請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16022完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李坤彥(Kung-Yen Lee) | |
| dc.contributor.author | Mu-Chi Lee | en |
| dc.contributor.author | 李慕祈 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:58:22Z | - |
| dc.date.copyright | 2020-08-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-19 | |
| dc.identifier.citation | [1] M. Merzoug, F. Naceri, Engineering, and Technology, “Comparison of field-oriented control and direct torque control for permanent magnet synchronous motor (PMSM),” vol. 45, pp. 299-304, 2008. [2] C. Liu, and Y. Luo, “Overview of advanced control strategies for electric machines,” vol. 3, no. 2, pp. 53-61, 2017. [3] X. Wang, N. Liu, and R. Na, 'Simulation of PMSM field-oriented control based on SVPWM.' pp. 1465-1469, 2009. [4] T. Chen, 'Modeling and simulation of PMSM servo system based on SVPWM.' pp. 6748-6751, 2014. [5] S. Singh, and A. Tiwari, 'Analysis and simulation of vector controlled PMSM drive using SVPWM inverter.' pp. 709-714, 2017. [6] X. Wu et al., “Initial rotor position detection for sensorless interior PMSM with square-wave voltage injection,” vol. 53, no. 11, pp. 1-4, 2017. [7] J.-H. Jang et al., “Sensorless drive of surface-mounted permanent-magnet motor by high-frequency signal injection based on magnetic saliency,” vol. 39, no. 4, pp. 1031-1039, 2003. [8] G. Zhen, W. Jianmin, and Z. Xiaomin, 'Improved square-wave voltage injection method for sensorless control of PMSM and its adaptability to motor parameter variations.' pp. 710-715, 2014. [9] P. L. Xu, Z. Q. Zhu, 'Novel Square-Wave Signal Injection Method Using Zero-Sequence Voltage for Sensorless Control of PMSM Drives' vol. 63, no. 12, pp. 7444-7454, 2016. [10] Y.-D. Yoon et al., “High-bandwidth sensorless algorithm for AC machines based on square-wave-type voltage injection,” vol. 47, no. 3, pp. 1361-1370, 2011. [11] A. Khlaief, M. Boussak, and A. Chaari, “A MRAS-based stator resistance and speed estimation for sensorless vector controlled IPMSM drive,” vol. 108, pp. 1-15, 2014. [12] H. M. Kojabadi, and M. Ghribi, 'MRAS-based adaptive speed estimator in PMSM drives.' pp. 569-572, 2006. [13] Y. S. Kim, S. K. Kim, and Y. A. Kwon, 'MRAS based sensorless control of permanent magnet synchronous motor.' pp. 1632-1637, 2003. [14] R. Dhaouadi, N. Mohan, and L. Norum, “Design and implementation of an extended Kalman filter for the state estimation of a permanent magnet synchronous motor,” vol. 6, no. 3, pp. 491-497, 1991. [15] A. Qiu, B. Wu, and H. Kojori, 'Sensorless control of permanent magnet synchronous motor using extended Kalman filter.' pp. 1557-1562, 2004. [16] S. Bolognani, L. Tubiana, and M. Zigliotto, “Extended Kalman filter tuning in sensorless PMSM drives,” vol. 39, no. 6, pp. 1741-1747, 2003. [17] P. Garcia et al., “Saliency-tracking-based sensorless control of AC machines using structured neural networks,” vol. 43, no. 1, pp. 77-86, 2007. [18] Z. Qiao et al., “New sliding-mode observer for position sensorless control of permanent-magnet synchronous motor,” vol. 60, no. 2, pp. 710-719, 2012. [19] O. Saadaoui et al., 'Position sensorless vector control of PMSM drives based on SMO.' pp. 545-550, 2015. [20] YS. Jung, and MG. Kim, “Sliding mode observer for sensorless control of IPMSM drives,” vol. 9, no. 1, pp. 117-123, 2009. [21] Y. Zhao, W. Qiao, and L. Wu, 'Position extraction from a discrete sliding-mode observer for sensorless control of IPMSMs.' pp. 725-730, 2012. [22] S. Bedarkar Kailas, S. Sankeshwari, and E. Engineering, “Sensorless speed and position estimation of PMSM based on sliding mode observer with tan hyperbolic function,” pp. 42-47, 2015. [23] V. Srikanth, and A. A. Dutt, 'A comparative study on the effect of switching functions in SMO for PMSM drives.' pp. 1-6, 2012. [24] 曾炫錡, 順滑模態觀測速度控制應用於無轉速感測之直驅式可變速風力發電機, 機械工程學系. 2012, 國立交通大學 [25] 張繼, 氮化鎵功率元件於永磁同步馬達驅動之研究, 工程科學及海洋工程學系. 2018, 國立台灣大學 [26] Texas Instruments, TMS320F2806x Microcontrollers Datasheet,[March, 2020] [27] Texas Instruments, Sensorless Field Oriented Control of 3-Phase Permanent Magnet Synchronous Motors,[July, 2013] [28] Texas Instruments, InstaSPIN-FOC™ and InstaSPIN-MOTION™ User's Guide,[July, 2019] [29] Texas Instruments, Technical Reference Manual,[January, 2014] [30] Texas Instruments, InstaSPIN Projects and Labs User’s Guide,[March, 2017] [31] Allegro, High Precision Linear Current Sensor IC with 100 µΩ Current Conductor, ACS770xCB datasheet, 2015 [32] International Rectifier, HEXFET Power MOSFET, IRFS7730-7PPbF, [November, 2014] [33] International Rectifier, High and Low side Driver, IRS21867S, [May, 2011] [34] 袁雷等.北京航空航天大學出版社, 現代永磁同步電機控制原理及MATLAB仿真 [35] 童建強, 永磁同步馬達使用線性霍爾感測器伺服控制及特性參數鑑別, 電機與控制工程學系. 2006, 國立交通大學 [36] 陳桂村.勢流科技, IPMSM全區間(MTPA FW)速度操作特性分析 [37] 李毓彥, 以微控制器研製永磁同步馬達的向量控制驅動器, 電機工程學系研究所. 2009, 國立臺北科技大學 [38] Phase-Locked Loops的思考(二) (https://zhuanlan.zhihu.com/p/28823351) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16022 | - |
| dc.description.abstract | 本論文研究主軸為內藏式永磁同步電動機的無感測控制策略,為了能夠穩定應用在電動機車系統上,必須嚴謹地測試電動機轉速在各轉速區間下的穩定性,實驗不僅針對單一無感測演算法來研究及分析,而是針對不同轉速區間給予合適的控制策略。電動機於零轉速與低轉速命令下注入高頻信號至直軸電壓中,擷取反饋電流信號以分析轉子位置及估測轉速,並利用比例積分參數的調控來獲得穩定的系統響應,於中高轉速下利用對非線性系統有強健性的滑順模態觀測器來觀測反電動勢信號,搭配鎖相迴路控制架構來獲得轉子角度資訊進而估測轉速,並經由實驗證明能在不同轉速下有穩定的響應,最終將不同演算法進行整合使得在任何一個轉速區間皆獲得最準確的轉速響應。對於上述的理論與實作研究部分,本文將利用MATLAB/Simulink軟體結合空間向量波寬調變與向量控制技術加以模擬永磁同步電動機系統,並分析其電流、電壓及轉矩等波型響應,再使用德州儀器的數位信號處理器TMS320F28069M與三相逆變器等硬體設備開發整體電動機控制系統,最後驗證內藏式永磁同步電動機在無感測控制策略上的可行性。 | zh_TW |
| dc.description.abstract | This thesis studies the sensorless control strategy of Interior Permanent Magnet Synchronous Motor (IPMSM). In order to apply it to the electric motorcycle system stably, it is necessary to test the stability of the motor speed in each speed range. The experiment not only studies and analyzes a single sensorless algorithm, but also gives appropriate control strategies for different speed ranges. High frequency injection method injects signal into the direct axis at zero and low speeds, extracts feedback current signals to estimate the rotor position and speed values, and tunes the PI parameters to obtain stable system response. At medium and high speed range, Sliding Mode Observer method with robustness to nonlinear system is used to observe the back EMF signal, then using the signal as an input to the Phase-Locked Loop (PLL) system to obtain rotor angle information. The experiments show that stable response can be achieved at different speeds. Finally, different algorithms are combines to obtain the most accurate speed response at any speed range. From the above research of theoretical and practical part, this thesis will use Matlab/Simulink software combined with SVPWM and vector control technology to simulate the PMSM system and analyze the response of current, voltage and torque waveforms. Then using DSP TMS320F28069m and a three-phase inverter to develop the motor control system. Finally, verifying the feasibility of sensorless control strategy on IPMSM. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:58:22Z (GMT). No. of bitstreams: 1 U0001-3107202013320500.pdf: 10762053 bytes, checksum: 931a6a86ab810859e4dd92aa9bea8b1c (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 致謝 ii 摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 xi 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究目標 4 1.4 論文大綱 5 第二章 永磁同步電動機理論與基礎 7 2.1 永磁同步電動機簡介 7 2.2 座標軸轉換 9 2.3 永磁同步電動機數學模型 12 2.4 空間向量波寬調變 17 第三章 永磁同步電動機無感測驅動控制設計 30 3.1 磁場導向向量控制理論 30 3.2 高頻(方波)注入法 32 3.2.1 高頻注入法簡介 32 3.2.2 鎖相迴路應用 33 3.2.3 方波注入法 36 3.3 滑順模態觀測器 40 3.3.1 滑順模態控制原理 40 3.3.2 滑順模態觀測器原理 43 3.3.3 滑模觀測器估測擴展反電動勢 49 第四章 永磁同步電動機無感測控制模擬結果 54 4.1 模擬環境與電動機參數介紹 54 4.2 滑順模態觀測器模擬結果 56 4.3 高頻注入法模擬結果 63 第五章 永磁同步電動機無感測控制實驗結果 71 5.1 永磁同步電動機軟硬體架構 71 5.2 實驗平台周邊設備介紹 73 5.2.1 電流感應器回授電路 73 5.2.2 三相逆變器模組與閘極驅動電路 76 5.2.3 霍爾效應感測器 78 5.2.4 數位信號處理器TMS320F28069M 81 5.3 系統軟體設計流程 85 5.4 實驗結果 88 5.4.1 滑順模態觀測器實驗結果 88 5.4.2 高頻(方波)注入實驗結果 102 5.4.3 轉速區間切換實驗結果 114 第六章 結論與未來工作 119 6.1 結論 119 6.2 未來工作 120 參考文獻 121 | |
| dc.language.iso | zh-TW | |
| dc.subject | 滑順模態觀測器 | zh_TW |
| dc.subject | 內藏式永磁同步電動機 | zh_TW |
| dc.subject | 電動機車 | zh_TW |
| dc.subject | 無感測控制 | zh_TW |
| dc.subject | 高頻注入法 | zh_TW |
| dc.subject | Electric Motorcycle | en |
| dc.subject | Sliding Mode Observer | en |
| dc.subject | High Frequency Injection | en |
| dc.subject | Sensorless Control | en |
| dc.subject | IPMSM | en |
| dc.title | 全速無感測電動機控制應用於電動機車之研究 | zh_TW |
| dc.title | Research on Full Speed Motor Control Applied to Electric Motorcycle | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.advisor-orcid | 李坤彥(0000-0003-2590-0702) | |
| dc.contributor.oralexamcommittee | 劉志文(Chih-Wen Liu),李佳翰(Jia-Han Li) | |
| dc.subject.keyword | 內藏式永磁同步電動機,電動機車,無感測控制,高頻注入法,滑順模態觀測器, | zh_TW |
| dc.subject.keyword | IPMSM,Electric Motorcycle,Sensorless Control,High Frequency Injection,Sliding Mode Observer, | en |
| dc.relation.page | 123 | |
| dc.identifier.doi | 10.6342/NTU202002153 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3107202013320500.pdf 未授權公開取用 | 10.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
