請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16108完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 宋麗英(Li-Ying Sung) | |
| dc.contributor.author | Chien-Hong Chen | en |
| dc.contributor.author | 陳建宏 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:01:19Z | - |
| dc.date.copyright | 2012-08-10 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-05 | |
| dc.identifier.citation | CHAPTER ONE
Abdalla, H., Y. Yoshizawa and S. Hochi. 2009. Active demethylation of paternal genome in mammalian zygotes. The Journal of Reproduction and Development 55, 356-360. Adams, C. E. 1958. Egg development in the rabbit: the influence of post-coital ligation of the uterine tube and of ovariectomy. The Journal of Endocrinology 16, 283-293. Adenot, P. G., Y. Mercier, J. P. Renard and E. M. Thompson. 1997. Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 124, 4615-4625. Agius, F., A. Kapoor and J. K. Zhu. 2006. Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proceedings of the National Academy of Sciences of the United States of America 103, 11796-11801. Ahmad, K. and S. Henikoff. 2002. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Molecular Cell 9, 1191-1200. Akiyama, T., O. Suzuki, J. Matsuda and F. Aoki. 2011. Dynamic replacement of histone H3 variants reprograms epigenetic marks in early mouse embryos. PLoS Genetics 7, e1002279. Allfrey, V. G., R. Faulkner and A. E. Mirsky. 1964. Acetylation and Methylation of Histones and Their Possible Role in the Regulation of Rna Synthesis. Proceedings of the National Academy of Sciences of the United States of America 51, 786-794. Ausio, J. 2006. Histone variants--the structure behind the function. Briefings in Functional Genomics and Proteomics 5, 228-243. Avilion, A. A., S. K. Nicolis, L. H. Pevny, L. Perez, N. Vivian and R. Lovell-Badge. 2003. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes and Development 17, 126-140. Baguisi, A., E. Behboodi, D. T. Melican, J. S. Pollock, M. M. Destrempes, C. Cammuso, J. L.Williams, S. D. Nims, C. A. Porter, P. Midura, M. J. Palacios, S. L. Ayres, R. S. Denniston, M. L. Hayes, C. A. Ziomek, H. M. Meade, R. A. Godke, W. G. Gavin, E. W. Overstrom and Y. Echelard. 1999. Production of goats by somatic cell nuclear transfer. Nature Biotechnology 17, 456-461. Beaujean, N., G. Hartshorne, J. Cavilla, J. Taylor, J. Gardner, I. Wilmut, R. Meehan and L. Young. 2004. Non-conservation of mammalian preimplantation methylation dynamics. Current Biology 14, R266-267. Beebe, L. F., S. J. McIlfatrick and M. B. Nottle. 2009. Cytochalasin B and trichostatin a treatment postactivation improves in vitro development of porcine somatic cell nuclear transfer embryos. Cloning and Stem Cells 11, 477-482. Berger, S. L. 2002. Histone modifications in transcriptional regulation. Current Opinion in Genetics and Development 12, 142-148. Berger, S. L., T. Kouzarides, R. Shiekhattar and A. Shilatifard. 2009. An operational definition of epigenetics. Genes and Development 23, 781-783. Bernstein, E. and C. D. Allis. 2005. RNA meets chromatin. Genes and Development 19, 1635-1655. Betts, D. H., L. C. Barcroft and A. J. Watson. 1998. Na/K-ATPase-mediated 86Rb+ uptake and asymmetrical trophectoderm localization of alpha1 and alpha3 Na/K-ATPase isoforms during bovine preattachment development. Developmental Biology 197, 77-92. Betts, D. H., D. J. MacPhee, G. M. Kidder and A. J. Watson. 1997. Ouabain sensitivity and expression of Na/K-ATPase alpha- and beta-subunit isoform genes during bovine early development. Molecular Reproduction and Development 46, 114-126. Boiani, M., S. Eckardt, H. R. Scholer and K. J. McLaughlin. 2002. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes and Development 16, 1209-1219. Bourc'his, D., D. Le Bourhis, D. Patin, A. Niveleau, P. Comizzoli, J. P. Renard and E. Viegas-Pequignot. 2001. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Current Biology 11, 1542-1546. Boyer, L. A., K. Plath, J. Zeitlinger, T. Brambrink, L. A. Medeiros, T. I. Lee, S. S. Levine, M. Wernig, A. Tajonar, M. K. Ray, G. W. Bell, A. P. Otte, M. Vidal, D. K. Gifford, R. A. Young and R. Jaenisch. 2006. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349-353. Briggs, R. and T. J. King. 1952. Transplantation of Living Nuclei From Blastula Cells into Enucleated Frogs' Eggs. Proceedings of the National Academy of Sciences of the United States of America 38, 455-463. Bui, H. T., S. Wakayama, S. Kishigami, K. K. Park, J. H. Kim, N. V. Thuan and T. Wakayama. 2010. Effect of trichostatin A on chromatin remodelling, histone modifications, DNA replication, and transcriptional activity in cloned mouse embryos. Biology of Reproduction 83, 454-463. Cairns, B. R. 2005. Chromatin remodelling complexes: strength in diversity, precision through specialization. Current Opinion in Genetics and Development 15, 185-190. Campbell, K. H., J. McWhir, W. A. Ritchie and I. Wilmut. 1996. Sheep cloned by nuclear transfer from a cultured cell line. Nature 380, 64-66. Carlson, L. L., A. W. Page and T. H. Bestor. 1992. Properties and localization of DNA methyltransferase in preimplantation mouse embryos: implications for genomic imprinting. Genes and Development 6, 2536-2541. Cervera, R. P., N. Marti-Gutierrez, E. Escorihuela, R. Moreno and M. Stojkovic. 2009. Trichostatin A affects histone acetylation and gene expression in porcine somatic cell nucleus transfer embryos. Theriogenology 72, 1097-1110. Chambers, I., D. Colby, M. Robertson, J. Nichols, S. Lee, S. Tweedie and A. Smith. 2003. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643-655. Chang, C. C., Y. Ma, S. Jacobs, X. C. Tian, X. Yang and T. P. Rasmussen. 2005. A maternal store of macroH2A is removed from pronuclei prior to onset of somatic macroH2A expression in preimplantation embryos. Developmental Biology 278, 367-380. Chang, M. C. 1951. Fertility and sterility as revealed in the study of fertilization and development of rabbit eggs. Fertility and Sterility 2, 205-222. Chawengsaksophak, K., W. de Graaff, J. Rossant, J. Deschamps and F. Beck. 2004. Cdx2 is essential for axial elongation in mouse development. Proceedings of the National Academy of Sciences of the United States of America 101, 7641-7645. Chawengsaksophak, K., R. James, V. E. Hammond, F. Kontgen and F. Beck. 1997. Homeosis and intestinal tumours in Cdx2 mutant mice. Nature 386, 84-87. Chazaud, C., Y. Yamanaka, T. Pawson and J. Rossant. 2006. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Developmental Cell 10, 615-624. Chesne, P., P. G. Adenot, C. Viglietta, M. Baratte, L. Boulanger and J. P. Renard. 2002. Cloned rabbits produced by nuclear transfer from adult somatic cells. Nature Biotechnology 20, 366-369. Chow, C. M., A. Georgiou, H. Szutorisz, A. Maia e Silva, A. Pombo, I. Barahona, E. Dargelos, C. Canzonetta and N. Dillon. 2005. Variant histone H3.3 marks promoters of transcriptionally active genes during mammalian cell division. EMBO Reports 6, 354-360. Chung, Y. G., S. Ratnam, J. R. Chaillet and K. E. Latham. 2003. Abnormal regulation of DNA methyltransferase expression in cloned mouse embryos. Biology of Reproduction 69, 146-153. Cibelli, J. B., S. L. Stice, P. J. Golueke, J. J. Kane, J. Jerry, C. Blackwell, F. A. Ponce de Leon and J. M. Robl. 1998. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280, 1256-1258. Cirio, M. C., S. Ratnam, F. Ding, B. Reinhart, C. Navara and J. R. Chaillet. 2008. Preimplantation expression of the somatic form of Dnmt1 suggests a role in the inheritance of genomic imprints. BMC Developmental Biology 8, 9. Clegg, K. B. and L. Piko. 1983. Poly(A) length, cytoplasmic adenylation and synthesis of poly(A)+ RNA in early mouse embryos. Developmental Biology 95, 331-341. Collas, P. and J. M. Robl. 1990. Factors affecting the efficiency of nuclear transplantation in the rabbit embryo. Biology of Reproduction 43, 877-884. Collas, P. and J. M. Robl. 1991. Relationship between nuclear remodelling and development in nuclear transplant rabbit embryos. Biology of Reproduction 45, 455-465. Cui, X. S., Y. N. Xu, X. H. Shen, L. Q. Zhang, J. B. Zhang and N. H. Kim. 2011. Trichostatin A modulates apoptotic-related gene expression and improves embryo viability in cloned bovine embryos. Cellular Reprogramming 13, 179-189. Curchoe, C. L., S. Zhang, L. Yang, R. Page and X. C. Tian. 2009. Hypomethylation trends in the intergenic region of the imprinted IGF2 and H19 genes in cloned cattle. Animal Reproduction Science 116, 213-225. Dai, X., J. Hao, X. J. Hou, T. Hai, Y. Fan, Y. Yu, A. Jouneau, L. Wang and Q. Zhou. 2010. Somatic nucleus reprogramming is significantly improved by m-carboxycinnamic acid bishydroxamide, a histone deacetylase inhibitor. The Journal of Biological Chemistry 285, 31002-31010. De Leon, V., A. Johnson and R. Bachvarova. 1983. Half-lives and relative amounts of stored and polysomal ribosomes and poly(A) + RNA in mouse oocytes. Developmental Biology 98, 400-408. Dean, J. 2002. Oocyte-specific genes regulate follicle formation, fertility and early mouse development. Journal of Reproductive Immunology 53, 171-180. Dean, W., F. Santos, M. Stojkovic, V. Zakhartchenko, J. Walter, E. Wolf and W. Reik. 2001. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proceedings of the National Academy of Sciences of the United States of America 98, 13734-13738. Delbarre, E., B. M. Jacobsen, A. H. Reiner, A. L. Sorensen, T. Kuntziger and P. Collas. 2010. Chromatin environment of histone variant H3.3 revealed by quantitative imaging and genome-scale chromatin and DNA immunoprecipitation. Molecular Biology of the Cell 21, 1872-1884. Denning, C., S. Burl, A. Ainslie, J. Bracken, A. Dinnyes, J. Fletcher, T. King, M. Ritchie, W. A. Ritchie, M. Rollo, P. de Sousa, A. Travers, I. Wilmut and A. J. Clark. 2001. Deletion of the alpha(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nature Biotechnology 19, 559-562. Dietrich, J. E. and T. Hiiragi. 2007. Stochastic patterning in the mouse pre-implantation embryo. Development 134, 4219-4231. Ding, X., Y. Wang, D. Zhang, Y. Wang, Z. Guo and Y. Zhang. 2008. Increased pre-implantation development of cloned bovine embryos treated with 5-aza-2'-deoxycytidine and trichostatin A. Theriogenology 70, 622-630. Dinnyes, A., Y. Dai, M. Barber, L. Liu, J. Xu, P. Zhou and X. Yang. 2001. Development of cloned embryos from adult rabbit fibroblasts: effect of activation treatment and donor cell preparation. Biology of Reproduction 64, 257-263. Du, F., J. Xu, J. Zhang, S. Gao, M. G. Carter, C. He, L. Y. Sung, S. Chaubal, R. A. Fissore, X. C. Tian, X. Yang and Y. E. Chen. 2009. Beneficial effect of young oocytes for rabbit somatic cell nuclear transfer. Cloning and Stem Cells 11, 131-140. Eberharter, A. and P. B. Becker. 2002. Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Reports 3, 224-229. Eckert, J. J. and T. P. Fleming. 2008. Tight junction biogenesis during early development. Biochimica et Biophysica Acta 1778, 717-728. Enright, B. P., C. Kubota, X. Yang and X. C. Tian. 2003. Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2'-deoxycytidine. Biology of Reproduction 69, 896-901. Erhardt, S., I. H. Su, R. Schneider, S. Barton, A. J. Bannister, L. Perez-Burgos, T. Jenuwein, T. Kouzarides, A. Tarakhovsky and M. A. Surani. 2003. Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development 130, 4235-4248. Faast, R., V. Thonglairoam, T. C. Schulz, J. Beall, J. R. Wells, H. Taylor, K. Matthaei, P. D. Rathjen, D. J. Tremethick and I. Lyons. 2001. Histone variant H2A.Z is required for early mammalian development. Current Biology 11, 1183-1187. Fischer, B., U. Mootz, H. W. Denker, M. Lambertz and H. M. Beier. 1991. The dynamic structure of rabbit blastocyst coverings. III. Transformation of coverings under non-physiological developmental conditions. Anatomy and Embryology 183, 17-27. Flach, G., M. H. Johnson, P. R. Braude, R. A. Taylor and V. N. Bolton. 1982. The transition from maternal to embryonic control in the 2-cell mouse embryo. The EMBO Journal 1, 681-686. Fulka, J., N. L. First and R. M. Moor. 1996. Nuclear transplantation in mammals: remodelling of transplanted nuclei under the influence of maturation promoting factor. BioEssays 18, 835-840. Galli, C., I. Lagutina, G. Crotti, S. Colleoni, P. Turini, N. Ponderato, R. Duchi and G. Lazzari. 2003. Pregnancy: a cloned horse born to its dam twin. Nature 424, 635. Gardiner, C. S., J. S. Williams and A. R. Menino. 1990. Sodium/potassium adenosine triphosphatase alpha- and beta-subunit and alpha-subunit mRNA levels during mouse embryo development in vitro. Biology of Reproduction 43, 788-794. Gatewood, J. M., G. R. Cook, R. Balhorn, C. W. Schmid and E. M. Bradbury. 1990. Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones. The Journal of Biological Chemistry 265, 20662-20666. Gehring, M., W. Reik and S. Henikoff. 2009. DNA demethylation by DNA repair. Trends in Genetics 25, 82-90. Giraldez, A. J., Y. Mishima, J. Rihel, R. J. Grocock, S. Van Dongen, K. Inoue, A. J. Enright and A. F. Schier. 2006. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75-79. Goldberg, A. D., C. D. Allis and E. Bernstein. 2007. Epigenetics: a landscape takes shape. Cell 128, 635-638. Goll, M. G. and T. H. Bestor. 2005. Eukaryotic cytosine methyltransferases. Annual Review of Biochemistry 74, 481-514. Gopalakrishnan, S., B. O. Van Emburgh. and K. D. Robertson. 2008. DNA methylation in development and human disease. Mutation Research 647, 30-38. Gu, T. P., F. Guo, H. Yang, H. P. Wu, G. F. Xu, W. Liu, Z. G. Xie, L. Shi, X. He, S. G. Jin, K. Iqbal, Y. G. Shi, Z. Deng, P. E. Szabo, G. P. Pfeifer, J. Li and G. L. Xu. 2011. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477, 606-610. Gurdon, J. B., T. R. Elsdale and M. Fischberg. 1958. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182, 64-65. Hamatani, T., M. G. Carter, A. A. Sharov and M. S. Ko. 2004. Dynamics of global gene expression changes during mouse preimplantation development. Developmental Cell 6, 117-131. Hammoud, S. S., D. A. Nix, H. Zhang, J. Purwar, D. T. Carrell and B. R. Cairns. 2009. Distinctive chromatin in human sperm packages genes for embryo development. Nature 460, 473-478. Hansen, J. C. 2002. Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annual Review of Biophysics and Biomolecular Structure 31, 361-392. Hemberger, M., W. Dean and W. Reik. 2009. Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington's canal., Nature reviews. Molecular Cell Biology 10, 526-537. Hirasawa, R. and H. Sasaki. 2009. Dynamic transition of Dnmt3b expression in mouse pre- and early post-implantation embryos. Gene Expression Patterns 9, 27-30. Howell, C. Y., T. H. Bestor, F. Ding, K. E. Latham, C. Mertineit, J. M. Trasler and J. R. Chaillet. 2001. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104, 829-838. Huang, J. C., Z. L. Lei, L. H. Shi, Y. L. Miao, J. W. Yang, Y. C. Ouyang, Q. Y. Sun and D. Y. Chen. 2007. Comparison of histone modifications in in vivo and in vitro fertilization mouse embryos. Biochemical and Biophysical Research Communications 354, 77-83. Humpherys, D., K. Eggan, H. Akutsu, A. Friedman, K. Hochedlinger, R. Yanagimachi, E. S. Lander, T. R. Golub and R. Jaenisch. 2002. Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proceedings of the National Academy of Sciences of the United States of America 99, 12889-12894. Hyenne, V., S. Louvet-Vallee, A. El-Amraoui, C. Petit, B. Maro and M. C. Simmler. 2005. Vezatin, a protein associated to adherens junctions, is required for mouse blastocyst morphogenesis. Developmental Biology 287, 180-191. Iager, A. E., N. P. Ragina, P. J. Ross, Z. Beyhan, K. Cunniff, R. M. Rodriguez and J. B. Cibelli. 2008. Trichostatin A improves histone acetylation in bovine somatic cell nuclear transfer early embryos. Cloning and Stem Cells 10, 371-379. Iden, S. and J. G. Collard. 2008. Crosstalk between small GTPases and polarity proteins in cell polarization. Nature reviews. Molecular Cell Biology 9, 846-859. Iizuka, M. and M. M. Smith. 2003. Functional consequences of histone modifications. Current Opinion in Genetics and Development 13, 154-160. Illmensee, K. and P. C. Hoppe. 1981. Nuclear transplantation in Mus musculus: developmental potential of nuclei from preimplantation embryos. Cell 23, 9-18. Inoue, K., N. Ogonuki, Y. Yamamoto, Y. Noguchi, S. Takeiri, K. Nakata, H. Miki, M. Kurome, H. Nagashima and A. Ogura. 2002. Improved postimplantation development of rabbit nuclear transfer embryos by activation with inositol 1,4,5-trisphosphate. Cloning and Stem Cells 4, 311-317. Iqbal, K., S. G. Jin, G. P. Pfeifer and P. E. Szabo. 2011. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proceedings of the National Academy of Sciences of the United States of America 108, 3642-3647. Jiang, L., P. Jobst, L. Lai, M. Samuel, D. Ayares, R. S. Prather and X. C. Tian. 2007. Expression levels of growth-regulating imprinted genes in cloned piglets. Cloning and Stem Cells 9, 97-106. Johnson, M. H. and C. A. Ziomek. 1981. The foundation of two distinct cell lineages within the mouse morula. Cell 24, 71-80. Kamakaka, R. T. and S. Biggins. 2005. Histone variants: deviants? Genes and Development 19, 295-310. Kan, N. G., M. P. Stemmler, D. Junghans, B. Kanzler, W. N. de Vries, M. Dominis and R. Kemler. 2007. Gene replacement reveals a specific role for E-cadherin in the formation of a functional trophectoderm. Development 134, 31-41. Kawagishi, R., M. Tahara, K. Sawada, K. Morishige, M. Sakata, K. Tasaka and Y. Murata. 2004. Na+ / H+ exchanger-3 is involved in mouse blastocyst formation. Journal of Experimental Zoology. Part A, Comparative Experimental Biology 301, 767-775. Khang, I., S. Sonn, J. H. Park, K. Rhee, D. Park and K. Kim. 2005. Expression of epithin in mouse preimplantation development: its functional role in compaction. Developmental Biology 281, 134-144. Kim, M. K., G. Jang, H. J. Oh, F. Yuda, H. J. Kim, W. S. Hwang, M. S. Hossein, J. J. Kim, N. S. Shin, S. K. Kang and B. C. Lee. 2007. Endangered wolves cloned from adult somatic cells. Cloning and Stem Cells 9, 130-137. Kishigami, S., H. T. Bui, S. Wakayama, K. Tokunaga, N. Van Thuan, T. Hikichi, E. Mizutani, H. Ohta, R. Suetsugu, T. Sata and T. Wakayama. 2007. Successful mouse cloning of an outbred strain by trichostatin A treatment after somatic nuclear transfer. The Journal of Reproduction and Development 53, 165-170. Kishigami, S., E. Mizutani, H. Ohta, T. Hikichi, N. V. Thuan, S. Wakayama, H. T. Bui and T. Wakayama. 2006a. Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochemical and Biophysical Research Communications 340, 183-189. Kishigami, S., N. Van Thuan, T. Hikichi, H. Ohta, S. Wakayama, E. Mizutani and T. Wakayama. 2006b. Epigenetic abnormalities of the mouse paternal zygotic genome associated with microinsemination of round spermatids. Developmental Biology 289, 195-205. Kohda, T., K. Inoue, N. Ogonuki, H. Miki, M. Naruse, T. Kaneko-Ishino, A. Ogura and F. Ishino. 2005. Variation in gene expression and aberrantly regulated chromosome regions in cloned mice. Biology of Reproduction 73, 1302-1311. Kohda, T., S. Kishigami, T. Kaneko-Ishino, T. Wakayama and F. Ishino. 2012. Gene Expression profile normalization in cloned mice by Trichostatin A treatment. Cellular reprogramming 14, 45-55. Kurihara, Y., Y. Kawamura, Y. Uchijima, T. Amamo, H. Kobayashi, T. Asano and H. Kurihara. 2008. Maintenance of genomic methylation patterns during preimplantation development requires the somatic form of DNA methyltransferase 1. Developmental Biology 313, 335-346. Larue, L., M. Ohsugi, J. Hirchenhain and R. Kemler. 1994. E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proceedings of the National Academy of Sciences of the United States of America 91, 8263-8267. Latham, K. E. 2005. Early and delayed aspects of nuclear reprogramming during cloning. Biology of the cell / under the auspices of the European Cell Biology Organization 97, 119-132. Lee, B. C., M. K. Kim, G. Jang, H. J. Oh, F. Yuda, H. J. Kim, M. S. Hossein, J. J. Kim, S. K. Kang, G. Schatten and W. S. Hwang. 2005. Dogs cloned from adult somatic cells. Nature 436, 641. Lees-Murdock, D. J. and C. P. Walsh. 2008. DNA methylation reprogramming in the germ line. Epigenetics 3, 5-13. Lepikhov, K., V. Zakhartchenko, R. Hao, F. Yang, C. Wrenzycki, H. Niemann, E. Wolf and J. Walter. 2008. Evidence for conserved DNA and histone H3 methylation reprogramming in mouse, bovine and rabbit zygotes. Epigenetics and Chromatin 1, 8. Levy, J. B., M. H. Johnson, H. Goodall and B. Maro. 1986. The timing of compaction: control of a major developmental transition in mouse early embryogenesis. Journal of Embryology and Experimental Morphology 95, 213-237. Li, E. 2002. Chromatin modification and epigenetic reprogramming in mammalian development. Nature reviews. Genetics 3, 662-673. Li, S., X. Chen, Z. Fang, J. Shi and H. Z. Sheng. 2006a. Rabbits generated from fibroblasts through nuclear transfer. Reproduction 131, 1085-1090. Li, Z., X. Sun, J. Chen, X. Liu, S. M. Wisely, Q. Zhou, J. P. Renard, G. H. Leno and J. F. Engelhardt. 2006b. Cloned ferrets produced by somatic cell nuclear transfer. Developmental Biology 293, 439-448. Lindeman, L. C., I. S. Andersen, A. H. Reiner, N. Li, H. Aanes, O. Ostrup, C. Winata, S. Mathavan, F. Muller, P. Alestrom and P. Collas. 2011. Prepatterning of developmental gene expression by modified histones before zygotic genome activation. Developmental Cell 21, 993-1004. Loh, Y. H., W. Zhang, X. Chen, J. George and H. H. Ng. 2007. Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes and Development 21, 2545-2557. Luger, K., A. W. Mader, R. K. Richmond, D. F. Sargent and T. J. Richmond. 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251-260. Lund, E., M. Liu, R. S. Hartley, M. D. Sheets and J. E. Dahlberg. 2009. Deadenylation of maternal mRNAs mediated by miR-427 in Xenopus laevis embryos. RNA 15, 2351-2363. Ma, J., M. Flemr, P. Stein, P. Berninger, R. Malik, M. Zavolan, P. Svoboda and R. M. Schultz. 2010. MicroRNA activity is suppressed in mouse oocytes. Current Biology 20, 265-270. Maalouf, W. E., R. Alberio and K. H. Campbell. 2008. Differential acetylation of histone H4 lysine during development of in vitro fertilized, cloned and parthenogenetically activated bovine embryos. Epigenetics 3, 199-209. Madan, P., K. Rose and A. J. Watson. 2007. Na/K-ATPase beta1 subunit expression is required for blastocyst formation and normal assembly of trophectoderm tight junction-associated proteins. The Journal of Biological Chemistry 282, 12127-12134. Mann, M. R., Y. G. Chung, L. D. Nolen, R. I. Verona, K. E. Latham and M. S. Bartolomei. 2003. Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biology of Reproduction 69, 902-914. Marikawa, Y. and V. B. Alarcon. 2009. Establishment of trophectoderm and inner cell mass lineages in the mouse embryo. Molecular reproduction and development 76, 1019-1032. Martinez-Diaz, M. A., L. Che, M. Albornoz, M. M. Seneda, D. Collis, A. R. Coutinho, N. El-Beirouthi, D. Laurin, X. Zhao and V. Bordignon. 2010. Pre- and postimplantation development of swine-cloned embryos derived from fibroblasts and bone marrow cells after inhibition of histone deacetylases. Cellular Reprogramming 12, 85-94. Mayer, W., A. Niveleau, J. Walter, R. Fundele and T. Haaf. 2000. Demethylation of the zygotic paternal genome. Nature 403, 501-502. McCreath, K. J., J. Howcroft, K. H. Campbell, A. Colman, A. E. Schnieke and A. J. Kind. 2000. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405, 1066-1069. Meng, Q., Z. Polgar, J. Liu and A. Dinnyes. 2009. Live birth of somatic cell-cloned rabbits following trichostatin A treatment and cotransfer of parthenogenetic embryos. Cloning and Stem Cells 11, 203-208. Merz, E. A., R. L. Brinster, S. Brunner and H. Y. Chen. 1981. Protein degradation during preimplantation development of the mouse. Journal of Reproduction and Fertility 61, 415-418. Messerschmidt, D. M. and R. Kemler. 2010. Nanog is required for primitive endoderm formation through a non-cell autonomous mechanism. Developmental Biology 344, 129-137. Mitalipov, S. M., K. L. White, V. R. Farrar, J. Morrey and W. A. Reed. 1999. Development of nuclear transfer and parthenogenetic rabbit embryos activated with inositol 1,4,5-trisphosphate. Biology of Reproduction 60, 821-827. Mitsui, K., Y. Tokuzawa, H. Itoh, K. Segawa, M. Murakami, K. Takahashi, M. Maruyama, M. Maeda and S. Yamanaka. 2003. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631-642. Miyazaki, S. and M. Ito. 2006. Calcium signals for egg activation in mammals. Journal of Pharmacological Sciences 100, 545-552. Miyoshi, K., H. Mori, Y. Mizobe, E. Akasaka, A. Ozawa, M. Yoshida and M. Sato. 2010. Valproic acid enhances in vitro development and Oct-3/4 expression of miniature pig somatic cell nuclear transfer embryos. Cellular Reprogramming 12, 67-74. Moore, N. W., C. E. Adams and L. E. Rowson. 1968. Developmental potential of single blastomeres of the rabbit egg. Journal of Reproduction and Fertility 17, 527-531. Morgan, H. D., F. Santos, K. Green, W. Dean and W. Reik. 2005. Epigenetic reprogramming in mammals. Human Molecular Genetics 14, R47-58. Morris, S. A., R. T. Teo, H. Li, P. Robson, D. M. Glover and M. Zernicka-Goetz. 2010. Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo. Proceedings of the National Academy of Sciences of the United States of America 107, 6364-6369. Motosugi, N., T. Bauer, Z. Polanski, D. Solter and T. Hiiragi. 2005. Polarity of the mouse embryo is established at blastocyst and is not prepatterned. Genes and development 19, 1081-1092. Nakamura, T., Y. Arai, H. Umehara, M. Masuhara, T. Kimura, H. Taniguchi, T. Sekimoto, M. Ikawa, Y. Yoneda, M. Okabe, S. Tanaka, K. Shiota and T. Nakano. 2007. PGC7/Stella protects against DNA demethylation in early embryogenesis. Nature Cell Biology 9, 64-71. Nashun, B., T. Akiyama, M. G. Suzuki and F. Aoki. 2011. Dramatic replacement of histone variants during genome remodelling in nuclear-transferred embryos. Epigenetics 6, 1489-1497. Nashun, B., M. Yukawa, H. Liu, T. Akiyama and F. Aoki. 2010. Changes in the nuclear deposition of histone H2A variants during pre-implantation development in mice. Development 137, 3785-3794. Ng, R. K., W. Dean, C. Dawson, D. Lucifero, Z. Madeja, W. Reik and M. Hemberger. 2008. Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nature Cell Biology 10, 1280-1290. Ng, R. K. and J. B. Gurdon. 2005. Epigenetic memory of active gene transcription is inherited through somatic cell nuclear transfer. Proceedings of the National Academy of Sciences of the United States of America 102, 1957-1962. Ng, R. K. and J. B. Gurdon. 2008. Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nature Cell Biology 10, 102-109. Niakan, K. K., H. Ji, R. Maehr, S. A. Vokes, K. T. Rodolfa, R. I. Sherwood, M. Yamaki, J. T. Dimos, A. E. Chen, D. A. Melton, A. P. McMahon and K. Eggan. 2010. Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal., Genes and Development 24, 312-326. Nichols, J., B. Zevnik, K. Anastassiadis, H. Niwa, D. Klewe-Nebenius, I. Chambers, H. Scholer and A. Smith. 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379-391. Nishioka, N., K. Inoue, K. Adachi, H. Kiyonari, M. Ota, A. Ralston, N. Yabuta, S. Hirahara, R. O. Stephenson, N. Ogonuki, R. Makita, H. Kurihara, E. M. Morin-Kensicki, H. Nojima, J. Rossant, K. Nakao, H. Niwa and H. Sasaki. 2009. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Developmental Cell 16, 398-410. Nishioka, N., S. Yamamoto, H. Kiyonari, H. Sato, A. Sawada, M. Ota, K. Nakao and H. Sasaki. 2008. Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mechanisms of Development 125, 270-283. Niwa, H., J. Miyazaki and A. G. Smith. 2000. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics 24, 372-376. Nomikos, M., K. Swann and F. A. Lai. 2012. Starting a new life: sperm PLC-zeta mobilizes the Ca2+ signal that induces egg activation and embryo development: an essential phospholipase C with implications for male infertility. BioEssays 34, 126-134. Nonchev, S. and R. Tsanev. 1990. Protamine-histone replacement and DNA replication in the male mouse pronucleus. Molecular Reproduction and Development 25, 72-76. O'Neill, L. P., M. D. VerMilyea and B. M. Turner. 2006. Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nature Genetics 38, 835-841. Okada, Y., K. Yamagata, K. Hong, T. Wakayama and Y. Zhang. 2010. A role for the elongator complex in zygotic paternal genome demethylation. Nature 463, 554-558. Okamoto, K., H. Okazawa, A. Okuda, M. Sakai, M. Muramatsu and H. Hamada. 1990. A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell 60, 461-472. Okano, M., D. W. Bell, D. A. Haber and E. Li. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247-257. Ono, T., C. Li, E. Mizutani, Y. Terashita, K. Yamagata and T. Wakayama. 2010. Inhibition of class IIb histone deacetylase significantly improves cloning efficiency in mice. Biology of Reproduction 83, 929-937. Orsini, M. W. 1962. Study of ovo-implantation in the hamster, rat, mouse, guinea-pig and rabbit in cleared uterine tracts. Journal of Reproduction and Fertility 3, 288-293. Oswald, J., S. Engemann, N. Lane, W. Mayer, A. Olek, R. Fundele, W. Dean, W. Reik and J. Walter. 2000. Active demethylation of the paternal genome in the mouse zygote. Current Biology 10, 475-478. Overstrom, E. W., D. J. Benos and J. D. Biggers. 1989. Synthesis of Na+/K+ ATPase by the preimplantation rabbit blastocyst. Journal of Reproduction and Fertility 85, 283-295. Payer, B., M. Saitou, S. C. Barton, R. Thresher, J. P. Dixon, D. Zahn, W. H. Colledge, M. B. Carlton, T. Nakano and M. A. Surani. 2003. Stella is a maternal effect gene required for normal early development in mice. Current Biology 13, 2110-2117. Peters, A. H. and D. Schubeler. 2005. Methylation of histones: playing memory with DNA. Current Opinion in Cell Biology 17, 230-238. Peterson, C. L. and M. A. Lan | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16108 | - |
| dc.description.abstract | 本研究之目的為探討關鍵轉錄因子與後生遺傳修飾於著床前家兔胚胎中之時間及空間上的表現或分布,亦即利用免疫螢光染色法觀察胚胎中Oct-4及Cdx-2之表現及組蛋白H4 lysine 5 乙醯化(H4K5ac)之程度,並以此資訊運用於建立及改善家兔複製之效率。試驗一利用體外培養之兔胚,於不同胚期進行Oct-4 及 H4K5ac 染色,於兔胚中發現兩階段之 Oct-4動態表現模式,其訊號於受精後逐漸下降,於八細胞期達到最低,此後再次增加並於桑椹胚期達到最高。第二階段 Oct-4 動態變化發生於囊胚形成過程中,其訊號於早期囊胚期(eBL)開始下降, 並於擴大囊胚期(expBL)達到最低,爾後於孵化囊胚期(hBL) Oct-4訊號強度再次增加。此外,於孵化囊胚中,內細胞群(ICM)和滋養層細胞(TE) 均可表現Oct-4,但相較於TE,ICM具較高之Oct-4表現訊號。 顯著之H4K5ac訊號出現於受精卵之原核中,但其訊號在四細胞期後開始下降,於八細胞期達到達到最低,H4K5ac訊號於桑椹胚期後逐步恢復,於囊胚形成過程中, TE保持高程度之H4K5ac ,而較低程度之H4K5ac訊號則出現於eBL與expBL之ICM,但於 hBL期, ICM之H4K5ac 恢復其訊號強度並顯著高於TE 。試驗二中,Oct-4和H4K5ac於囊胚形成過程中之動態變化情形再次利用體內獲得之著床前兔胚獲得證實 ,此外,本研究首次於兔胚中觀察 Cdx-2之表現,其訊號可於早期囊胚(D4 eBL)之少數TE細胞核中發現,且逐漸增強但僅表現於TE細胞核中。試驗三比較不同卵子來源對家兔體細胞核移置效率之影響,研究發現從卵巢成熟濾泡收集之卵母細胞相較於從輸卵管收集之卵母細胞較具支持複製胚胎發育之潛能,並具有顯著較高之融合率及囊胚形成率,此外,利用卵巢成熟濾泡收集之卵母細胞已成功產製複製家兔。試驗四應用組蛋白去乙醯酶抑制劑(histone decaetylase inhibitor, HDACi) 改善家兔複製效率,結果顯示,經 tricostatin(TSA)或scriptaid(SCP)處理後,均可顯著增加複製胚胎發育至囊胚期,但囊胚細胞數仍顯著低於對照組之孤雌激活囊胚及受精囊胚,經免疫螢光染色發現,複製兔胚於hBL期具較低程度之H4K5ac及異常Oct-4 表現模式,而TSA處理並無法改顯著增加H4K5ac程度或改善複製胚胎表現 Oct-4之能力,然而SCP處理組則明顯增高H4K5乙醯化程度並具較正常之 Oct-4表現模式,值得注意的是,複製胚胎同時處理TSA和SCP後發現不僅提高囊胚發育能力,並改善 H4K5乙醯化程度及Oct-4 表現能力,其中囊胚細胞數量亦顯著增加至無異於對照組囊胚。本研究顯示 Oct-4、 Cdx-2及 H4K5ac 於著床胚兔胎中之動態變化可提供基礎資訊運用於家兔複製之研究。此外,卵巢濾泡卵母細胞具有較高之潛能支持體細胞核移置後之基因再程序化並成功複製家兔,而合併處理TSA 及SCP則顯著改善複製胚之品質及其發育能力。 | zh_TW |
| dc.description.abstract | The purposes of this study were to document the spatial and temporal distribution of key transcription factors and epigenetic events in preimplantation rabbit embryos derived in vitro or in vivo. The dynamic patterns of Oct-4, Cdx-2 and acetylated histone H4 lysine 5 (H4K5ac) were observed by immunochemistry staining and then used as fundamental information to establish rabbit cloning. In the first series of studies (Chapter 2 and 3), two waves of Oct-4 dynamics in the nuclei were revealed for the first time during rabbit preimplantation development. Oct-4 signal was present in zygotes, decreased gradually and reached its lowest level in 8-celled embryos and increased again in compact morulae (CM). A unique wave of Oct-4 expression was observed during rabbit blastocyst formation, which was down-regulated form CM to the early blastocyst (eBL) stage, bottomed at the expanded blastocyst (expBL) stage and then up-regulated to a level similar to that of the CM stage at the hatching blastocyst (hBL) stage. Differential Oct-4 intensity was observed in the inner cell mass (ICM) and the trophectoderm (TE) cells of hatching blastocysts, i.e. more intensive signal in the ICM than in the TE cells. The H4K5ac signal was initially found with high intensity in the pronuclei of zygotes, decreased at the 4-cell stage, bottomed at the 8-cell stage and gradually regained after the morula stage. During blastocyst formation, the TE cells maintained a high level of H4K5ac throughout the blastocyst stage, while the ICM cells showed a lower level of H4K5ac at eBL and expBL stages, and then resumed at the hBL stage. The dynamics of Oct-4 and H4K5ac patterns during blastocyst formation were confirmed by using in vivo embryos. Moreover, unlike the mouse embryo, Cdx-2 was detected after blastocyst formation and became evident only in the TE cells afterwards. The second series of studies (Chapters 4 and 5) were mainly focused on improving rabbit cloning efficiency using somatic cells as donor nuclei. Rabbit oocytes were flushed from the oviducts (oviductal oocytes) or aspirated from the ovaries (follicular oocytes) of superovulated does at 10, 11, or 12 h post-hCG injection. In this study, we found that using follicular oocytes as recipient cytoplasts had greater fusion rate, morula development and blastocyst formation (P<0.05). In combination with the treatments of histone deacetylase inhibitors (HDACi), i.e. tricostatin A (TSA) and scriptaid (SCP), increased blastocyst rates (P<0.05) were observed after treatment of optimized HDACi concentrations. Notably, the synergic effects of TSA and SCP in cloned embryos appeared not only to improve blastocyst development, but also embryo quality indicated by the increased cell number and normalized Oct-4 expression pattern in hBLs. These studies provided fundamental information on the dynamic changes of crucial transcription factors and epigenetic modifications in preimplantation rabbit embryos. The present results also demonstrated that follicular oocytes possessed a higher reprogramming capacity to improve the development of cloned embryos, and the HDACi treatments apparently enhanced embryo quality by improving total cell number and Oct-4 expression. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:01:19Z (GMT). No. of bitstreams: 1 ntu-101-D96642001-1.pdf: 9218139 bytes, checksum: f0238816311a4b87b91c84f344af0360 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS Page
ABSTRACT --------------------------------------------------- i TABLE OF CONTENTS ------------------------------------------- v LIST OF TABLES ----------------------------------------------- viii LIST OF FIGURES ---------------------------------------------- ix ABBREVIATIONS ----------------------------------------------- x CHAPTER ONE ------------------------------------------------ 1 GENERAL INTRODUCTION -------------------------------------- 2 LITERATURE REVIEW ------------------------------------------- 4 1. Preimplantation embryo development and lineage formation ------- 4 1.1. From oocyte to embryo -------------------------------------4 1.2. Maternal RNA degradation ---------------------------------- 5 1.3. Maternal protein degradation -------------------------------- 6 1.4. Onset of zygotic genome activation (ZGA) ---------------------- 7 1.5. Embryo compaction -----------------------------------------8 1.6. Blastocyst formation ---------------------------------------- 9 1.7. Specific transcription factors for cell lineage formation ----------- 10 1.7.1 Formation of TE lineage ------------------------------------ 10 1.7.2. Formation of ICM lineage -----------------------------------11 1.7.3. Formation of EPI and PE lineages ---------------------------- 12 2. Epigenetic dynamics during preimplantation development ---------- 14 2.1. DNA methylation in the preimplantation embryo -----------------14 2.1.1. Active demethylation in the paternal genome ------------------15 2.1.2. Passive demethylation in the maternal genome ---------------- 16 2.1.3. De novo DNA methylation in the preimplantation embryo --------16 2.1.4. DNA methylation in the rabbit embryo ------------------------17 2.2. Histone modification in the preimplantation embryo --------------17 2.2.1. Histone modification in the zygote ---------------------------18 2.2.2. Histone modification during embryonic development ----------- 19 2.3. Histone variants in the preimplantation embryo ------------------ 21 2.3.1 Histone H3 variants ---------------------------------------- 21 2.3.2 Histone H2A variants --------------------------------------- 22 3. Nuclear reprogramming of cloned embryos ----------------------- 23 3.1. Brief history of somatic cell nuclear transfer (SCNT) --------------- 23 3.2. Epigenetic reprogramming after SCNT --------------------------24 3.2.1. DNA methylation in the cloned embryos ----------------------- 26 3.2.2. Histone modification in the cloned embryos --------------------27 3.3. Improved SCNT efficiency by histone deacetylase inhibitors ---------27 3.3.1. HDACi effects on epigenetic modification ---------------------- 28 3.3.2. HDACi effects on embryo development ------------------------ 29 3.3.3. HDACi effects on gene expression ---------------------------- 30 CHAPTER TWO Spatial and Temporal Distribution of Oct-4 Expression and H4K5 Acetylation in Rabbit Embryos -----------------------------------------------31 1. ABSTRACT --------------------------------------------------- 32 2. INTRODUCTION -----------------------------------------------33 3. MATERIALS AND METHODS --------------------------------------35 4. RESULTS ----------------------------------------------------- 38 5. DISCUSSION -------------------------------------------------- 46 CHAPTER THREE The Dynamic Profiles of Oct-4, Cdx-2 and Acetylated H4K5 in Rabbit Morulae and Blastocysts Derived In Vivo -----------------------------52 1. ABSTRACT --------------------------------------------------- 53 2. INTRODUCTION -----------------------------------------------54 3. MATERIALS AND METHODS -------------------------------------56 4. RESULTS -----------------------------------------------------59 5. DISCUSSION --------------------------------------------------75 CHAPTER FOUR Follicular Oocytes better Support Development in Rabbit Cloning than Oviductal Oocytes ----------------------------------------------- 81 1. ABSTRACT --------------------------------------------------- 82 2. INTRODUCTION ----------------------------------------------- 83 3. MATERIALS AND METHODS --------------------------------------85 4. RESULTS ----------------------------------------------------- 91 5. DISCUSSION -------------------------------------------------103 CHAPTER FIVE Synergic Effects of Trichostatin A and Scriptaid on Rabbit Somatic Cell Nuclear Transfer -------------------------------------------------------107 1. ABSTRACT ---------------------------------------------------108 2. INTRODUCTION ---------------------------------------------- 109 3. MATERIALS AND METHODS -------------------------------------111 4. RESULTS ---------------------------------------------------- 116 5. DISCUSSION ------------------------------------------------- 125 CONCLUSIONS ------------------------------------------------- 130 REFERENCES --------------------------------------------------- 131 | |
| dc.language.iso | en | |
| dc.subject | 著床前胚胎 | zh_TW |
| dc.subject | 抑制劑 | zh_TW |
| dc.subject | 組蛋白去乙醯酶 | zh_TW |
| dc.subject | 組蛋白H4 lysine 5 乙醯化 | zh_TW |
| dc.subject | 轉錄因子Cdx-2 | zh_TW |
| dc.subject | 轉錄因子Oct-4 | zh_TW |
| dc.subject | 複製兔 | zh_TW |
| dc.subject | Cdx-2 | en |
| dc.subject | Oct-4 | en |
| dc.subject | Rabbit cloning | en |
| dc.subject | H4K5ac | en |
| dc.subject | HDACi | en |
| dc.subject | Preimplantation embryos | en |
| dc.title | 自然受精及體細胞核移置兔胚之基因表現與發育潛能探討 | zh_TW |
| dc.title | Characterization of Fertilized and Cloned Rabbit Embryos | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 鄭登貴(Winston TK Cheng),朱志成(Jyh-Cherng Ju),吳信志(Shinn-Chih Wu),林劭品(Sau-Ping Lin) | |
| dc.subject.keyword | 著床前胚胎,複製兔,轉錄因子Oct-4,轉錄因子Cdx-2,組蛋白H4 lysine 5 乙醯化,組蛋白去乙醯酶,抑制劑, | zh_TW |
| dc.subject.keyword | Preimplantation embryos,Rabbit cloning,Oct-4,Cdx-2,H4K5ac,HDACi, | en |
| dc.relation.page | 174 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-08-06 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物科技研究所 | zh_TW |
| 顯示於系所單位: | 生物科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
