請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16131完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭士康 | |
| dc.contributor.author | Chuan-Yau Chan | en |
| dc.contributor.author | 陳傳祐 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:02:13Z | - |
| dc.date.copyright | 2012-08-09 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-03 | |
| dc.identifier.citation | [1] T. Ahonen and K. Lemstr‥om. Identifying cover songs using normalized compression
distance. In Int.Workshop on Machine Learning and Music, MML (July 2008), 2008. [2] T.E. Ahonen, K. Lemstr‥om, and S. Linkola. Compression-based similarity measures in symbolic, polyphonic music. In Proc. ISMIR, volume 11, 2011. [3] Teppo E. Ahonen. Combining chroma features for cover version identification. In ISMIR, pages 165–170, 2010. [4] T. Bertin-Mahieux and D.P.W. Ellis. Large-scale cover song recognition using hashed chroma landmarks. In Applications of Signal Processing to Audio and Acoustics (WASPAA), 2011 IEEE Workshop on, pages 117–120. IEEE, 2011. [5] T. Bertin-Mahieux, D.P.W. Ellis, B. Whitman, and P. Lamere. The million song dataset. In Proceedings of the 12th International Conference on Music Information Retrieval (ISMIR 2011), 2011. [6] J. Bonada. Automatic technique in frequency domain for near-lossless time-scale modification of audio. In Proceedings of International Computer Music Conference, pages 396–399. Citeseer, 2000. [7] P. Cano, E. Batle, T. Kalker, and J. Haitsma. A review of algorithms for audio fingerprinting. In Multimedia Signal Processing, 2002 IEEE Workshop on, pages 169–173. Ieee, 2002. [8] M.A. Casey, C. Rhodes, and M. Slaney. Content-based music information retrieval: Current directions and future challenges. Proceedings of the IEEE, 96(4), 2008. [9] A. Egorov and G. Linetsky. Cover song identification with if-f0 pitch class profiles. MIREX extended abstract, 2008. [10] D.P.W. Ellis. Beat tracking by dynamic programming. Journal of New Music Research, 36(1):51–60, 2007. [11] D.P.W. Ellis. The” covers80” cover song data set, 2007. [12] D.P.W. Ellis and C. Cotton. The 2007 labrosa cover song detection system. MIREX extended abstract, 2007. [13] D.P.W. Ellis and G.E. Poliner. Identifyingcover songs’ with chroma features and dynamic programming beat tracking. In Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on, volume 4, pages IV–1429. IEEE, 2007. [14] T. Fujishima. Realtime chord recognition of musical sound: a system using common lisp music. In Proceedings of the International Computer Music Conference, pages 464–467, 1999. [15] E.G. Guti′errez. Tonal description of music audio signals. PhD thesis, Universitat Pompeu Fabra, 2006. [16] C. Harte, M. Sandler, and M. Gasser. Detecting harmonic change in musical audio. In Proceedings of the 1st ACM workshop on Audio and music computing multimedia, pages 21–26. ACM, 2006. [17] Perfecto Herrera. Automatic extraction of tonal metadata from polyphonic audio recordings. In Audio Engineering Society Conference: 25th International Conference: Metadata for Audio, 6 2004. [18] J.H. Jensen, M.G. Christensen, D.P.W. Ellis, and S.H. Jensen. A tempo-insensitive distance measure for cover song identification based on chroma features. In Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, pages 2209–2212. IEEE, 2008. [19] J.H. Jensen, M.G. Christensen, and S.H. Jensen. A chroma-based tempo-insensitive distance measure for cover song identification using the 2d autocorrelation. MIREX extended abstract, 2008. [20] H. Kantz, T. Schreiber, and R.S. Mackay. Nonlinear time series analysis, volume 2000. Cambridge university press Cambridge, 1997. [21] S. Kim and S. Narayanan. Dynamic chroma feature vectors with applications to cover song identification. In Multimedia Signal Processing, 2008 IEEE 10th Workshop on, pages 984–987. Ieee, 2008. [22] M. Lagrange and J. Serra. Unsupervised accuracy improvement for cover song detection using spectral connectivity network. In Proc. of the Int. Soc. for Music Information Retrieval Conf.(ISMIR), pages 595–600, 2010. [23] C. Larkin et al. The encyclopedia of popular music. Macmillan, 1998. [24] M. Marolt. A mid-level representation for melody-based retrieval in audio collections. Multimedia, IEEE Transactions on, 10(8):1617–1625, 2008. [25] K. Mosser. “cover songs”: Ambiguity, multivalence, polysemy. Popular Musicology Online, 2, 2008. [26] M. Muller and S. Ewert. Towards timbre-invariant audio features for harmony-based music. Audio, Speech, and Language Processing, IEEE Transactions on, 18(3):649– 662, 2010. [27] H. Nagano, K. Kashino, and H. Murase. Fast music retrieval using polyphonic binary feature vectors. In Multimedia and Expo, 2002. ICME’02. Proceedings. 2002 IEEE International Conference on, volume 1, pages 101–104. IEEE, 2002. [28] S. Ravuri and D.P.W. Ellis. Cover song detection: from high scores to general classification. In Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on, pages 65–68. IEEE, 2010. [29] A. Russ. Digital rights management overview. Security Essentials, 1, 2001. [30] C. Sailer and K. Dressler. Finding cover songs by melodic similarity. MIREX extended abstract, 2006. [31] J. Serr`a. Identification of versions of the same musical composition by processing audio descriptions. PhD thesis, PhD thesis, Universitat Pompeu Fabra, Barcelona, 2011. [32] J. Serra, E. G′omez, and P. Herrera. Transposing chroma representations to a common key. In IEEE CS Conference on The Use of Symbols to Represent Music and Multimedia Objects, pages 45–48. Citeseer, 2008. [33] J. Serra, E. G′omez, and P. Herrera. Audio cover song identification and similarity: background, approaches, evaluation, and beyond. Advances in Music Information Retrieval, pages 307–332, 2010. [34] J. Serra, H. Kantz, X. Serra, and G. Andrzejak. Predictability of music descriptor time series and its application to cover song detection. Audio, Speech, and Language Processing, IEEE Transactions on, (99):1–1, 2010. [35] J. Serr`a, X. Serra, and R.G. Andrzejak. Cross recurrence quantification for cover song identification. New Journal of Physics, 11:093017, 2009. [36] J. Serr`a, M. Zanin, and R.G. Andrzejak. Cover song retrieval by cross recurrence quantification and unsupervised set detection. 2009. [37] J. Serra, M. Zanin, C. Laurier, and M. Sordo. Unsupervised detection of cover song sets: Accuracy improvement and original identification. In International Society for Music Information Retrieval Conference. Citeseer, 2009. [38] X. Serra. Musical sound modeling with sinusoids plus noise. Musical signal processing, pages 91–122, 1997. [39] W.H. Tsai, H.M. Yu, and H.M. Wang. A query-by-example technique for retrieving cover versions of popular songs with similar melodies. In Int. Symp. on Music Information Retrieval (ISMIR), pages 183–190. Citeseer, 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16131 | - |
| dc.description.abstract | 辨認翻唱歌曲對人類來說是一件輕而易舉的事情。然而對電腦來說,有效率又準確的辨認翻唱歌曲並不是一件簡單的事情。一首歌曲可以用各種不同的方式來翻唱,例如:重新混音編曲,現場演奏,或是純樂器演奏版本等等,而這些版本和原唱版本之間又有各種不同的聲音特性的差異。本論文中討論了各種不同的Chromagram在翻唱歌曲辨識系統中的效能,並提出了一個基於節拍同步和音色不變量之音色頻譜和交叉遞回圖分析的翻唱歌曲辨識系統。這個系統在covers80 資料集的八十首歌中成功的辨識出六十二首歌。 | zh_TW |
| dc.description.abstract | Identifying cover version of a song is easy and straightforward for human.
However, it still can not perform accurately by a computer. Every music recording can be covered in various ways, such as live performance, rearrangement, and instrumental...etc. Consequently, there are various musical variations between different cover versions and original version. According to the second hand song website, ”Yesterday” performed by ”The Beatles” has 233 covered versions. In this thesis, I attempt to explore the effectiveness of various chroma feature for cover song identification, and propose a modelfree system based on beat-synchronous time-invariant chromagram and cross recurrence plot analysis. Using the online available covers80 dataset, the numbers of correctly identification covers is 62 over 80 songs. The evaluation result also reveals that the enhancement of chroma feature will lead to dramatic performance gains. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:02:13Z (GMT). No. of bitstreams: 1 ntu-101-R99942099-1.pdf: 2531147 bytes, checksum: 81603b1900fff4482e152d0b82080a69 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Contents
致謝i 中文摘要ii Abstract iii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Cover Songs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 MIREX 2011: Audio Cover Song Identification . . . . . . . . . . . . . . . 2 1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Scientific Background 4 2.1 Musical Variations Between Cover Versions . . . . . . . . . . . . . . . . . 4 2.2 Survey of Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 Melody-based Methods . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 Harmonic-based Methods . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Feature Extraction 8 3.1 Chromagram Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1.1 Pitch Class Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.2 Harmonic Pitch Class Profile . . . . . . . . . . . . . . . . . . . . . 9 3.1.3 Chroma DCT-Reduced log Pitch (CRP) . . . . . . . . . . . . . . . 12 3.1.4 Tuning: Reference Frequency Determination . . . . . . . . . . . . 13 3.2 Tonal Centroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Beat Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4 Audio Cover Song Identification System 19 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2.1 Descriptor extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2.2 Transposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.3 Beat Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2.4 Delay Coordinates Embedding . . . . . . . . . . . . . . . . . . . . 22 4.3 Cross Recurrence Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.4 Recurrence Plot Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.5 Score Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5 Evaluation 28 5.1 Music Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.2 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.3 Evaluation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.3.1 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.3.2 Effectiveness of GTM . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.3.3 Effectiveness of score normalization . . . . . . . . . . . . . . . . . 31 5.3.4 Comparison with existing systems . . . . . . . . . . . . . . . . . . 31 6 Conclusions and future works 32 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Bibliography 34 Appendix A: CYC399 38 | |
| dc.language.iso | en | |
| dc.subject | 動態時間校正 | zh_TW |
| dc.subject | 時頻分析 | zh_TW |
| dc.subject | 音樂資訊檢索 | zh_TW |
| dc.subject | 翻唱歌曲辨識 | zh_TW |
| dc.subject | 音色頻譜 | zh_TW |
| dc.subject | Music Information Retrieval | en |
| dc.subject | Chromagram. | en |
| dc.subject | Time frequency analysis | en |
| dc.subject | Dynamic Time Warping | en |
| dc.subject | Cover song identification | en |
| dc.title | 基於節拍同步和音色不變量之音色頻譜和交叉遞回圖分析之翻唱歌曲辨識系統 | zh_TW |
| dc.title | Audio Cover Song Identification Based On Beat-Synchronous Timbre-Invariant Chromagram and Cross Recurrence Plot Analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 王新民 | |
| dc.contributor.oralexamcommittee | 蔡偉和 | |
| dc.subject.keyword | 音樂資訊檢索,翻唱歌曲辨識,時頻分析,動態時間校正,音色頻譜, | zh_TW |
| dc.subject.keyword | Music Information Retrieval,Cover song identification,Dynamic Time Warping,Time frequency analysis,Chromagram., | en |
| dc.relation.page | 46 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-08-03 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
