performance, rearrangement,
and instrumental...etc. Consequently, there are various musical
variations between different cover versions and original version. According
to the second hand song website, ”Yesterday” performed by ”The Beatles”
has 233 covered versions. In this thesis, I attempt to explore the effectiveness
of various chroma feature for cover song identification, and propose a modelfree
system based on beat-synchronous time-invariant chromagram and cross
recurrence plot analysis. Using the online available covers80 dataset, the
numbers of correctly identification covers is 62 over 80 songs. The evaluation
result also reveals that the enhancement of chroma feature will lead to
dramatic performance gains.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:02:13Z (GMT). No. of bitstreams: 1
ntu-101-R99942099-1.pdf: 2531147 bytes, checksum: 81603b1900fff4482e152d0b82080a69 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsContents
致謝i
中文摘要ii
Abstract iii
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Cover Songs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 MIREX 2011: Audio Cover Song Identification . . . . . . . . . . . . . . . 2
1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Scientific Background 4
2.1 Musical Variations Between Cover Versions . . . . . . . . . . . . . . . . . 4
2.2 Survey of Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Melody-based Methods . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Harmonic-based Methods . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Feature Extraction 8
3.1 Chromagram Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.1 Pitch Class Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Harmonic Pitch Class Profile . . . . . . . . . . . . . . . . . . . . . 9
3.1.3 Chroma DCT-Reduced log Pitch (CRP) . . . . . . . . . . . . . . . 12
3.1.4 Tuning: Reference Frequency Determination . . . . . . . . . . . . 13
3.2 Tonal Centroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Beat Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 Audio Cover Song Identification System 19
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.1 Descriptor extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 Transposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.3 Beat Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.4 Delay Coordinates Embedding . . . . . . . . . . . . . . . . . . . . 22
4.3 Cross Recurrence Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Recurrence Plot Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5 Score Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5 Evaluation 28
5.1 Music Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Evaluation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3.1 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3.2 Effectiveness of GTM . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.3 Effectiveness of score normalization . . . . . . . . . . . . . . . . . 31
5.3.4 Comparison with existing systems . . . . . . . . . . . . . . . . . . 31
6 Conclusions and future works 32
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Bibliography 34
Appendix A: CYC399 38
dc.language.isoen
dc.subject動態時間校正zh_TW
dc.subject時頻分析zh_TW
dc.subject音樂資訊檢索zh_TW
dc.subject翻唱歌曲辨識zh_TW
dc.subject音色頻譜zh_TW
dc.subjectMusic Information Retrievalen
dc.subjectChromagram.en
dc.subjectTime frequency analysisen
dc.subjectDynamic Time Warpingen
dc.subjectCover song identificationen
dc.title基於節拍同步和音色不變量之音色頻譜和交叉遞回圖分析之翻唱歌曲辨識系統zh_TW
dc.titleAudio Cover Song Identification Based On Beat-Synchronous Timbre-Invariant Chromagram and Cross Recurrence Plot Analysisen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.coadvisor王新民
dc.contributor.oralexamcommittee蔡偉和
dc.subject.keyword音樂資訊檢索,翻唱歌曲辨識,時頻分析,動態時間校正,音色頻譜,zh_TW
dc.subject.keywordMusic Information Retrieval,Cover song identification,Dynamic Time Warping,Time frequency analysis,Chromagram.,en
dc.relation.page46
dc.rights.note未授權
dc.date.accepted2012-08-03
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved