Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16120
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳益群
dc.contributor.authorWei-Chin Tsengen
dc.contributor.author曾薇芹zh_TW
dc.date.accessioned2021-06-07T18:01:45Z-
dc.date.copyright2012-08-28
dc.date.issued2012
dc.date.submitted2012-08-03
dc.identifier.citation1. Ambros, V., Horvitz, H.R., 1984. Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226, 409-416.
2. Antebi, A., Yeh, W.H., Tait, D., Hedgecock, E.M., Riddle, D.L., 2000. daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes & development 14, 1512-1527.
3. Cho, C.-Y., 2009. Functional study of dpy-24 and its heterochronic regulation in distal tip cell migration in Caenorhabditis elegans, Master Dissertation, Institute of Molecular and Cellular Biology. National Taiwan University.
4. Edgar, L.G., Carr, S., Wang, H., Wood, W.B., 2001. Zygotic expression of the caudal homolog pal-1 is required for posterior patterning in Caenorhabditis elegans embryogenesis. Dev Biol 229, 71-88.
5. Fielenbach, N., Guardavaccaro, D., Neubert, K., Chan, T., Li, D., Feng, Q., Hutter, H., Pagano, M., Antebi, A., 2007. DRE-1: an evolutionarily conserved F box protein that regulates C. elegans developmental age. Developmental cell 12, 443-455.
6. Fuchs, Y., Steller, H., 2011. Programmed Cell Death in Animal Development and Disease. Cell 147, 742-758.
7. Gumienny, T.L., Lambie, E., Hartwieg, E., Horvitz, H.R., Hengartner, M.O., 1999. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126, 1011-1022.
8. Herman, M.A., Vassilieva, L.L., Horvitz, H.R., Shaw, J.E., Herman, R.K., 1995. The C. elegans gene lin-44, which controls the polarity of certain asymmetric cell divisions, encodes a Wnt protein and acts cell nonautonomously. Cell 83, 101-110.
9. Huang, T.-F., 2009. Caenorhabditis elegans dpy-24 integrates the temporal and spatial signals to control DTC migration, PhD Dissertation, Institute of Molecular and Cellular Biology. National Taiwan University.
10. Killian, D.J., Hubbard, E.J., 2004. C. elegans pro-1 activity is required for soma/germline interactions that influence proliferation and differentiation in the germ line. Development 131, 1267-1278.
11. Landmann, F., Quintin, S., Labouesse, M., 2004. Multiple regulatory elements with spatially and temporally distinct activities control the expression of the epithelial differentiation gene lin-26 in C. elegans. Developmental biology 265, 478-490.
12. Maurer, C.W., Chiorazzi, M., Shaham, S., 2007. Timing of the onset of a developmental cell death is controlled by transcriptional induction of the C. elegans ced-3 caspase-encoding gene. Development 134, 1357-1368.
13. Miller, D.M., Shakes, D.C., 1995. Immunofluorescence microscopy. Methods Cell Biol 48, 365-394.
14. Nehme, R., Conradt, B., 2008. egl-1: a key activator of apoptotic cell death in C. elegans. Oncogene 27 Suppl 1, S30-40.
15. Potts, M.B., Cameron, S., 2011. Cell lineage and cell death: Caenorhabditis elegans and cancer research. Nature reviews. Cancer 11, 50-58.
16. Rougvie, A.E., 2005. Intrinsic and extrinsic regulators of developmental timing: from miRNAs to nutritional cues. Development 132, 3787-3798.
17. Rougvie, A.E., Ambros, V., 1995. The heterochronic gene lin-29 encodes a zinc finger protein that controls a terminal differentiation event in Caenorhabditis elegans. Development 121, 2491-2500.
18. Sulston, J.E., Horvitz, H.R., 1977. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56, 110-156.
19. Sulston, J.E., Schierenberg, E., White, J.G., Thomson, J.N., 1983. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100, 64-119.
20. Tan, C.-H., 2010. An enhancer screen for new genes in th apoptosis pathway, Master Dissertation, Institute of Molecular and Cellular Biology. National Taiwan University.
21. Yeh, C.H., Yang, H.J., Lee, I.J., Wu, Y.C., 2010. Caenorhabditis elegans TLK-1 controls cytokinesis by localizing AIR-2/Aurora B to midzone microtubules. Biochemical and biophysical research communications 400, 187-193.
22. Yu, C.-Y., 2009. Genetic analysis of the role of C. elegans C01F4.2/Arhgap6 in engulfment process, Master Dissertation, Institute of Molecular and Cellular Biology. National Taiwan University.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16120-
dc.description.abstract計劃性細胞凋亡在生物發育及維持生理恆定上是不可或缺的機制。在線蟲中,egl-1/BH3-only gene的轉錄作用對於開啟演化中高度保留的細胞凋亡訊息傳遞鏈是相當重要的。儘管如此,特定的細胞仍會透過不同機制來活化細胞凋亡的核心路徑。在線蟲當中,尾突細胞對於它的尾部發育來說是重要的。一對尾突細胞在胚胎發育早期出生,接著經歷融合、分化出以利尾部延伸的支架結構,並且在胚胎晚期尾巴發育完成後進行細胞凋亡。然而,尾突細胞凋亡究竟是如何被調控到現在了解的仍然不多。有趣的是,有報導指出egl-1對於尾突細胞的死亡只有些許而非最主要的影響。在此我們發現,blmp-1以及dre-1這兩個對於生殖腺發育時間調控相當重要的基因也會參與尾突細胞凋亡的時間調控。blmp-1是一個zinc finger transcription factor;dre-1則是SCF E3 ubiquitin ligase複合體中的F-box protein,它的功能主要是協助辨識受質以利蛋白質降解的進行。在blmp-1以及dre-1突變株中,我們發現尾突細胞會不正常存活,這意謂著blmp-1和dre-1的功能在於促進尾突細胞凋亡,而過量表現blmp-1也會造成不正常的尾突細胞存活。從這些結果我們知道,在尾突細胞凋亡的過程中,BLMP-1蛋白的表現需要被嚴密地調控。除此之外,從免疫螢光染色的分析中,我們觀察到BLMP-1表現在胚胎晚期的尾突細胞內,但其表現僅在一小段時間區間裡,這暗示BLMP-1對於尾突細胞凋亡的時間調控相當重要。此外,透過基因轉殖的實驗方法,我們觀察到dre-1會表現在尾突細胞,但不會表現在鄰近細胞裡。這樣的結果告訴我們,dre-1在尾突細胞凋亡上的作用可能是具有細胞自主性的。而在blmp-1和dre-1突變株中,我們觀察到顯著下降的細胞屍體數目,這暗指blmp-1和dre-1對於細胞凋亡的影響可能不只侷限在尾突細胞,或許還有少數特定細胞的凋亡受到它們的調控。綜合以上所述,blmp-1和dre-1除了參與生殖腺發育的調控之外,還具備調控計劃性細胞凋亡的新功能。zh_TW
dc.description.abstractProgrammed cell death (PCD) is an essential process in animal development. In C. elegans, transcriptional up-regulation of egl-1/BH3-only gene is critical for activating an evolutionarily conserved signaling pathway that leads to cell death. Nonetheless, specific types of cells utilize different mechanisms to activate this core PCD pathway. In C. elegans, a pair of tail-spike cells is essential for tail development. Tail-spike cells are born during early embryogenesis, afterwards, they fuse and differentiate a long microtubule-based spike to serve as a scaffolding for tail elongation. In late embryogenesis, tail-spike cells undergo PCD after tail morphogenesis complete. The mechanism by which tail-spike cell death is regulated remains poorly understood. Interestingly, it has been reported that egl-1 plays a minor role in the death of tail-spike cell. Here, we found that blmp-1 and dre-1, which are important for temporal control of gonad development, regulate this cell death. blmp-1 encodes a zinc finger transcription factor. dre-1 encodes an F-box protein, a subunit of SCF (Skp1-Cullin-F-box protein) E3 ubiquitin ligase mediating protein degradation. We observed inappropriate tail-spike survival in blmp-1 and dre-1 mutants, indicating that blmp-1 and dre-1 function in promoting tail-spike cell death. Surprisingly, over-expression of BLMP-1 also results in abnormal tail-spike survival. These results suggest that the BLMP-1 level needs to be tightly controlled for tail-spike cell death. Additionally, BLMP-1 was detected in tail-spike cell in a narrow time window during late embryogenesis by immunofluorescence analyses, suggesting that BLMP-1 is critical for timely tail-spike cell death. Also, using transgenic approaches, we observed that dre-1 was expressed in tail-spike cell but not its neighboring cells, suggesting that dre-1 acts cell-autonomously in tail-spike cell death. Furthermore, reduced cell corpses were observed in strong loss-of-function blmp-1 and dre-1 mutants, indicating that these two genes also function in promoting cell deaths other than tail-spike cell. In summary, blmp-1 and dre-1 are the novel regulators in programmed cell death.en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:01:45Z (GMT). No. of bitstreams: 1
ntu-101-R99b43011-1.pdf: 4573040 bytes, checksum: e05609d9fecf70b4f06390e6a401571e (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員審定書 II
致謝 III
中文摘要 IV
Abstract V
Tables of content 1
Introduction 4
Materials and Methods 7
Nematode strains 7
Constructs 7
Transgenic worms 9
RNA interference (RNAi) 9
Immunofluorescence staining 10
Acetone powder production 11
Antibody pre-absorption 11
Results 12
Establishment of the reporter system that can label tail-spike cell 12
blmp-1 and dre-1 participate in programmed cell death 13
BLMP-1 overexpression results in abnormal tail-spike survival 15
dre-1 is expressed in tail-spike cell but not neighboring cells during development 16
BLMP-1 was detected in a narrow time window in tail-spike cell during late embryogenesis 16
blmp-1 and dre-1 strong loss-of-function mutants have reduced embryonic cell corpses 17
Discussion 18
GFP reporter driven by C. briggsae ced-3 promoter can label tail-spike cell in C. elegans 18
ced-3 expression was detected during early embryogenesis 19
BLMP-1 overexpression results in abnormal tail-spike survival 20
Model for dre-1 and blmp-1-mediated tail-spike cell death 20
The difference between dre-1 and blmp-1 in gonad development and tail-spike cell death 22
References 23
Figures 26
Fig 1. The programmed cell death pathway of C. elegans is evolutionarily conserved. 26
Fig 2. Development of tail-spike cell at different stages. 27
Fig 3. Diagrams of gonad development and the genetic network in regulating gonad development. 28
Fig 4. Expression of Pcbr-ced-3::gfp in tail-spike cell. 29
Fig 5. The Pcbr-ced-3::gfp expression pattern in ced-5(n1812) mutants. 30
Fig 6. BLMP-1 overexpression results in abnormal tail-spike survival. 31
Fig 7. dre-1 expression in tail-spike cell during development. 32
Fig 8. BLMP-1 expressed in a narrow time window in tail-spike cell during embryogenesis. 33
Fig 9. Model for dre-1 and blmp-1-mediated tail-spike cell death. 34
Tables 36
Table 1. Percentage of worms with inappropriate tail-spike cell survival. 36
Table2 . Effects of BLMP-1 overexpression in tail-spike cell survival and body length. 37
Table 3. Reduced cell corpses in blmp-1 and dre-1 mutants. 38
Supplementary data 39
Fig S1. dre-1 expression was detected in tail-spike cell, pharynx, neurons, and body wall muscles. 39
Fig S2. The nuclei arrangement in C. elegans tail region. 40
dc.language.isozh-TW
dc.subjectdre-1zh_TW
dc.subject細胞凋亡zh_TW
dc.subject尾突細胞zh_TW
dc.subjectblmp-1zh_TW
dc.subjectblmp-1en
dc.subjectdre-1en
dc.subjectprogrammed cell deathen
dc.subjecttail-spike cellen
dc.title異時調控基因blmp-1和dre-1參與線蟲尾突細胞凋亡的調控zh_TW
dc.titleHeterochronic genes, blmp-1 and dre-1, regulate tail-spike cell death in C. elegansen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee潘俊良,汪宏達,廖秀娟
dc.subject.keyword細胞凋亡,尾突細胞,blmp-1,dre-1,zh_TW
dc.subject.keywordprogrammed cell death,tail-spike cell,blmp-1,dre-1,en
dc.relation.page40
dc.rights.note未授權
dc.date.accepted2012-08-03
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
4.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved