請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15943完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳基旺 | |
| dc.contributor.author | Hsiao-Chun Wang | en |
| dc.contributor.author | 王筱君 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:56:02Z | - |
| dc.date.copyright | 2012-09-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-15 | |
| dc.identifier.citation | 1.5 References
1. WHO Media centre. Cancer. http://www.who.int/mediacentre/factsheets/fs297/en/ (accessed March, 29, 2012) 2. Ferlay, J.; Shin, H. R.; Bray, F.; Forman, D.; Mathers, C.; Maxwell, D. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 2010, 127, 2893-2917. 3. Hanahan, D.; Weinberg, R. A. The hallmarks of cancer. Cell 2000, 100, 57-70. 4. Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov. 2007, 6, 273-286. 5. Cohen, P. Protein kinases – the major drug targets of the twenty-first century? Nat. Rev. Drug Discov. 2002, 1, 309-315. 6. Wood, L. D.; Parsons, D. W.; Jones, S.; Lin, J.; Sjöblom, T.; Leary, R. J.; Shen, D.; Boca, S. M.; Barber, T.; Ptak, J.; Silliman, N.; Szabo, S.; Dezso, Z.; Ustyanksky, V.; Nikolskaya, T.; Nikolsky, Y.; Karchin, R.; Wilson, P. A.; Kaminker, J. S.; Zhang, Z.; Croshaw, R.; Willis, J.; Dawson, D.; Shipitsin, M.; Willson, J. K.; Sukumar, S.; Polyak, K.; Park, B. H.; Pethiyagoda, C. L.; Pant, P. V.; Ballinger, D. G.; Sparks, A. B.; Hartigan, J.; Smith, D. R.; Suh, E.; Papadopoulos, N.; Buckhaults, P.; Markowitz, S. D.; Parmigiani, G.; Kinzler, K. W.; Velculescu, V. E.; Vogelstein, B. The genomic landscapes of human breast and colorectal cancers. Science 2007, 318, 1108-1113. 7. Fedorov, O.; Muller, S.; Knapp, S. The (un)targeted cancer kinome. Nat. Chem. Biol. 2010, 6, 166-169. 8. Vieth, M.; Sutherland, J. J.; Robertson, D. H.; Campbell, R. M. Kinomics: characterizing the therapeutically validated kinase space. Drug Discov. Today. 2005, 10, 839-846. 9. Weisberg, E.; Manley, P. W.; Cowan-Jacob, S. W.; Hochhaus, A.; Griffin, J. D. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat. Rev. Cancer 2007, 7, 345-356. 10. Morphy, R.; Kay, C.; Rankovic, Z. From magic bullets to designed multiple 10 ligands. Drug Discov. Today 2004, 9. 641-651. 11. Morphy, R.; Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem. 2005, 48, 6523-6543. 12. Bukowski, R. M.; Yasothan, U.; Kirkpatrick, P. Pazopanib. Nat. Rev. Drug Discov. 2010, 9, 17-18. 13. Wilhelm, C.; Carter, C.; Lynch, M.; Lowinger, T.; Dumas, J.; Smith, R. A.; Schwartz, B.; Simantov, R.; Kelley, S. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat. Rev. Drug Discov. 2006, 5, 835-844. 14. Faivre, S.; Demetri, G.; Sargent, W.; Raymond, E. Molecular basis for sunitinib efficacy and future clinical development. Nat. Rev. Drug Discov. 2007, 6, 734- 745. 15. Sun, L.; Liang, C.; Shirazian, S.; Zhou, Y.; Miller, T.; Cui, J.; Fukuda, J. Y.; Chu, J-Y.; Nematalla, A.; Wang, X.; Chen, H.; Sistla, A.; Luu, T. C.; Tang, F.; Wei, J.; Tang, C. Discovery of 5-[5-fluoro-2-oxo-1,2- dihydroindol-(3Z)-ylidenemethyl]- 2,4-dimethyl-1H-pyrrole-3-carboxylic Acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase. J. Med. Chem. 2003, 46, 1116-1119. 16. Anastassiadis, T.; Deacon, S. W.; Devarajan, K.; Ma, H.; Peterson, J. R. Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat. Biotechnol. 2011, 29, 1039-1045. 17. Karaman, M. W.; Herrgard, S.; Treiber, D. K.; Gallant, P.; Atteridge, C. E.; Campbell, B. T.; Chan, K. W.; Ciceri, P.; Davis, M. I.; Edeen, P. T.; Faraoni, R.; Floyd, M.; Hunt, J. P.; Lockhart, D. J.; Milanov, Z. V.; Morrison, M. J.; Pallares, G.; Patel1, H. K.; Pritchard, S.; Wodicka, L. M.; Zarrinkar, P. P. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 2008, 26, 127-132. 18. Morphy, R. Selectively nonselective kinase inhibition: striking the right balance. J. Med. Chem. 2010, 53, 1413-1437. 19. UCB R&D information centre, protein kinase inhibitor chart. http://www.ucb.com/rd/info-centre/protein-kinase-inhibitors (accessed April, 5) 11 20. Akritopoulou-Zanze, I.; Hajduk, P. J. Kinase-targeted libraries: the design and synthesis of novel, potent, and selective kinase inhibitors. Drug Discov. Today 2009, 14, 291-297. 21. NCI drug dictionary. http://www.cancer.gov/drugdictionary (accessed March, 29, 2012) 22. ClinicalTrials.gov. http://www.clinicaltrials.gov/ (accessed March, 30) 2.7 References 1. Jiang, T.; Kuhen, K. L.; Wolff, K.; Yin, H.; Bieza, K.; Caldwell, J.; Bursulaya, B.; Wu, T. Y.; He, Y. Design, synthesis and biological evaluations of novel oxindoles as HIV-1 non-nucleoside reverse transcriptase inhibitors. Part 1. Bioorg. Med. Chem. Lett. 2006, 16, 2105-2108. 2. Jiang, T.; Kuhen, K. L.; Wolff, K.; Yin, H.; Bieza, K.; Caldwell, J.; Bursulaya, B.; Tuntland, T.; Zhang, K.; Karanewsky, D.; He, Y. Design, synthesis, and biological evaluations of novel oxindoles as HIV-1 non-nucleoside reverse transcriptase inhibitors. Part 2. Bioorg. Med. Chem. Lett. 2006, 16, 2109-2012. 3. Mohammadi, M.; McMahon, G.; Sun, L.; Tang, C.; Hirth, P.; Yeh, B. K.; Hubbard, S. R.; Schlessinger, J. Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 1997, 276, 955-960. 4. Lane, M. E.; Yu, B.; Rice, A.; Lipson, K. E.; Liang, C.; Sun, L.; Tang, C.; McMahon, G.; Pestell, R. G.; Wadler, S. A novel cdk2-selective inhibitor, SU9516, induces apoptosis in colon carcinoma cells. Cancer Res. 2001, 61, 6170- 6177. 5. Moshinsky, D. J.; Bellamacina, C. R.; Boisvert, D. C.; Huang, P.; Hui, T.; Jancarik, J.; Kim, S. H.; Rice, A. G. SU9516: biochemical analysis of cdk inhibition and crystal structure in complex with cdk2. Biochem. Biophys. Res. Commun. 2003, 310, 1026-1031. 6. Sun, L.; Tran, N.; Tang, F.; App, H.; Hirth, P.; McMahon, G.; Tang, C. Synthesis and biological evaluations of 3-substituted indolin-2-ones: a novel class of tyrosine kinase inhibitors that exhibit selectivity toward particular receptor tyrosine kinases. J. Med. Chem. 1998, 41, 2588-2603. 7. Fong, T. A.; Shawver, L. K.; Sun, L.; Tang, C.; App, H.; Powell, T. J.; Kim, Y. H.; Schreck, R.; Wang, X.; Risau, W.; Ullrich, A.; Hirth, K. P.; McMahon, G. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/VEGFR-2) that inhibits tyrosine kinase catalysis, tumor 30 vascularization, and growth of multiple tumor types. Cancer Res. 1999, 59, 99- 106. 8. Laird, A. D.; Vajkoczy, P.; Shawver, L. K.; Thurnher, A.; Liang, C.; Mohammadi, M.; Schlessinger, J.; Ullrich, A.; Hubbard, S. R.; Blake, R. A.; Fong, T. A.; Strawn, L. M.; Sun, L.; Tang, C.; Hawtin, R.; Tang, F.; Shenoy, N.; Hirth, K. P.; McMahon, G.; Cherrington, J. M. SU6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Res. 2000, 60, 4152-4160. 9. Sun, L.; Tran, N.; Liang, C.; Tang, F.; Rice, A.; Schreck, R.; Waltz, K.; Shawver, L. K.; McMahon, G.; Tang, C. Design, synthesis, and evaluations of substituted 3- [(3- or 4-carboxyethylpyrrol-2-yl)methylidenyl]indolin-2-ones as inhibitors of VEGF, FGF, and PDGF receptor tyrosine kinases. J. Med. Chem. 1999, 42, 5120- 5130. 10. PR Newswire website. http://www.prnewswire.com/news-releases/pharmaciaannounces- closing-of-su5416-semaxanib-clinical-trials-75895232.html (accessed on May, 9th, 2012) 11. Sun, L.; Liang, C.; Shirazian, S.; Zhou, Y.; Miller, T.; Cui, J.; Fukuda, J. Y.; Chu, J. Y.; Nematalla, A.; Wang, X.; Chen, H.; Sistla, A.; Luu, T. C.; Tang, F.; Wei, J.; Tang, C. Discovery of 5-[5-fluoro-2-oxo-1,2- dihydroindol-(3Z)-ylidenemethyl]- 2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase. J. Med. Chem. 2003, 46, 1116-1119. 12. Faivre, S.; Demetri, G.; Sargent, W.; Raymond, E. Molecular basis for sunitinib efficacy and future clinical development. Nat. Rev. Drug Discov. 2007, 6, 734- 745. 13. Owa, T.; Yoshino, H.; Okauchi, T.; Yoshimatsu, K.; Ozawa, Y.; Sugi, N. H.; Nagasu, T.; Koyanagi, N.; Kitoh, K. Discovery of novel antitumor sulfonamides targeting G1 phase of the cell cycle. J. Med. Chem. 1999, 42, 3789-3799. 14. Ozawa, Y.; Sugi, N.H.; Nagasu, T.; Owa, T.; Watanabe, T.; Koyanagi, N.; Yoshino, 31 H.; Kitoh, K.; Yoshimatsu, K. E7070, a novel sulphonamide agent with potent antitumour activity in vitro and in vivo. Eur. J. Cancer 2001, 37, 2275-2282. 15. Yamamoto, K.; Noda, K.; Yoshimura, A.; Fukuoka, M.; Furuse, K.; Niitani, H. Phase I study of E7010. Cancer Chemother. Pharmacol. 1998, 42, 127-134. 16. Smyth, J. F.; Aamdal, S.; Awada, A.; Dittrich, C.; Caponigro, F.; Schöffski, P.; Gore, M.; Lesimple, T.; Djurasinovic, N.; Baron, B.; Ravic, M.; Fumoleau, P.; Punt. C. J.; EORTC New Drug Development and Melanoma Groups. Phase II study of E7070 in patients with metastatic melanoma. Ann. Oncol. 2005, 16, 158- 161. 17. Haddad, R. I.; Weinstein, L. J.; Wieczorek, T. J.; Bhattacharya, N.; Raftopoulos, H.; Oster, M. W.; Zhang, X.; Latham, V. M. Jr.; Costello, R.; Faucher. J.; DeRosa, C.; Yule, M.; Miller, L. P.; Loda, M.; Posner, M. R.; Shapiro, G. I. A phase II clinical and pharmacodynamic study of E7070 in patients with metastatic, recurrent, or refractory squamous cell carcinoma of the head and neck: modulation of retinoblastoma protein phosphorylation by a novel chloroindolyl sulfonamide cell cycle inhibitor. Clin. Cancer Res. 2004, 10, 4680-4687. 18. Garland, L. L.; Taylor, C.; Pilkington, D. L.; Cohen, J. L.; Von Hoff D, D. A phase I pharmacokinetic study of HMN-214, a novel oral stilbene derivative with pololike kinase-1-interacting properties, in patients with advanced solid tumors. Clin. Cancer Res. 2006, 12, 5182-5189. 19. Chen, C. Y. Design and synthesis of benzenesulfonamide derivatives as potential cell cycle targeting inhibitors. Master Thesis, National Taiwan University, 2001. 20. Unpublished data. 21. Chien, H. Y. Design and synthesis of benzenesulfonamidoindolinone derivatives as potential antitumor agents. Master Thesis, National Taiwan University, 2004. 22. Chern, T. R. Mechanistic studies of benzenesulfonamidoindolinone derivative J- 3944 against human non-small cell lung cancer A549 cells. Master Thesis, National Taiwan University, 2007. 23. Dinges, J.; Ashworth, K. L.; Akritopoulou-Zanze, I.; Arnold, L. D.; Baumeister, S. 32 A.; Bousquet, P. F.; Cunha, G. A.; Davidsen, S. K.; Djuric, S. W.; Gracias, V. J.; Michaelides, M. R.; Rafferty, P.; Sowin, T. J.; Stewart, K. D.; Xia, Z.; Zhang, H. Q. 1,4-Dihydroindeno[1,2-c]pyrazoles as novel multitargeted receptor tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 4266-4271. 24. Dai, Y.; Guo, Y.; Frey, R. R.; Ji, Z.; Curtin, M. L.; Ahmed, A. A.; Albert, D. H.; Arnold, L.; Arries, S.S.; Barlozzari, T.; Bauch, J. L.; Bouska, J. J.; Bousquet, P. F.; Cunha, G. A.; Glaser, K. B.; Guo, J.; Li, J.; Marcotte, P. A.; Marsh, K. C.; Moskey, M. D.; Pease, L. J.; Stewart, K. D.; Stoll, V. S.; Tapang, P.; Wishart, N.; Davidsen, S. K.; Michaelides, M. R. Thienopyrimidine ureas as novel and potent multitargeted receptor tyrosine kinase inhibitors. J. Med. Chem. 2005, 48, 6066- 6083. 25. Kubo, K.; Shimizu, T.; Ohyama, S.; Murooka, H.; Iwai, A.; Nakamura, K.; Hasegawa, K.; Kobayashi, Y.; Takahashi, N.; Takahashi, K.; Kato, S.; Izawa, T.; Isoe, T. Novel potent orally active selective VEGFR-2 tyrosine kinase inhibitors: synthesis, structure-activity relationships, and antitumor activities of N-phenyl-N'- {4-(4-quinolyloxy)phenyl}ureas. J. Med. Chem. 2005, 48, 1359-1366. 26. Durant, G. J.; Emmett, J. C.; Ganellin, C. R.; Miles, P. D.; Parsons, M. E.; Prain, H. D.; White, G. R. Cyanoguanidine-thiourea equivalence in the development of the histamine H2-receptor antagonist, cimetidine. J. Med. Chem. 1977, 20, 901- 906. 27. Wolin, R. L.; Venkatesan, H.; Tang, L.; Santillán, A. Jr.; Barclay, T.; Wilson, S.; Lee, D. H.; Lovenberg, T. W. Novel glycine transporter type-2 reuptake inhibitors. Part 1: alpha-amino acid derivatives. Bioorg. Med. Chem. 2004, 12, 4477-4492. 28. Wolin, R. L.; Santillán, A. Jr.; Barclay, T.; Tang, L.; Venkatesan, H.; Wilson, S.; Lee, D. H.; Lovenberg, T. W. Novel glycine transporter type-2 reuptake inhibitors. Part 2: beta- and gamma-amino acid derivatives. Bioorg. Med. Chem. 2004, 12, 4493-4509. 29. Butera, J. A.; Antane, M. M.; Antane, S. A.; Argentieri, T. M.; Freeden, C.; Graceffa, R. F.; Hirth, B. H.; Jenkins, D.; Lennox, J. R.; Matelan, E.; Norton, N. 33 W.; Quagliato, D.; Sheldon, J. H.; Spinelli, W.; Warga, D.; Wojdan, A.; Woods, M. Design and SAR of novel potassium channel openers targeted for urge urinary incontinence. 1. N-Cyanoguanidine bioisosteres possessing in vivo bladder selectivity. J. Med. Chem. 2000, 43, 1187-1202. 30. Merritt, J. R.; Rokosz, L. L.; Nelson, K. H. Jr.; Kaiser, B.; Wang, W.; Stauffer, T. M.; Ozgur, L. E.; Schilling, A.; Li, G.; Baldwin, J. J.; Taveras, A. G.; Dwyer, M. P.; Chao, J. Synthesis and structure-activity relationships of 3,4-diaminocyclobut- 3-ene-1,2-dione CXCR2 antagonists. Bioorg. Med. Chem. Lett. 2006, 16, 4107- 4110. 31. Goetz, F. J.; Hirsch, J. A.; Augustine, R. L. Ring-chain tautomerism in anions derived from substituted (arylideneamino)toluenes and (arylideneamino)oxindoles. J. Org. Chem. 1983, 48, 2468-2472. 32. Webb, R. L. and Labaw, C. S. Diphenyl cyanocarbonimidate. A versatile synthon for the construction of heterocyclic systems. J. Heterocyclic Chem. 1982, 19, 1205-1206. 33. Clark, J. H. Fluoride ion as a base in organic synthesis. Chem. Rev. 1980, 80, 429- 452 and references therein. 34. Khanwelkar, R. R.; Chen, G. S.; Wang, H. C.; Yu, C. W.; Huang, C. H.; Lee, O.; Chen, C. H.; Hwang, C. S.; Ko, C. H.; Chou, N. T.; Lin, M. W.; Wang, L. M.; Chen, Y. C.; Hseu, T. H.; Chang, C. N.; Hsu, H. C.; Lin, H. C.; Shih, Y. C.; Chou, S. H.; Tseng, H. W.; Liu, C. P.; Tu, C. M.; Hu, T. L.; Tsai, Y. J.; Chern, J. W. Synthesis and structure-activity relationship of 6-arylureido-3-pyrrol-2- ylmethylideneindolin-2-one derivatives as potent receptor tyrosine kinase inhibitors. Bioorg. Med. Chem. 2010, 18, 4674-4686. 3.7 References 1. Glover, D. M.; Leibowitz, M. H.; McLean, D. A.; Parry, H. Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 1995, 81, 95-105. 2. Keen, N. and Taylor, S. Aurora-kinases inhibitors as anticancer agents. Nat. Rev. Cancer 2004, 4, 927-936. 3. Zhou, H.; Kuang, J.; Zhong, L.; Kuo, W. L.; Gray, J. W.; Sahin, A.; Brinkley, B. R. and Sen, S. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat. Genet. 1998, 20, 189-193. 4. Bischoff, J. R.; Anderson, L.; Zhu, Y.; Mossie, K.; Ng, L.; Souza, B.; Schryver, B.; Flanagan, P.; Clairvoyant, F.; Ginther, C.; Chan, C. S.; Novotny, M.; Slamon, D. J. and Plowman, G. D. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J. 1998, 17, 3052-3065. 5. Sen, S.; Zhou, H. and White, R. A. A putative serine/threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines. Oncogene 1997, 14, 2195-2200. 6. Littlepage, L. E.; Wu, H.; Andresson, T.; Deanehan, J. K.; Amundadottir, L. T. and Ruderman, J. V. Identification of phosphorylated residues that affect the activity of the mitotic kinase Aurora-A. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 15440- 15445. 7. Boss, D. S.; Beijnen, J. H. and Schellens, J. H. Clinical experience with aurora kinase inhibitors: a review. Oncologist 2009, 14, 780-793 and references therein. 8. Smith, S. L.; Bowers, N. L.; Betticher, D. C.; Gautschi, O.; Ratschiller, D.; Hoban, P. R.; Booton, R.; Santibáñez-Koref, M. F. and Heighway, J. Overexpression of Aurora-B kinase (AURKB) in primary non-small cell lung carcinoma is frequent, generally driven from one allele, and correlates with the level of genetic instability. Br. J. Cancer 2005, 93, 719-729. 9. Lin, Z. Z.; Jeng, Y. M.; Hu, F. C.; Pan, H. W.; Tsao, H. W.; Lai, P. L.; Lee, P. H.; Cheng, A. L. and Hsu, H. C. Significance of Aurora B overexpression in 134 hepatocellular carcinoma. Aurora B Overexpression in HCC. BMC Cancer 2010, 10, 461-475. 10. Cheung, C. H.; Coumar, M. S.; Chang, J. Y. and Hsieh, H. P. Aurora kinase inhibitor patents and agents in clinical testing: an update (2009-10). Expert Opin. Ther. Pat. 2011, 21, 857-884 and references therein. 11. Sun, L.; Tran, N.; Liang, C.; Tang, F.; Rice, A.,;Shreck, R.; Waltz, K.; Shawver, L. K.; McMahon, G.; Tang, C. Design, synthesis, and evaluations of substituted 3- [(3- or 4-carboxyethylpyrrol-2-yl)methylindenyl]indolin-2-ones as inhibitors of VEGF, PDGF, and FGF receptor tyrosine kinases. J. Med. Chem. 1999, 42, 5120- 5130. 12. Godl, K.; Gruss, O. J.; Eickhoff, J.; Wissing, J.; Blencke, S.; Weber, M.; Degen, H.; Brehmer, D.; Orfi, L.; Horváth, Z.; Kéri, G.; Müller, S.; Cotton, M.; Ullrich, A.; Daub, H. Proteomic characterization of the angiogenesis inhibitor SU6668 reveals multiple impacts on cellular kinase signaling. Cancer Res. 2005, 65, 6919- 6926. 13. Chiang, C. C.; Lin, Y. H.; Lin, S. F.; Lai, C. L.; Liu, C.; Wei, W. Y.; Yang, S. C.; Wang, R. W.; Teng, L. W.; Chuang, S. H.; Chang, J. M.; Yuan, T. T.; Lee, Y. S.; Chen, P.; Chi, W. K.; Yang, J. Y.; Huang, H. J.; Liao, C. B.; Huang, J. J. Discovery of pyrrole-indoline-2-ones as Aurora kinase inhibitors with a different inhibition profile. J. Med. Chem. 2010, 53, 5929-5941. 14. Hauf, S.; Cole, R. W.; LaTerra, S.; Zimmer, C.; Schnapp, G.; Walter, R.; Heckel, A.; van Meel, J.; Rieder, C. L.; Peters, J. M. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell. Biol. 2003, 161, 281-294. 15. Khanwelkar, R. R.; Chen, G. S.; Wang, H. C.; Yu, C. W.; Huang, C. H.; Lee, O.; Chen, C. H.; Hwang, C. S.; Ko, C. H.; Chou, N. T.; Lin, M. W.; Wang, L. M.; Chen, Y. C.; Hseu, T. H.; Chang, C. N.; Hsu, H. C.; Lin, H. C.; Shih, Y. C.; Chou, S. H.; Tseng, H. W.; Liu, C. P.; Tu, C. M.; Hu, T. L.; Tsai, Y. J.; Chern, J. W. Synthesis and structure-activity relationship of 6-arylureido-3-pyrrol-2- 135 ylmethylideneindolin-2-one derivatives as potent receptor tyrosine kinase inhibitors. Bioorg. Med. Chem. 2010, 18, 4674-4686. 16. GSK Clinical Study Register. http://www.gsk-clinicalstudyregister.com/index.jsp (accessed April 19, 2012). 17. Exelixis Company. http://www.exelixis.com/pipeline/xl184 (accessed April 19, 2012). 18. For compound 63: Li, T.; Pobanz, M. A.; Shih, C.; Wu, Z.; Yang, W. J.; Zhong, B. Amidophenoxyindazoles useful as inhibitors of c-Met. U. S. Patent 20100022529 A1, January 28, 2010. For compound 65: Bannen, L. C.; Dalrymple, L. E.; Huynh, T. P.; Khoury, R. G.; Houry, R. G.; Xu, W.; Wang, Y.; Takeuchi, C. S.; Parks, J. J.; Nuss, J. M.; Mann, L. W.; Mann, L. W.; Mann, G.; Mac, M. B.; Leahy, J. W.; Jammalamdaka, V.; Forsyth, T. P.; Chen, J.; Chan, D. S-M. c-Met modulators and methods of use. WO2005030140 A2, April 7, 2005. 19. Kim, K. S.; Zhang, L.; Schmidt, R.; Cai, Z. W.; Wei, D.; Williams, D. K.; Lombardo, L. J.; Trainor, G. L.; Xie, D.; Zhang, Y.; An, Y.; Sack, J. S.; Tokarski, J. S.; Darienzo, C.; Kamath, A.; Marathe, P.; Zhang, Y.; Lippy, J.; Jeyaseelan, R. Sr.; Wautlet, B.; Henley, B.; Gullo-Brown, J.; Manne, V.; Hunt, J. T.; Fargnoli, J.; Borzilleri, R. M. Discovery of pyrrolopyridine-pyridone based inhibitors of Met kinase: synthesis, X-ray crystallographic analysis, and biological activities. J. Med. Chem. 2008, 51, 5330-5341. 20. Masu, H.; Ohmori, K.; Kishikawa, K.; Yamamoto, M.; Yamaguchi, K.; Kohmoto, S. Creation of concave-shaped conformation in crystal structures using an iminodicarbonyl kinker. An application to solid-state intramolecular [4 + 4] photocycloaddition reactions of 2-Pyridone Derivatives. Bull. Chem. Soc. Jpn. 2005, 78, 1127-1131. 21. Balogh, M.; Hermecz, I.; Meszaros, Z.; Simon, K.; Pusztay, L.; Horvath, G.; Dvortsak, P. Studies on chemotherapeutics I. Synthesis of 5-substituted-4-oxo-1,4- dihydro-3-pyridinecarboxylic acid derivatives. J. Heterocycl. Chem. 1980, 17, 359-368. 136 22. Lin, Z. Z.; Jeng, Y. M.; Hu, F. C.; Pan, H. W.; Tsao, H. W.; Lai, P. L.; Lee, P. H.; Cheng, A. L.; Hsu, H. C. Significance of Aurora B overexpression in hepatocellular carcinoma. Aurora B overexpression in HCC. BMC Cancer 2010, 28, 461-475. 23. 王文睿、楊勝生、林金祥、曾志勇、劉道明、劉宏濤 (2009):非小細胞肺癌 中Aurora-B 的表達及其臨床意義。南方醫科大學學報,29,1853-1856。 24. Sun, L.; Tran, N.; Tang, F.; App, H.; Hirth, P.; McMahon, G.; Tang, C. Synthesis and biological evaluations of 3-substituted indolin-2-ones: a novel class of tyrosine kinase inhibitors that exhibit selectivity toward particular receptor tyrosine kinases. J. Med. Chem. 1998, 41, 2588-2603. 25. Silverman, R. B. Drug Discovery, Design and Development. The Organic Chemistry of Drug Design and Drug Action, second edition; Elsevier Academic Press: San Diego, CA, 2004; pp 7-105. 26. Waring, M. J.; Johnstone, C. A quantitative assessment of hERG liability as a function of lipophilicity. Bioorg. Med. Chem. Lett. 2007, 17, 1759-1764. 27. Gilliland, D. G.; Griffin, J. D. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002, 100, 1532-1542. 28. Sessa, F.; Mapelli, M.; Ciferri, C.; Tarricone, C.; Areces, L. B.; Schneider, T. R.; Stukenberg, P. T.; Musacchio, A. Mechanism of Aurora B activation by INCENP and inhibition by hesperadin. Mol. Cell. 2005, 18, 379-391. 29. Cee, V. J.; Cheng, A. C.; Romero, K.; Bellon, S.; Mohr, C.; Whittington, D. A.; Bak, A.; Bready, J.; Caenepeel, S.; Coxon, A.; Deak, H. L.; Fretland, J.; Gu, Y.; Hodous, B. L.; Huang, X.; Kim, J. L.; Lin, J.; Long, A. M.; Nguyen, H.; Olivieri, P. R.; Patel, V. F.; Wang, L.; Zhou, Y.; Hughes, P.; Geuns-Meyer, S. Pyridylpyrimidine benzimidazole derivatives as potent, selective, and orally bioavailable inhibitors of Tie-2 kinase. Bioorg. Med. Chem. Lett. 2009, 19, 424-427. 30. Wilkinson, R. W.; Odedra, R.; Heaton, S. P.; Wedge, S. R.; Keen, N. J.; Crafter, C.; Foster, J. R.; Brady, M. C.; Bigley, A.; Brown, E.; Byth, K. F.; Barrass, N. C.; Mundt, K. E.; Foote, K. M.; Heron, N. M.; Jung, F. H.; Mortlock, A. A.; Boyle, F. 137 T.; Green, S. AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis. Clin. Cancer Res. 2007, 13, 3682- 3688. 31. Li, J.; Anderson, M. G.; Tucker, L. A.; Shen, Y.; Glaser, K. B.; Shah, O. J. Inhibition of Aurora B kinase sensitizes a subset of human glioma cells to TRAIL concomitant with induction of TRAIL-R2. Cell Death Differ. 2009, 16, 498-511. 32. Gully, C. P.; Zhang, F.; Chen, J.; Yeung, J. A.; Velazquez-Torres, G.; Wang, E.; Yeung, S. C.; Lee, M. H. Antineoplastic effects of an Aurora B kinase inhibitor in breast cancer. Mol. Cancer 2010, 9, 42-55. 33. Moore, A. S.; Blagg, J.; Linardopoulos, S.; Pearson, A. D. Aurora kinase inhibitors: novel small molecules with promising activity in acute myeloid and Philadelphia-positive leukemias. Leukemia 2010, 24, 671-678. 34. Becher, J; Johansen, T and Michael, M. A. Pyridinethiones. IX Preparation of Ricinidine, Thioricinidine and Other 2(1H)-Pyridones and -thiones Related to Nicotinic acid. J. Heterocycl. Chem. 1984, 21, 41-48. 35. Hsu, S. C.; Kuo, C. L.; Lin, J. P.; Lee, J. H.; Lin, C. C.; Su, C. C.; Yang, M. D.; Chung, J. G. Crude extracts of Euchresta formosana radix inhibit invasion and migration of human hepatocellular carcinoma cells. Anticancer Res. 2007, 27(4B), 2377-2384. References 1. Chen, C. Y. Design and synthesis of benzenesulfonamide derivatives as potential cell cycle targeting inhibitors. Master Thesis, National Taiwan University, 2001. 2. Unpublished data. 3. Chien, H. Y. Design and synthesis of benzenesulfonamidoindolinone derivatives as potential antitumor agents. Master Thesis, National Taiwan University, 2004. 4. Chern, T. R. Mechanistic Studies of Benzenesulfonamidoindolinone Derivative J- 3944 against Human Non-small Cell Lung Cancer A549 Cells. Master Thesis, National Taiwan University, 2007. 5. Khanwelkar, R. R.; Chen, G. S.; Wang, H. C.; Yu, C. W.; Huang, C. H.; Lee, O.; Chen, C. H.; Hwang, C. S.; Ko, C. H.; Chou, N. T.; Lin, M. W.; Wang, L. M.; Chen, Y. C.; Hseu, T. H.; Chang, C. N.; Hsu, H. C.; Lin, H. C.; Shih, Y. C.; Chou, S. H.; Tseng, H. W.; Liu, C. P.; Tu, C. M.; Hu, T. L.; Tsai, Y. J.; Chern, J. W. Synthesis and structure-activity relationship of 6-arylureido-3-pyrrol-2- ylmethylideneindolin-2-one derivatives as potent receptor tyrosine kinase inhibitors. Bioorg. Med. Chem. 2010, 18, 4674-4686. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15943 | - |
| dc.description.abstract | 為同時抑制多個疾病相關之標靶,先期研究將抗有絲分裂劑之藥效基團(磺醯胺基)和吲哚-2-酮結合。第一系列共軛吲哚-2-酮類蛋白質抑制劑以J3944為代表。以此為基礎設計第二系列化合物,將位於吲哚-2-酮骨架第三位置的苯環由吡咯環取代,這致使化合物對細胞週期蛋白依賴型激酶2具有更強的抑制活性,其半抑制濃度為0.4微莫爾。若在吲哚-2-酮之第五或七位置進行修飾則會導致化合物的活性變差。相反的,6-芳基脲-3-吡咯-2-亞甲基吲哚-2-酮類衍生物對多個受體酪氨酸激酶具有納莫爾級的抑制活性。構效關係的研究結果顯示,化合物具有蛋白質激酶抑制活性的關鍵在於:鏈結取代基位於吲哚-2-酮骨架中心之位置,以及脲基中的羰基官能基。因此,設計第三系列基於吲哚-2-酮的抑制劑時,在吲哚-2-酮的六號位置引入了丙二醯胺鏈結。而丙二醯胺的構象限制又致使第四系列具有吡啶-2-酮基和吡啶-4-酮基的抑製劑隨之被研發出來。生物活性研究顯示,第三系列丙二醯胺類化合物和第四系列吡啶酮類化合物是有潛效的極光激酶B抑制劑,其半抑制濃度在亞微莫爾至納莫爾範圍。這些化合物對Fms樣的酪胺酸激酶3也有交叉抑制作用。我們認為相繼抑制Fms樣酪胺酸激酶3和極光激酶B可能會對治療急性髓系白血病提供潛在的幫助。本論文以吲哚-2-酮之適用性為出發點,進行有潛效蛋白質激酶抑制劑的研發,並從而得到具抑制極光激酶和其他蛋白激酶的化合物。 | zh_TW |
| dc.description.abstract | In order to hit several disease-relevant targets simultaneously, sulfonamido moiety, which is a pharmacophore of antimitotic agents, was conjugated to indolin-2-one. This resulted in the first series of indolin-2-one based inhibitors, such as J3944. Replacing phenyl ring on the 3-position of indolin-2-one by pyrrolyl ring led to more potent CDK2 inhibitor (IC50 = 0.4 μM). Modifications on linkages at the 5- or 7-position of indolin-2-one core resulted in much inferior compounds. In contrary, 6-arylureido-3-pyrrol-2-ylmethylideneindolin-2-one derivatives exhibited potency to multiple receptor tyrosine kinases in nanomolar range. Results of structure-activity relationship study showed that both position of linker on indolin-2-one core and carbonyl group in ureido moiety are crucial for kinase inhibition activity. The third series indolin-2-one based inhibitors were designed with malonamido moiety attached to the 6-position of indolin-2-one as the linker. Conformational restriction of malonamido moiety led to the fourth series inhibitors bearing pyridin-2-one and pyridin-4-one moieties. Biological studies showed that malonamide and pyridone compounds were potential Aurora-B kinase inhibitors with IC50 values in submicro- to nanomolar range. They also had cross activity to Flt-3. It is believed that the sequential inhibition of Flt-3 and Aurora-B kinase may provide potential therapeutic benefits to treat acute myeloid leukemia. In this thesis, the applicability of indolin-2-one as a reasonable starting point to develop potential protein kinase inhibitors was highlighted. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:56:02Z (GMT). No. of bitstreams: 1 ntu-101-F95423003-1.pdf: 2758793 bytes, checksum: b72f1b2d43408b62b96ec0b3c80e2b72 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 ........................................................................................................... i
誌謝 .................................................................................................................................. ii 中文摘要 ......................................................................................................................... iii Abstract .......................................................................................................................... iv Contents ........................................................................................................................... v List of Figures .............................................................................................................. viii List of Tables .................................................................................................................. ix List of Schemes ............................................................................................................... x Chapter 1. Introduction ................................................................................................. 1 1.1 Cancer and Protein Kinases ............................................................................ 1 1.2 Protein Kinases Inhibitors in Clinical Settings ............................................... 2 1.3 Protein Kinase Inhibitors in the Development Pipeline .................................. 3 1.4 Summary ......................................................................................................... 4 1.5 References ....................................................................................................... 9 Chapter 2. Development of Novel Multiple Targeted Kianse Inhibitors by Hybridization of Privileged Pharmacophores ........................................................... 12 2.1 Introduction ................................................................................................... 12 2.2 Design ........................................................................................................... 15 2.3 Chemistry ...................................................................................................... 16 2.4 Results and Discussion ................................................................................. 22 2.5 Summary ....................................................................................................... 25 2.6 Experiment Section ....................................................................................... 25 2.7 References ..................................................................................................... 29 Chapter 3. Development of Aurora-B kinase/Flt-3 Inhibitors with Pyridones as Conformational Restriction Bioisosteres of Urea and Malonamide ........................ 34 3.1 Introduction ................................................................................................... 34 3.2 Design ........................................................................................................... 37 3.3 Chemistry ...................................................................................................... 38 3.4 Results and Discussion ................................................................................. 45 3.4.1 Biochemical Activity and Cell Survival Inhibition ................................ 45 3.4.2 Computer Modeling ............................................................................... 59 3.4.3 Mechanism Study ................................................................................... 61 3.4.4 Anti-metastatic Effect ............................................................................ 66 3.4.5 Safety and in vivo Pharmacokinetic Study ............................................. 68 3.4.6 In vivo Efficacy Study ............................................................................ 69 3.4.7 Kinase Selectivity Study ........................................................................ 71 3.5 Summary ....................................................................................................... 72 3.6 Experiment Section ....................................................................................... 73 3.6.1 Compound Information .......................................................................... 73 3.6.2 In vitro Kinase Activity Assay and Safety Assay ................................ 125 3.6.3 Cell Culture and Cell Survival Inhibition Assay .................................. 126 3.6.4 Western Blot and Dot Blot Analysis .................................................... 127 3.6.5 Morphological Examination ................................................................. 128 3.6.6 ApoTox-Glo™ Assay .......................................................................... 128 3.6.7 Anti-metastasis Effect: Migration and Invasion Experiments ............. 129 3.6.8 In vivo Pharmacokinetic Study ............................................................. 131 3.6.9 In vivo Efficacy Study .......................................................................... 131 3.7 References ................................................................................................... 133 Chapter 4. Conclusion ................................................................................................ 138 | |
| dc.language.iso | en | |
| dc.subject | 吲 | zh_TW |
| dc.subject | 構效關係 | zh_TW |
| dc.subject | 極光激酶 | zh_TW |
| dc.subject | 標靶治療 | zh_TW |
| dc.subject | 抑制劑 | zh_TW |
| dc.subject | 酵素激酶 | zh_TW |
| dc.subject | 癌症 | zh_TW |
| dc.subject | 酮 | zh_TW |
| dc.subject | protein kinase inhibitor | en |
| dc.subject | Aurora-B kinase | en |
| dc.subject | indolin-2-one | en |
| dc.subject | oxindole | en |
| dc.subject | structure-activity relationship | en |
| dc.subject | cancer | en |
| dc.subject | target therapy | en |
| dc.title | 設計與合成吲哚-2-酮衍生物作為潛能蛋白激酶抑制劑及其活性評估 | zh_TW |
| dc.title | Design, Synthesis and Biological Evaluation of Indolin-2-one Derivatives as Potential Protein Kinase Inhibitors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王光昭,顧記華,尤啟冬,陳香惠,忻凌偉 | |
| dc.subject.keyword | 酵素激酶,抑制劑,標靶治療,癌症,構效關係,吲,哚,酮,極光激酶,B, | zh_TW |
| dc.subject.keyword | protein kinase inhibitor,target therapy,cancer,structure-activity relationship,oxindole,indolin-2-one,Aurora-B kinase, | en |
| dc.relation.page | 141 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-08-15 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
