請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16050完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊宏(Jiun-Hong Chen) | |
| dc.contributor.author | Yu-Wen Hsieh | en |
| dc.contributor.author | 謝郁文 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:59:17Z | - |
| dc.date.copyright | 2012-08-10 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-09 | |
| dc.identifier.citation | Abdelhaleem, M. (2005) 'RNA helicases: regulators of differentiation', Clin Biochem 38(6): 499-503.
Agata, K., Saito, Y. and Nakajima, E. (2007) 'Unifying principles of regeneration I: Epimorphosis versus morphallaxis', Dev Growth Differ 49(2): 73-8. Alvarado, A. S. and Tsonis, P. A. (2006) 'Bridging the regeneration gap: genetic insights from diverse animal models', Nature Reviews Genetics 7(11): 873-884. Bergmann, A. and Steller, H. (2010) 'Apoptosis, stem cells, and tissue regeneration', Sci Signal 3(145): re8. Bermange, A. L., Reddien, P. W. and Alvarado, A. S. (2003) 'An RNAi screen for regeneration genes in the planarian, Schmidtea mediterranea.', Dev Biol 259(2): 536-536. Bode, H. R. (2009) 'Axial patterning in hydra', Cold Spring Harb Perspect Biol 1(1): a000463. Bosch, T. C. (2007) 'Why polyps regenerate and we don't: towards a cellular and molecular framework for Hydra regeneration', Dev Biol 303(2): 421-33. Chu, C. Y. and Rana, T. M. (2007) 'Small RNAs: regulators and guardians of the genome', J Cell Physiol 213(2): 412-9. Dupont, S. and Thorndyke, M. C. (2006) 'Growth or differentiation? Adaptive regeneration in the brittlestar Amphiura filiformis', J Exp Biol 209(Pt 19): 3873-81. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. (1998) 'Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans', Nature 391(6669): 806-11. Friedman, R. S. and Krause, D. S. (2009) 'Regeneration and repair: new findings in stem cell research and aging', Ann N Y Acad Sci 1172: 88-94. Galliot, B. and Ghila, L. (2010) 'Cell plasticity in homeostasis and regeneration', Mol Reprod Dev 77(10): 837-55. Giani, V. C., Jr., Yamaguchi, E., Boyle, M. J. and Seaver, E. C. (2011) 'Somatic and germline expression of piwi during development and regeneration in the marine polychaete annelid Capitella teleta', Evodevo 2: 10. Glauber, K. M., Dana, C. E. and Steele, R. E. (2010) 'Hydra', Curr Biol 20(22): R964-5. Gustafson, E. A. and Wessel, G. M. (2010) 'Vasa genes: emerging roles in the germ line and in multipotent cells', Bioessays 32(7): 626-37. Hayashi, T., Asami, M., Higuchi, S., Shibata, N. and Agata, K. (2006) 'Isolation of planarian X-ray-sensitive stem cells by fluorescence-activated cell sorting', Dev Growth Differ 48(6): 371-80. Hayashi, T., Shibata, N., Okumura, R., Kudome, T., Nishimura, O., Tarui, H. and Agata, K. (2010) 'Single-cell gene profiling of planarian stem cells using fluorescent activated cell sorting and its 'index sorting' function for stem cell research', Dev Growth Differ 52(1): 131-44. Heissig, B., Ohki, Y., Sato, Y., Rafii, S., Werb, Z. and Hattori, K. (2005) 'A role for niches in hematopoietic cell development', Hematology 10(3): 247-53. Hernroth, B., Farahani, F., Brunborg, G., Dupont, S., Dejmek, A. and Skold, H. N. (2010) 'Possibility of mixed progenitor cells in sea star arm regeneration', J Exp Zool B Mol Dev Evol 314(6): 457-68. Higuchi, S., Hayashi, T., Hori, I., Shibata, N., Sakamoto, H. and Agata, K. (2007) 'Characterization and categorization of fluorescence activated cell sorted planarian stem cells by ultrastructural analysis', Dev Growth Differ 49(7): 571-81. Hoffmeister-Ullerich, S. A. (2007) 'Hydra--ancient model with modern outfit', Cell Mol Life Sci 64(23): 3012-6. Hoshi, M., Kobayashi, K., Arioka, S., Hase, S. and Matsumoto, M. (2003) 'Switch from Asexual to Sexual Reproduction in the Planarian Dugesia ryukyuensis', Integr Comp Biol 43(2): 242-6. Kawamoto, S., Yoshida-Noro, C. and Tochinai, S. (2005) 'Bipolar head regeneration induced by artificial amputation in Enchytraeus japonensis (Annelida, Oligochaeta)', J Exp Zool A Comp Exp Biol 303(8): 615-27. Kondo, M. and Akasaka, K. (2010) 'Regeneration in crinoids', Dev Growth Differ 52(1): 57-68. Kurimoto, K., Muto, Y., Obayashi, N., Terada, T., Shirouzu, M., Yabuki, T., Aoki, M., Seki, E., Matsuda, T., Kigawa, T. et al. (2005) 'Crystal structure of the N-terminal RecA-like domain of a DEAD-box RNA helicase, the Dugesia japonica vasa-like gene B protein', J Struct Biol 150(1): 58-68. Liu, L., Qi, H., Wang, J. and Lin, H. (2011) 'PAPI, a novel TUDOR-domain protein, complexes with AGO3, ME31B and TRAL in the nuage to silence transposition', Development 138(9): 1863-73. Myohara, M. (2004) 'Differential tissue development during embryogenesis and regeneration in an Annelid', Dev Dyn 231(2): 349-58. Noce, T., Okamoto-Ito, S. and Tsunekawa, N. (2001) 'Vasa homolog genes in mammalian germ cell development', Cell Struct Funct 26(3): 131-6. Orii, H., Sakurai, T. and Watanabe, K. (2005) 'Distribution of the stem cells (neoblasts) in the planarian Dugesia japonica', Dev Genes Evol 215(3): 143-57. Palakodeti, D., Smielewska, M., Lu, Y. C., Yeo, G. W. and Graveley, B. R. (2008) 'The PIWI proteins SMEDWI-2 and SMEDWI-3 are required for stem cell function and piRNA expression in planarians', RNA 14(6): 1174-86. Parvinen, M. (2005) 'The chromatoid body in spermatogenesis', Int J Androl 28(4): 189-201. Prud'homme, B., de Rosa, R., Arendt, D., Julien, J.-F., Pajaziti, R., Dorresteijn, A. W. C., Adoutte, A., Wittbrodt, J. and Balavoine, G. (2003) 'Arthropod-like Expression Patterns of engrailed and wingless in the Annelid Platynereis dumerilii Suggest a Role in Segment Formation', Current Biology 13(21): 1876-1881. Randolph, H. (1892) 'The Regeneration of the tail in Lumbriculus', Journal of Mrophalogy 7(3): 317-344. Reddien, P. W. and Sanchez Alvarado, A. (2004) 'Fundamentals of planarian regeneration', Annu Rev Cell Dev Biol 20: 725-57. Rossi, L., Salvetti, A., Lena, A., Batistoni, R., Deri, P., Pugliesi, C., Loreti, E. and Gremigni, V. (2006) 'DjPiwi-1, a member of the PAZ-Piwi gene family, defines a subpopulation of planarian stem cells', Dev Genes Evol 216(6): 335-46. Rouhana, L., Shibata, N., Nishimura, O. and Agata, K. (2010) 'Different requirements for conserved post-transcriptional regulators in planarian regeneration and stem cell maintenance', Dev Biol 341(2): 429-43. Salo, E., Abril, J. F., Adell, T., Cebria, F., Eckelt, K., Fernandez-Taboada, E., Handberg-Thorsager, M., Iglesias, M., Molina, M. D. and Rodriguez-Esteban, G. (2009) 'Planarian regeneration: achievements and future directions after 20 years of research', Int J Dev Biol 53(8-10): 1317-27. Shibata, N., Rouhana, L. and Agata, K. (2010) 'Cellular and molecular dissection of pluripotent adult somatic stem cells in planarians', Dev Growth Differ 52(1): 27-41. Shibata, N., Umesono, Y., Orii, H., Sakurai, T., Watanabe, K. and Agata, K. (1999a) 'Expression of vasa(vas)-Related Genes in Germline Cells and Totipotent Somatic Stem Cells of Planarians', Dev Biol 206: 15. Shibata, N., Umesono, Y., Orii, H., Sakurai, T., Watanabe, K. and Agata, K. (1999b) 'Expression of vasa(vas)-related genes in germline cells and totipotent somatic stem cells of planarians', Dev Biol 206(1): 73-87. Strasser, M. J., Mackenzie, N. C., Dumstrei, K., Nakkrasae, L. I., Stebler, J. and Raz, E. (2008) 'Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development', BMC Dev Biol 8: 58. Sugio, M., Takeuchi, K., Kutsuna, J., Tadokoro, R., Takahashi, Y., Yoshida-Noro, C. and Tochinai, S. (2008) 'Exploration of embryonic origins of germline stem cells and neoblasts in Enchytraeus japonensis (Oligochaeta, Annelida)', Gene Expr Patterns 8(4): 227-36. Tadokoro, R., Sugio, M., Kutsuna, J., Tochinai, S. and Takahashi, Y. (2006) 'Early segregation of germ and somatic lineages during gonadal regeneration in the annelid Enchytraeus japonensis', Curr Biol 16(10): 1012-7. Takeo, M., Yoshida-Noro, C. and Tochinai, S. (2010) 'Functional analysis of grimp, a novel gene required for mesodermal cell proliferation at an initial stage of regeneration in Enchytraeus japonensis (Enchytraeidae, Oligochaete)', Int J Dev Biol 54(1): 151-60. Tanaka, E. M. and Reddien, P. W. (2011) 'The cellular basis for animal regeneration', Dev Cell 21(1): 172-85. Thorndyke, M. C., Chen, W. C., Beesley, P. W. and Patruno, M. (2001) 'Molecular approach to echinoderm regeneration', Microsc Res Tech 55(6): 474-85. Timmons, L., Tabara, H., Mello, C. C. and Fire, A. Z. (2003) 'Inducible systemic RNA silencing in Caenorhabditis elegans', Mol Biol Cell 14(7): 2972-83. Wagner, D. E., Wang, I. E. and Reddien, P. W. (2011) 'Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration', Science 332(6031): 811-6. Yoshida-Kashikawa, M., Shibata, N., Takechi, K. and Agata, K. (2007) 'DjCBC-1, a conserved DEAD box RNA helicase of the RCK/p54/Me31B family, is a component of RNA-protein complexes in planarian stem cells and neurons', Dev Dyn 236(12): 3436-50. Zattara, E. E. and Bely, A. E. (2011) 'Evolution of a novel developmental trajectory: fission is distinct from regeneration in the annelid Pristina leidyi', Evol Dev 13(1): 80-95. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16050 | - |
| dc.description.abstract | 再生是動物組織、器官或個體等受損時,修復並使其回復正常功能的生理現象。再生進行時,細胞分裂及分化來重建組織及 形成器官。在水螅及渦蟲中,成體幹細胞(Neoblast),持續進行細胞分裂或細胞分化以維持個體的大小或成長,並有助於再生的進行。儘管刺絲胞動物或扁形動物已成為再生研究的模式物種,其簡單的體制對於研究特定器官的形成及重建有一定的限制。 Aeolosoma viride 為一淡水生環節動物,有十九個體節、中樞神經系統、消化及排泄系統等器官分化。為瞭解其成體幹細胞在個體維持及再生中扮演的角色,Avipiwi、Aviago3 及 Avivasa 等基因被選殖用以定義及追蹤成體幹細胞。結果顯示,這些基因高量表現在完整個體的尾部無性繁殖區域,同時此區域亦具備高量細胞分裂活性。當再生進行時,不論在前三天的頭部再生中組織(Blastema)或後三天的尾部再生組織中皆可偵測到該基因表現或細胞分裂,顯示成體幹細胞會參與在頭部或尾部的再生。此外,使用九十格雷(Gray, Gy)的伽瑪輻射線(r-irradiation)照射個體後,Avipiwi、Aviago3 及 Avivasa 的基因表現量顯著下降,細胞分裂停止,生殖及再生皆無法進行,表示成體幹細胞對 A. viride 的生殖及再生都是必須的。最後,以 RNA 干擾(RNA interference, RNAi)的方式抑制 Avivasa 表現時,發現再生會受到抑制,且再生中組織的細胞分裂亦受到抑制。綜合上述結果,A. viride 的再生及生殖使用相似的細胞或分子機制,都需要成體幹細胞的參與。 | zh_TW |
| dc.description.abstract | Some animals can regenerate their lost tissues or organs. During regeneration, both Tissue remodeling and organ reformation need cell proliferation and/or differentiation. Neoblasts, one of the somatic stem cells, can proliferate to increase cell number in invertebrates, such as hydra or planarian. Although hydra and planarian are good model animals for regeneration research, their body plans are too primitive to study regeneration of complicated organs. Aeolosoma viride, a fresh water annelid with 19 segments, a central nerve system, nephridia, and a complete digestive system with a pharynx and an anus, presents great regenerative ability. To identify and trace its neoblasts, three marker genes including Avipiwi, Aviago3, and Avivasa have been cloned, and these genes are highly expressed both in the posterior and in the regenerating tissues of A. viride. Moreover, cell proliferation rate is higher at these regions. Neoblast is highly activated during generation, first 3 days of anterior regeneration, and last 3 days of posterior regeneration. The reproductive ability and regeneration process were significantly inhibited after 90 Gy r-irradiation. And neoblast activity was not detected under this dose of irradiation. It indicated that neoblast is essential for reproduction and regeneration. Moreover, by RNA interference (RNAi), Avivasa was confirmed to participate in the proliferation ability of the neoblasts. These data strongly suggested that neoblasts in A. viride participate in both reproduction and regeneration, which share similar cellular or molecular mechanisms. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:59:17Z (GMT). No. of bitstreams: 1 ntu-101-R99b41008-1.pdf: 38759481 bytes, checksum: 1ba8b70a4834c6b094b3303f0e11c8f3 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv 1. Introduction 1 1.1. The Concept of Regeneration 1 1.2. The Pluripotent Adult Somatic Stem Cell (Neoblast) 2 1.3. The Neoblast Markers 3 1.3.1. piwi 3 1.3.2. vasa 4 1.4. The Origin of PGC and Neoblast in Invertebrates 5 1.5. RNA Interference (RNAi) 6 1.6. The Various regenerative Model Organisms 7 1.7. Introduction of Aeolosoma viride 9 2. Materials and Methods 11 2.1. Animals 11 2.2. Amputation and Regeneration Assay 11 2.3. Total RNA Extraction 11 2.4. Reverse Transcription (RT) 12 2.5. Gene Cloning 12 2.6. Quantification PCR (qPCR) Analysis 13 2.7. γ-irradiation 14 2.8. Immuno-fluorescence 14 2.9. Synthesis of DIG-labeled Riboprobes or Unlabeled dsRNAs of Avipiwi, Aviago3, or Avivasa 15 2.10. in situ Hybridization 16 2.11.RNA Interference (RNAi) 17 2.12. Statistical Analysis 18 3. Results 19 3.1. Identification of the Homologuous Genes of piwi and vasa in A. viride 19 3.1.1. Avipiwi 19 3.1.2. Aviago3 20 3.1.3. Avivasa 20 3.2. Identification of the Neoblast in A. viride 21 3.3. The Role of Neoblasts in Reproduction of A. viride 22 3.3.1. Cell Proliferation and Gene Expression 22 3.3.2. The Effect of γ-irradiation 23 3.4. The Role of Neoblasts in Anterior Regeneration of A. viride 25 3.4.1. Cell Proliferation 25 3.4.2. Gene Expression 26 3.4.3. The Effect of γ-irradiation 26 3.5. The Role of Neoblasts in Posterior Regeneration of A. viride 28 3.5.1. Cell Proliferation 28 3.5.2. Gene Expression 29 3.5.3. The Effect of γ-irradiation 29 3.6. The Roles of Avivasa in Neoblast 29 4. Discussion 31 4.1. Models for the Neoblast Functions in Reproduction and Regeneration 31 4.2. Comparison of the Strategies Used For Reproduction and Regeneration in A. viride 32 4.3. Comparison of the Reproduction and Regeneration Mechanisms in Various Organisms 34 References 37 Figures 43 | |
| dc.language.iso | zh-TW | |
| dc.subject | piwi | zh_TW |
| dc.subject | 無性繁殖 | zh_TW |
| dc.subject | 成體幹細胞 | zh_TW |
| dc.subject | 細胞分裂 | zh_TW |
| dc.subject | 再生 | zh_TW |
| dc.subject | vasa | zh_TW |
| dc.subject | Aeolosoma viride | zh_TW |
| dc.subject | Cell proliferation | en |
| dc.subject | vasa | en |
| dc.subject | piwi | en |
| dc.subject | Asexual reproduction | en |
| dc.subject | Aeolosoma viride | en |
| dc.subject | Neoblast (Adult somatic stem cell) | en |
| dc.subject | Regeneration | en |
| dc.title | 成體幹細胞在環節動物Aeolosoma viride再生及生殖中扮演的角色 | zh_TW |
| dc.title | The Roles of Neoblasts on Regeneration and Reproduction in the Annelid, Aeolosoma viride | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 朱家瑩(Chia-Ying Chu) | |
| dc.contributor.oralexamcommittee | 李心予(Hsinyu Lee),張俊哲(Chun-Che Chang) | |
| dc.subject.keyword | Aeolosoma viride,成體幹細胞,細胞分裂,再生,無性繁殖,piwi,vasa, | zh_TW |
| dc.subject.keyword | Aeolosoma viride,Neoblast (Adult somatic stem cell),Cell proliferation,Regeneration,Asexual reproduction,piwi,vasa, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-08-09 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究所 | zh_TW |
| 顯示於系所單位: | 動物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 37.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
