請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16093完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 單秋成 | |
| dc.contributor.author | Pei-Ying Chen | en |
| dc.contributor.author | 陳佩嫈 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:00:47Z | - |
| dc.date.copyright | 2012-08-10 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-06 | |
| dc.identifier.citation | [1] Liu D., “Impact-Induced Delamination- A Review of Bending Stiffness Mismatching,” Journal of Composite Materials, Vol.22, Pages 674-692, 1988.
[2] 翁慶隆、沈賢、科正忠, “飛機結構膠合修補技術”, 中山科學研究院, 1997. [3] 葉天傑, “外力式長週期與統式短週期光纖光柵的特性分析及實驗量測”, 國立台灣大學機械工程學系研究所碩士論文, 2002. [4] Lin C.L., “Opto-Mechanical Applications of Microstructured Materials,” PhD thesis, Joseph Fourier University /National Taiwan University, 2004. [5] Bass M., Eric W. Van Stryland, “Fiber optics handbook: fiber, devices, and systems for optical communications,” New York: McGraw-Hill, 2002. [6] Lin C.L., “Opto-Mechanical Applications of Microstructured Materials,” PhD thesis, Joseph Fourier University /National Taiwan University, 2004. [7] Nye J.F., “Physical properties crystal: their representation by tensor and matrices,” Oxford University Press, 1957. [8] Bertholda A., Dändliker R., “Determination of the individual strain-optic coefficients in single-mode optical fibres,” Journal of lightwave Technology, Vol. 6, No. 1, pp. 17-20, 1988. [9] Tao X., Tang L., “Internal strain measurement by fiber Bragg grating sensors in textile composites,” Composites Science and Technology, Vol. 60, pp. 657-669, 2000. [10] Menendez J. M., Guemes, J.A., “Bragg-grating-based multiaxial strain sensing: its application to residual strain measure ment in composite laminates,” Proceedings of SPIE, Vol. 3986, pp. 271-281, 2000. [11] Lin C.L., “Opto-Mechanical Applications of Microstructured Materials,” PhD thesis, Joseph Fourier University /National Taiwan University, 2004. [12] Hill P.C., Eggleton, B.J., “Strain gradient chirp of fibre Bragg gratings,” Electronic Letters, vol.30, no.14, pp.1172-1174, 1994. [13] Shin C.S., Chiang C.C., “Temperature compensated fiber Bragg grating using fiber reinforced polymeric composites,” Journal of the Chinese institute of Engineers, Vol. 29, No.3, pp. 519-526, 2006. [14] Tseng, Y.T., “Development and Application of Micro Fiber-optic Pressure Sensor,” National Taiwan University, pp.13, 2008. [15] Hill K.O., Fujii Y., Jonson D.C. and Kawasaki B.S., “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Applied Physics Letters, Vol.32, No.10, pp.647-649, 1978. [16] Hill K.O., Malo B., Bilodeau F., Johnson D.C. and Albert J., “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Applied Physics Letters, Vol.62, pp.1035-1037, 1993. [17] Kashyap R. “Fiber Bragg gratings,” San Diego, CA : Academic Press, 1999. [18] Meltz, G. “Formation of Bragg gratings in optical fibres by a Transverse Holographic Method,” Optics Letters, vol.14, no.15, pp.823-825, 1989. [19] 王楚明, “含缺口複合材料之損傷研究型為,” 國立台灣大學機械工程研究所博士論文, pp.38, 2001. [20] Besant T., “Finite element modeling of low velocity impact of composite sandwich panels,” Elsevier Composites, Part A 32, pp. 1189-1196, 2001. [21] 江家慶, “以內埋式光纖光柵感測器監測複材疲勞損傷,” 國立台灣大學機械工程研究所博士論文, 2005. [22] 何彥儒, “以非破壞性檢測及破壞性顯微檢測對複材基層板探傷之比較分析,” 台灣大學機械工程研究所碩士論文, 2007. [23] Mahinfalah M., Skordahl R., “The effects of hail damage on the fatigue strength of graphite/epoxy composite laminate,” Elsevier Composites Structures, 42, pp. 101-106, 1998. [24] Wagreich R.B., “Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre,” Electronic Letters 32(13), pp.1223–4, 1996. [25] Okabe Y, Yashiro S., “Effect of thermal residual stress on the reflection spectrum from fiber Bragg grating sensors embedded in CFRP laminates,” Elsevier Composites, Part A 33, pp. 991–999, 2002. [26] Rachid G., Mahmoud A, El-sherif, “Analysis of Induced-Birefringence Effects on Fiber Bragg Gratings,” Optical Fiber Technology 6, pp. 299-323, 2000. [27] Nye J.F., “Physical properties crystal: their representation by tensor and matrices,” Oxford University Press, 1957. [28] Vieira A., “Effect of the recoating and the length on fiber Bragg grating sensors embedded in polymer composites,” Elsevier Materials and Design 30, pp. 1818–1821, 2009. [29] Chambers A.R., “Evaluating impact damage in CFRP using fibre optic sensors,” Elsevier Composites Science and Technology 67, pp. 1235-1242, 2007. [30] Takeda S., Minakuchi S., Okabe Y., Takeda N., “Delamination monitoring of laminated composites subjected to low-velocity impact using small-diameter FBG sensors,” Elsevier Composites, Part A 36, pp. 903-908, 2005. [31] Takeda S., Yamamoto T., Okabe Y., Takeda N., “Debonding monitoring of composite repair patches using embedded small-diameter FBG sensors,” Smart Materials and Structures, Smart Mater. Struct. 16, pp. 763–770, 2007. [32] 程品捷, “以內埋式光纖光柵感測器監測膠合修補碳纖維複合材料衝擊損傷之應用,” 台灣大學機械工程研究所碩士論文, 2010. [33] Chue C. H. and Liu Thomas J. C., “The Effects of Laminated Composite Patch with Different Stacking Sequences on Bonded Repair,” Composite Engineering, Vol.5, No.2, pp.223-230, 1995. [34] 邱燦賓, “複合材料補片修補效率之評估,” 國立清華大學機械工程研究所碩士論文, 1996. [35] Ahn S. H. and Springer G.S., “Repair of Composite Laminates-I : Test Results,” Journal of Composite Material, Vol. 32, No. 11, pp.1036-1047, 1998. [36] Jones R., Callinan R. J., “Finite element analysis of patched cracks,” J Strukt Mech, No. 7, pp. 107-130, 1979. [37] Kanderakis G., “Composite Patch Repair of Metallic Structures,” PhD Thesis, National Technical University of Athens, Athens, 2000. [38] Klug J.C., Sun C.T., “Large Deflection Effects of Cracked Aluminium Plates Repaired with Bonded Composite Patches,” Composite Structures 42, pp. 291-296, 1998. [39] Baker A., Rose F., Jones R., “Advances in the Bonded Composite Repair of Metallic Aircraft Structure,” ELSEVIER SCIENCE Ltd, 2002. [40] 楊仕偉, “以內埋式光纖光柵感測器監測碳纖維複合材料衝擊及疲勞破壞之應用,” 國立台灣大學機械工程研究所碩士論文, 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16093 | - |
| dc.description.abstract | 碳纖維強化複合材料(Carbon fiber reinforced plastics,CFRP)具有良好的機械性質,已廣泛的使用在工程結構中。結構在使用過程中,常因本身運作條件與外在環境因素的影響而遭受破壞,如疲勞及衝擊等破壞。因此,有必要做即時的監測,以確保結構在可靠與安全的情況下使用。因光纖具有低損失、小尺寸、重量輕、敏感度高等優點,適合運用在感測器上。其中布拉格光纖光柵(Fiber Bragg Grating,FBG)由於尺寸小,平行CFRP之纖維方向埋入對其強度影響小且相容性佳。故本研究利用內埋於CFRP之FBG來監測遭受衝擊破壞及衝擊後疲勞破壞的發生與發展情況,以及進行貼片膠合修補之時機及其成效。由實驗結果可知,當CFRP受到衝擊破壞時,FBG反射頻譜之波形由兩個波峰劈裂成多個峰值、最高峰值能量強度下降且波形寬度明顯變寬。受衝擊後疲勞破壞且破壞持續發展時,隨著疲勞週期增加,波形持續改變且最高峰值能量強度會持續下降、背景光源能量抬升,最終甚至導致波峰消失。過程中,最高峰值能量強度由穩定緩慢下降到突然大幅度下降時,即為進行修補較佳時機的指標。貼片膠合修補若達成效,則隨著疲勞週期增加,波形幾乎不改變且最高峰值能量強度下降幅度也很小。埋/貼於補片之FBG,波峰波長隨負載增加成固定比例飄移。換言之,可透過FBG反射頻譜波形變化的特徵,監測CFRP經衝擊/疲勞破壞/貼片修補之缺陷發展,進一步掌握到貼片膠合修補之良窳。 | zh_TW |
| dc.description.abstract | Carbon fiber reinforced plastics have many mechanical properties that are superior to conventional structural materials and are becoming more and more widely used. However, this material is prone to in service damages such as foreign object impact and cyclic loading fatigue. The latter is especially detrimental if it follows an foreign object impact that has created internal defects in the material. To improve structural reliability, it will be helpful if on-line monitoring of the existence and development of internal defects is possible. In this work, we propose to use optical fiber Bragg grating (FBG) sensor for this purpose. Optical fiber sensor is small in size, light weighted, sensitive has good long term stability and most importantly it is highly compatible with polymeric composites and can be easily embeddable inside the structure. We employed FBG to monitor the occurrence of internal defects due to impact of foreign objects, the development of these defects in the ensuing cyclic loading and after patch repairing. The reflected spectrum from an FBG in an undamaged composite laminate consists of a well-defined peak. On suffering impact damage, the spectrum broadened and become splitted while the peak intensity dropped. If the impact was followed by cyclic fatigue damage, the peak intensity continued to drop while that of the background wavelength rise. Eventually the characteristic reflect spectrum of the FBG will become totally submerged in background noise. If patch repairing was applied in the course of the damage, the above drop in peak intensity and change in reflected spectrum will be arrested if the repair was successful. The above showed that it is possible to use the FBG sensor to monitor the occurrence and development of impact-fatigue damage and
to check whether a patch repair has attained its purpose. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:00:47Z (GMT). No. of bitstreams: 1 ntu-101-R99522510-1.pdf: 5992229 bytes, checksum: d387039de01a99d77f148cfbd870f1e9 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 摘要 III Abstract IV 目錄 VI 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1.1前言 1 1.2研究動機 1 1.3論文結構 2 第二章 文獻回顧 3 2.1布拉格光纖光柵感測器 3 2.1.1光纖光柵的原理與分類 3 2.1.2布拉格光纖光柵感測器的原理 4 2.1.3布拉格光纖光柵感測器的特性 4 2.1.4布拉格光纖光柵感測器的製程 7 2.2複合材料受衝擊與疲勞破壞 8 2.2.1複合材料受衝擊破壞 8 2.2.2複合材料受疲勞破壞 8 2.3布拉格光纖光柵感測器內埋於複合材料 9 2.3.1複合材料中的熱殘留應力 9 2.3.2雙折射效應 9 2.3.3內埋式布拉格光纖光柵感測器的靈敏度 10 2.3.4布拉格光纖光柵感測器內埋於複合材料監測內部缺陷 10 2.4複合材料的膠合修補 10 2.4.1複合材料的修補方式 11 2.4.2膠合修補 11 第三章 實驗方法 23 3.1實驗設備 23 3.1.1光纖切割機(Optical Fiber Cleaver) 23 3.1.2光纖熔接機(Fusion Splicer) 23 3.1.3熱壓成型系統 23 3.1.4深切緩給鑽石砂輪機 24 3.1.5寬頻光源(Broadband Light Source, BBLS) 24 3.1.6光學頻譜分析儀(Optical Spectrum Analyzer, OSA) 24 3.1.7萬能材料試驗機(Material Testing System 810, MTS 810) 24 3.1.8衝擊試驗機 25 3.1.9超音波影像掃描系統(Ultrasonic imaging system) 25 3.1.10光循環器(Optical Circulator) 25 3.2實驗方法 26 3.2.1製作FBG感測器的方法 26 3.2.2碳纖維強化複合材料積層板的製作方式 26 3.2.3內埋FBG感測器之試片製作方法 26 3.2.4貼片膠合修補的方法 27 3.3拉伸實驗步驟 29 3.4衝擊後疲勞破壞實驗步驟 29 3.4.1未埋FBG感測器試片之衝擊後疲勞破壞實驗步驟 29 3.4.2內埋FBG感測器試片之衝擊後疲勞破壞實驗步驟 30 3.5膠合修補衝擊後疲勞破壞後再疲勞破壞實驗步驟 30 第四章 實驗結果與討論 39 4.1拉伸實驗結果與討論 39 4.2衝擊後疲勞破壞實驗結果與討論 40 4.2.1未埋FBG感測器試片之衝擊後疲勞破壞 40 4.2.2內埋FBG感測器試片之衝擊後疲勞破壞實驗 41 4.3貼片膠合修補衝擊後疲勞破壞後再疲勞破壞實驗結果與討論 46 4.3.1埋於複材之FBG感測器打磨前後之頻譜變化 46 4.3.2埋於複材之FBG感測器修補前後之頻譜變化 46 4.3.3埋/貼於補片之FBG感測器埋入/黏貼於補片前後之頻譜變化 46 4.3.4貼片膠合修補衝擊後疲勞破壞後再疲勞破壞實驗 47 第五章 實驗結論與未來展望 108 5.1實驗結論 109 5.1.1複材受衝擊破壞 109 5.1.2衝擊後疲勞破壞實驗 109 5.1.3貼片膠合修補衝擊後疲勞破壞後再疲勞破壞實驗 109 5.1.4其他修補方式 110 5.2未來展望 111 參考文獻 112 附錄 116 | |
| dc.language.iso | zh-TW | |
| dc.subject | 貼片膠合修補 | zh_TW |
| dc.subject | 碳纖維強化複合材料 | zh_TW |
| dc.subject | 布拉格光纖光柵 | zh_TW |
| dc.subject | 衝擊破壞 | zh_TW |
| dc.subject | 衝擊後疲勞破壞 | zh_TW |
| dc.subject | Fiber Bragg Grating | en |
| dc.subject | composite patch repair | en |
| dc.subject | post-impact fatigue damage | en |
| dc.subject | impact damage | en |
| dc.subject | Carbon fiber reinforced plastics | en |
| dc.title | 以光纖光柵感測器監測碳纖維複材經衝擊/疲勞破壞/貼片修補之缺陷發展 | zh_TW |
| dc.title | Development of Defects of Monitoring Carbon Fiber Composite after Impact /Fatigue Damage/Patch Repair by Using Fiber Bragg Grating Sensors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃進光,沈育霖 | |
| dc.subject.keyword | 碳纖維強化複合材料,布拉格光纖光柵,衝擊破壞,衝擊後疲勞破壞,貼片膠合修補, | zh_TW |
| dc.subject.keyword | Carbon fiber reinforced plastics,Fiber Bragg Grating,impact damage,post-impact fatigue damage,composite patch repair, | en |
| dc.relation.page | 119 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-08-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 5.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
