Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15943
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳基旺
dc.contributor.authorHsiao-Chun Wangen
dc.contributor.author王筱君zh_TW
dc.date.accessioned2021-06-07T17:56:02Z-
dc.date.copyright2012-09-19
dc.date.issued2012
dc.date.submitted2012-08-15
dc.identifier.citation1.5 References
1. WHO Media centre. Cancer. http://www.who.int/mediacentre/factsheets/fs297/en/
(accessed March, 29, 2012)
2. Ferlay, J.; Shin, H. R.; Bray, F.; Forman, D.; Mathers, C.; Maxwell, D. Estimates
of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 2010,
127, 2893-2917.
3. Hanahan, D.; Weinberg, R. A. The hallmarks of cancer. Cell 2000, 100, 57-70.
4. Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev.
Drug Discov. 2007, 6, 273-286.
5. Cohen, P. Protein kinases – the major drug targets of the twenty-first century? Nat.
Rev. Drug Discov. 2002, 1, 309-315.
6. Wood, L. D.; Parsons, D. W.; Jones, S.; Lin, J.; Sjöblom, T.; Leary, R. J.; Shen, D.;
Boca, S. M.; Barber, T.; Ptak, J.; Silliman, N.; Szabo, S.; Dezso, Z.; Ustyanksky,
V.; Nikolskaya, T.; Nikolsky, Y.; Karchin, R.; Wilson, P. A.; Kaminker, J. S.;
Zhang, Z.; Croshaw, R.; Willis, J.; Dawson, D.; Shipitsin, M.; Willson, J. K.;
Sukumar, S.; Polyak, K.; Park, B. H.; Pethiyagoda, C. L.; Pant, P. V.; Ballinger, D.
G.; Sparks, A. B.; Hartigan, J.; Smith, D. R.; Suh, E.; Papadopoulos, N.;
Buckhaults, P.; Markowitz, S. D.; Parmigiani, G.; Kinzler, K. W.; Velculescu, V.
E.; Vogelstein, B. The genomic landscapes of human breast and colorectal
cancers. Science 2007, 318, 1108-1113.
7. Fedorov, O.; Muller, S.; Knapp, S. The (un)targeted cancer kinome. Nat. Chem.
Biol. 2010, 6, 166-169.
8. Vieth, M.; Sutherland, J. J.; Robertson, D. H.; Campbell, R. M. Kinomics:
characterizing the therapeutically validated kinase space. Drug Discov. Today.
2005, 10, 839-846.
9. Weisberg, E.; Manley, P. W.; Cowan-Jacob, S. W.; Hochhaus, A.; Griffin, J. D.
Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant
chronic myeloid leukaemia. Nat. Rev. Cancer 2007, 7, 345-356.
10. Morphy, R.; Kay, C.; Rankovic, Z. From magic bullets to designed multiple
10
ligands. Drug Discov. Today 2004, 9. 641-651.
11. Morphy, R.; Rankovic, Z. Designed multiple ligands. An emerging drug discovery
paradigm. J. Med. Chem. 2005, 48, 6523-6543.
12. Bukowski, R. M.; Yasothan, U.; Kirkpatrick, P. Pazopanib. Nat. Rev. Drug Discov.
2010, 9, 17-18.
13. Wilhelm, C.; Carter, C.; Lynch, M.; Lowinger, T.; Dumas, J.; Smith, R. A.;
Schwartz, B.; Simantov, R.; Kelley, S. Discovery and development of sorafenib: a
multikinase inhibitor for treating cancer. Nat. Rev. Drug Discov. 2006, 5, 835-844.
14. Faivre, S.; Demetri, G.; Sargent, W.; Raymond, E. Molecular basis for sunitinib
efficacy and future clinical development. Nat. Rev. Drug Discov. 2007, 6, 734-
745.
15. Sun, L.; Liang, C.; Shirazian, S.; Zhou, Y.; Miller, T.; Cui, J.; Fukuda, J. Y.; Chu,
J-Y.; Nematalla, A.; Wang, X.; Chen, H.; Sistla, A.; Luu, T. C.; Tang, F.; Wei, J.;
Tang, C. Discovery of 5-[5-fluoro-2-oxo-1,2- dihydroindol-(3Z)-ylidenemethyl]-
2,4-dimethyl-1H-pyrrole-3-carboxylic Acid (2-diethylaminoethyl)amide, a novel
tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived
growth factor receptor tyrosine kinase. J. Med. Chem. 2003, 46, 1116-1119.
16. Anastassiadis, T.; Deacon, S. W.; Devarajan, K.; Ma, H.; Peterson, J. R.
Comprehensive assay of kinase catalytic activity reveals features of kinase
inhibitor selectivity. Nat. Biotechnol. 2011, 29, 1039-1045.
17. Karaman, M. W.; Herrgard, S.; Treiber, D. K.; Gallant, P.; Atteridge, C. E.;
Campbell, B. T.; Chan, K. W.; Ciceri, P.; Davis, M. I.; Edeen, P. T.; Faraoni, R.;
Floyd, M.; Hunt, J. P.; Lockhart, D. J.; Milanov, Z. V.; Morrison, M. J.; Pallares,
G.; Patel1, H. K.; Pritchard, S.; Wodicka, L. M.; Zarrinkar, P. P. A quantitative
analysis of kinase inhibitor selectivity. Nat. Biotechnol. 2008, 26, 127-132.
18. Morphy, R. Selectively nonselective kinase inhibition: striking the right balance.
J. Med. Chem. 2010, 53, 1413-1437.
19. UCB R&D information centre, protein kinase inhibitor chart.
http://www.ucb.com/rd/info-centre/protein-kinase-inhibitors (accessed April, 5)
11
20. Akritopoulou-Zanze, I.; Hajduk, P. J. Kinase-targeted libraries: the design and
synthesis of novel, potent, and selective kinase inhibitors. Drug Discov. Today
2009, 14, 291-297.
21. NCI drug dictionary. http://www.cancer.gov/drugdictionary (accessed March, 29,
2012)
22. ClinicalTrials.gov. http://www.clinicaltrials.gov/ (accessed March, 30)
2.7 References
1. Jiang, T.; Kuhen, K. L.; Wolff, K.; Yin, H.; Bieza, K.; Caldwell, J.; Bursulaya, B.;
Wu, T. Y.; He, Y. Design, synthesis and biological evaluations of novel oxindoles
as HIV-1 non-nucleoside reverse transcriptase inhibitors. Part 1. Bioorg. Med.
Chem. Lett. 2006, 16, 2105-2108.
2. Jiang, T.; Kuhen, K. L.; Wolff, K.; Yin, H.; Bieza, K.; Caldwell, J.; Bursulaya, B.;
Tuntland, T.; Zhang, K.; Karanewsky, D.; He, Y. Design, synthesis, and biological
evaluations of novel oxindoles as HIV-1 non-nucleoside reverse transcriptase
inhibitors. Part 2. Bioorg. Med. Chem. Lett. 2006, 16, 2109-2012.
3. Mohammadi, M.; McMahon, G.; Sun, L.; Tang, C.; Hirth, P.; Yeh, B. K.;
Hubbard, S. R.; Schlessinger, J. Structures of the tyrosine kinase domain of
fibroblast growth factor receptor in complex with inhibitors. Science 1997, 276,
955-960.
4. Lane, M. E.; Yu, B.; Rice, A.; Lipson, K. E.; Liang, C.; Sun, L.; Tang, C.;
McMahon, G.; Pestell, R. G.; Wadler, S. A novel cdk2-selective inhibitor,
SU9516, induces apoptosis in colon carcinoma cells. Cancer Res. 2001, 61, 6170-
6177.
5. Moshinsky, D. J.; Bellamacina, C. R.; Boisvert, D. C.; Huang, P.; Hui, T.;
Jancarik, J.; Kim, S. H.; Rice, A. G. SU9516: biochemical analysis of cdk
inhibition and crystal structure in complex with cdk2. Biochem. Biophys. Res.
Commun. 2003, 310, 1026-1031.
6. Sun, L.; Tran, N.; Tang, F.; App, H.; Hirth, P.; McMahon, G.; Tang, C. Synthesis
and biological evaluations of 3-substituted indolin-2-ones: a novel class of
tyrosine kinase inhibitors that exhibit selectivity toward particular receptor
tyrosine kinases. J. Med. Chem. 1998, 41, 2588-2603.
7. Fong, T. A.; Shawver, L. K.; Sun, L.; Tang, C.; App, H.; Powell, T. J.; Kim, Y. H.;
Schreck, R.; Wang, X.; Risau, W.; Ullrich, A.; Hirth, K. P.; McMahon, G. SU5416
is a potent and selective inhibitor of the vascular endothelial growth factor
receptor (Flk-1/VEGFR-2) that inhibits tyrosine kinase catalysis, tumor
30
vascularization, and growth of multiple tumor types. Cancer Res. 1999, 59, 99-
106.
8. Laird, A. D.; Vajkoczy, P.; Shawver, L. K.; Thurnher, A.; Liang, C.; Mohammadi,
M.; Schlessinger, J.; Ullrich, A.; Hubbard, S. R.; Blake, R. A.; Fong, T. A.;
Strawn, L. M.; Sun, L.; Tang, C.; Hawtin, R.; Tang, F.; Shenoy, N.; Hirth, K. P.;
McMahon, G.; Cherrington, J. M. SU6668 is a potent antiangiogenic and
antitumor agent that induces regression of established tumors. Cancer Res. 2000,
60, 4152-4160.
9. Sun, L.; Tran, N.; Liang, C.; Tang, F.; Rice, A.; Schreck, R.; Waltz, K.; Shawver,
L. K.; McMahon, G.; Tang, C. Design, synthesis, and evaluations of substituted 3-
[(3- or 4-carboxyethylpyrrol-2-yl)methylidenyl]indolin-2-ones as inhibitors of
VEGF, FGF, and PDGF receptor tyrosine kinases. J. Med. Chem. 1999, 42, 5120-
5130.
10. PR Newswire website. http://www.prnewswire.com/news-releases/pharmaciaannounces-
closing-of-su5416-semaxanib-clinical-trials-75895232.html (accessed
on May, 9th, 2012)
11. Sun, L.; Liang, C.; Shirazian, S.; Zhou, Y.; Miller, T.; Cui, J.; Fukuda, J. Y.; Chu,
J. Y.; Nematalla, A.; Wang, X.; Chen, H.; Sistla, A.; Luu, T. C.; Tang, F.; Wei, J.;
Tang, C. Discovery of 5-[5-fluoro-2-oxo-1,2- dihydroindol-(3Z)-ylidenemethyl]-
2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel
tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived
growth factor receptor tyrosine kinase. J. Med. Chem. 2003, 46, 1116-1119.
12. Faivre, S.; Demetri, G.; Sargent, W.; Raymond, E. Molecular basis for sunitinib
efficacy and future clinical development. Nat. Rev. Drug Discov. 2007, 6, 734-
745.
13. Owa, T.; Yoshino, H.; Okauchi, T.; Yoshimatsu, K.; Ozawa, Y.; Sugi, N. H.;
Nagasu, T.; Koyanagi, N.; Kitoh, K. Discovery of novel antitumor sulfonamides
targeting G1 phase of the cell cycle. J. Med. Chem. 1999, 42, 3789-3799.
14. Ozawa, Y.; Sugi, N.H.; Nagasu, T.; Owa, T.; Watanabe, T.; Koyanagi, N.; Yoshino,
31
H.; Kitoh, K.; Yoshimatsu, K. E7070, a novel sulphonamide agent with potent
antitumour activity in vitro and in vivo. Eur. J. Cancer 2001, 37, 2275-2282.
15. Yamamoto, K.; Noda, K.; Yoshimura, A.; Fukuoka, M.; Furuse, K.; Niitani, H.
Phase I study of E7010. Cancer Chemother. Pharmacol. 1998, 42, 127-134.
16. Smyth, J. F.; Aamdal, S.; Awada, A.; Dittrich, C.; Caponigro, F.; Schöffski, P.;
Gore, M.; Lesimple, T.; Djurasinovic, N.; Baron, B.; Ravic, M.; Fumoleau, P.;
Punt. C. J.; EORTC New Drug Development and Melanoma Groups. Phase II
study of E7070 in patients with metastatic melanoma. Ann. Oncol. 2005, 16, 158-
161.
17. Haddad, R. I.; Weinstein, L. J.; Wieczorek, T. J.; Bhattacharya, N.; Raftopoulos,
H.; Oster, M. W.; Zhang, X.; Latham, V. M. Jr.; Costello, R.; Faucher. J.; DeRosa,
C.; Yule, M.; Miller, L. P.; Loda, M.; Posner, M. R.; Shapiro, G. I. A phase II
clinical and pharmacodynamic study of E7070 in patients with metastatic,
recurrent, or refractory squamous cell carcinoma of the head and neck:
modulation of retinoblastoma protein phosphorylation by a novel chloroindolyl
sulfonamide cell cycle inhibitor. Clin. Cancer Res. 2004, 10, 4680-4687.
18. Garland, L. L.; Taylor, C.; Pilkington, D. L.; Cohen, J. L.; Von Hoff D, D. A phase
I pharmacokinetic study of HMN-214, a novel oral stilbene derivative with pololike
kinase-1-interacting properties, in patients with advanced solid tumors. Clin.
Cancer Res. 2006, 12, 5182-5189.
19. Chen, C. Y. Design and synthesis of benzenesulfonamide derivatives as potential
cell cycle targeting inhibitors. Master Thesis, National Taiwan University, 2001.
20. Unpublished data.
21. Chien, H. Y. Design and synthesis of benzenesulfonamidoindolinone derivatives
as potential antitumor agents. Master Thesis, National Taiwan University, 2004.
22. Chern, T. R. Mechanistic studies of benzenesulfonamidoindolinone derivative J-
3944 against human non-small cell lung cancer A549 cells. Master Thesis,
National Taiwan University, 2007.
23. Dinges, J.; Ashworth, K. L.; Akritopoulou-Zanze, I.; Arnold, L. D.; Baumeister, S.
32
A.; Bousquet, P. F.; Cunha, G. A.; Davidsen, S. K.; Djuric, S. W.; Gracias, V. J.;
Michaelides, M. R.; Rafferty, P.; Sowin, T. J.; Stewart, K. D.; Xia, Z.; Zhang, H.
Q. 1,4-Dihydroindeno[1,2-c]pyrazoles as novel multitargeted receptor tyrosine
kinase inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 4266-4271.
24. Dai, Y.; Guo, Y.; Frey, R. R.; Ji, Z.; Curtin, M. L.; Ahmed, A. A.; Albert, D. H.;
Arnold, L.; Arries, S.S.; Barlozzari, T.; Bauch, J. L.; Bouska, J. J.; Bousquet, P. F.;
Cunha, G. A.; Glaser, K. B.; Guo, J.; Li, J.; Marcotte, P. A.; Marsh, K. C.;
Moskey, M. D.; Pease, L. J.; Stewart, K. D.; Stoll, V. S.; Tapang, P.; Wishart, N.;
Davidsen, S. K.; Michaelides, M. R. Thienopyrimidine ureas as novel and potent
multitargeted receptor tyrosine kinase inhibitors. J. Med. Chem. 2005, 48, 6066-
6083.
25. Kubo, K.; Shimizu, T.; Ohyama, S.; Murooka, H.; Iwai, A.; Nakamura, K.;
Hasegawa, K.; Kobayashi, Y.; Takahashi, N.; Takahashi, K.; Kato, S.; Izawa, T.;
Isoe, T. Novel potent orally active selective VEGFR-2 tyrosine kinase inhibitors:
synthesis, structure-activity relationships, and antitumor activities of N-phenyl-N'-
{4-(4-quinolyloxy)phenyl}ureas. J. Med. Chem. 2005, 48, 1359-1366.
26. Durant, G. J.; Emmett, J. C.; Ganellin, C. R.; Miles, P. D.; Parsons, M. E.; Prain,
H. D.; White, G. R. Cyanoguanidine-thiourea equivalence in the development of
the histamine H2-receptor antagonist, cimetidine. J. Med. Chem. 1977, 20, 901-
906.
27. Wolin, R. L.; Venkatesan, H.; Tang, L.; Santillán, A. Jr.; Barclay, T.; Wilson, S.;
Lee, D. H.; Lovenberg, T. W. Novel glycine transporter type-2 reuptake inhibitors.
Part 1: alpha-amino acid derivatives. Bioorg. Med. Chem. 2004, 12, 4477-4492.
28. Wolin, R. L.; Santillán, A. Jr.; Barclay, T.; Tang, L.; Venkatesan, H.; Wilson, S.;
Lee, D. H.; Lovenberg, T. W. Novel glycine transporter type-2 reuptake inhibitors.
Part 2: beta- and gamma-amino acid derivatives. Bioorg. Med. Chem. 2004, 12,
4493-4509.
29. Butera, J. A.; Antane, M. M.; Antane, S. A.; Argentieri, T. M.; Freeden, C.;
Graceffa, R. F.; Hirth, B. H.; Jenkins, D.; Lennox, J. R.; Matelan, E.; Norton, N.
33
W.; Quagliato, D.; Sheldon, J. H.; Spinelli, W.; Warga, D.; Wojdan, A.; Woods, M.
Design and SAR of novel potassium channel openers targeted for urge urinary
incontinence. 1. N-Cyanoguanidine bioisosteres possessing in vivo bladder
selectivity. J. Med. Chem. 2000, 43, 1187-1202.
30. Merritt, J. R.; Rokosz, L. L.; Nelson, K. H. Jr.; Kaiser, B.; Wang, W.; Stauffer, T.
M.; Ozgur, L. E.; Schilling, A.; Li, G.; Baldwin, J. J.; Taveras, A. G.; Dwyer, M.
P.; Chao, J. Synthesis and structure-activity relationships of 3,4-diaminocyclobut-
3-ene-1,2-dione CXCR2 antagonists. Bioorg. Med. Chem. Lett. 2006, 16, 4107-
4110.
31. Goetz, F. J.; Hirsch, J. A.; Augustine, R. L. Ring-chain tautomerism in anions
derived from substituted (arylideneamino)toluenes and
(arylideneamino)oxindoles. J. Org. Chem. 1983, 48, 2468-2472.
32. Webb, R. L. and Labaw, C. S. Diphenyl cyanocarbonimidate. A versatile synthon
for the construction of heterocyclic systems. J. Heterocyclic Chem. 1982, 19,
1205-1206.
33. Clark, J. H. Fluoride ion as a base in organic synthesis. Chem. Rev. 1980, 80, 429-
452 and references therein.
34. Khanwelkar, R. R.; Chen, G. S.; Wang, H. C.; Yu, C. W.; Huang, C. H.; Lee, O.;
Chen, C. H.; Hwang, C. S.; Ko, C. H.; Chou, N. T.; Lin, M. W.; Wang, L. M.;
Chen, Y. C.; Hseu, T. H.; Chang, C. N.; Hsu, H. C.; Lin, H. C.; Shih, Y. C.; Chou,
S. H.; Tseng, H. W.; Liu, C. P.; Tu, C. M.; Hu, T. L.; Tsai, Y. J.; Chern, J. W.
Synthesis and structure-activity relationship of 6-arylureido-3-pyrrol-2-
ylmethylideneindolin-2-one derivatives as potent receptor tyrosine kinase
inhibitors. Bioorg. Med. Chem. 2010, 18, 4674-4686.
3.7 References
1. Glover, D. M.; Leibowitz, M. H.; McLean, D. A.; Parry, H. Mutations in aurora
prevent centrosome separation leading to the formation of monopolar spindles.
Cell 1995, 81, 95-105.
2. Keen, N. and Taylor, S. Aurora-kinases inhibitors as anticancer agents. Nat. Rev.
Cancer 2004, 4, 927-936.
3. Zhou, H.; Kuang, J.; Zhong, L.; Kuo, W. L.; Gray, J. W.; Sahin, A.; Brinkley, B. R.
and Sen, S. Tumour amplified kinase STK15/BTAK induces centrosome
amplification, aneuploidy and transformation. Nat. Genet. 1998, 20, 189-193.
4. Bischoff, J. R.; Anderson, L.; Zhu, Y.; Mossie, K.; Ng, L.; Souza, B.; Schryver,
B.; Flanagan, P.; Clairvoyant, F.; Ginther, C.; Chan, C. S.; Novotny, M.; Slamon,
D. J. and Plowman, G. D. A homologue of Drosophila aurora kinase is oncogenic
and amplified in human colorectal cancers. EMBO J. 1998, 17, 3052-3065.
5. Sen, S.; Zhou, H. and White, R. A. A putative serine/threonine kinase encoding
gene BTAK on chromosome 20q13 is amplified and overexpressed in human
breast cancer cell lines. Oncogene 1997, 14, 2195-2200.
6. Littlepage, L. E.; Wu, H.; Andresson, T.; Deanehan, J. K.; Amundadottir, L. T. and
Ruderman, J. V. Identification of phosphorylated residues that affect the activity
of the mitotic kinase Aurora-A. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 15440-
15445.
7. Boss, D. S.; Beijnen, J. H. and Schellens, J. H. Clinical experience with aurora
kinase inhibitors: a review. Oncologist 2009, 14, 780-793 and references therein.
8. Smith, S. L.; Bowers, N. L.; Betticher, D. C.; Gautschi, O.; Ratschiller, D.; Hoban,
P. R.; Booton, R.; Santibáñez-Koref, M. F. and Heighway, J. Overexpression of
Aurora-B kinase (AURKB) in primary non-small cell lung carcinoma is frequent,
generally driven from one allele, and correlates with the level of genetic
instability. Br. J. Cancer 2005, 93, 719-729.
9. Lin, Z. Z.; Jeng, Y. M.; Hu, F. C.; Pan, H. W.; Tsao, H. W.; Lai, P. L.; Lee, P. H.;
Cheng, A. L. and Hsu, H. C. Significance of Aurora B overexpression in
134
hepatocellular carcinoma. Aurora B Overexpression in HCC. BMC Cancer 2010,
10, 461-475.
10. Cheung, C. H.; Coumar, M. S.; Chang, J. Y. and Hsieh, H. P. Aurora kinase
inhibitor patents and agents in clinical testing: an update (2009-10). Expert Opin.
Ther. Pat. 2011, 21, 857-884 and references therein.
11. Sun, L.; Tran, N.; Liang, C.; Tang, F.; Rice, A.,;Shreck, R.; Waltz, K.; Shawver, L.
K.; McMahon, G.; Tang, C. Design, synthesis, and evaluations of substituted 3-
[(3- or 4-carboxyethylpyrrol-2-yl)methylindenyl]indolin-2-ones as inhibitors of
VEGF, PDGF, and FGF receptor tyrosine kinases. J. Med. Chem. 1999, 42, 5120-
5130.
12. Godl, K.; Gruss, O. J.; Eickhoff, J.; Wissing, J.; Blencke, S.; Weber, M.; Degen,
H.; Brehmer, D.; Orfi, L.; Horváth, Z.; Kéri, G.; Müller, S.; Cotton, M.; Ullrich,
A.; Daub, H. Proteomic characterization of the angiogenesis inhibitor SU6668
reveals multiple impacts on cellular kinase signaling. Cancer Res. 2005, 65, 6919-
6926.
13. Chiang, C. C.; Lin, Y. H.; Lin, S. F.; Lai, C. L.; Liu, C.; Wei, W. Y.; Yang, S. C.;
Wang, R. W.; Teng, L. W.; Chuang, S. H.; Chang, J. M.; Yuan, T. T.; Lee, Y. S.;
Chen, P.; Chi, W. K.; Yang, J. Y.; Huang, H. J.; Liao, C. B.; Huang, J. J. Discovery
of pyrrole-indoline-2-ones as Aurora kinase inhibitors with a different inhibition
profile. J. Med. Chem. 2010, 53, 5929-5941.
14. Hauf, S.; Cole, R. W.; LaTerra, S.; Zimmer, C.; Schnapp, G.; Walter, R.; Heckel,
A.; van Meel, J.; Rieder, C. L.; Peters, J. M. The small molecule Hesperadin
reveals a role for Aurora B in correcting kinetochore-microtubule attachment and
in maintaining the spindle assembly checkpoint. J. Cell. Biol. 2003, 161, 281-294.
15. Khanwelkar, R. R.; Chen, G. S.; Wang, H. C.; Yu, C. W.; Huang, C. H.; Lee, O.;
Chen, C. H.; Hwang, C. S.; Ko, C. H.; Chou, N. T.; Lin, M. W.; Wang, L. M.;
Chen, Y. C.; Hseu, T. H.; Chang, C. N.; Hsu, H. C.; Lin, H. C.; Shih, Y. C.; Chou,
S. H.; Tseng, H. W.; Liu, C. P.; Tu, C. M.; Hu, T. L.; Tsai, Y. J.; Chern, J. W.
Synthesis and structure-activity relationship of 6-arylureido-3-pyrrol-2-
135
ylmethylideneindolin-2-one derivatives as potent receptor tyrosine kinase
inhibitors. Bioorg. Med. Chem. 2010, 18, 4674-4686.
16. GSK Clinical Study Register. http://www.gsk-clinicalstudyregister.com/index.jsp
(accessed April 19, 2012).
17. Exelixis Company. http://www.exelixis.com/pipeline/xl184 (accessed April 19,
2012).
18. For compound 63: Li, T.; Pobanz, M. A.; Shih, C.; Wu, Z.; Yang, W. J.; Zhong, B.
Amidophenoxyindazoles useful as inhibitors of c-Met. U. S. Patent 20100022529
A1, January 28, 2010. For compound 65: Bannen, L. C.; Dalrymple, L. E.;
Huynh, T. P.; Khoury, R. G.; Houry, R. G.; Xu, W.; Wang, Y.; Takeuchi, C. S.;
Parks, J. J.; Nuss, J. M.; Mann, L. W.; Mann, L. W.; Mann, G.; Mac, M. B.; Leahy,
J. W.; Jammalamdaka, V.; Forsyth, T. P.; Chen, J.; Chan, D. S-M. c-Met
modulators and methods of use. WO2005030140 A2, April 7, 2005.
19. Kim, K. S.; Zhang, L.; Schmidt, R.; Cai, Z. W.; Wei, D.; Williams, D. K.;
Lombardo, L. J.; Trainor, G. L.; Xie, D.; Zhang, Y.; An, Y.; Sack, J. S.; Tokarski, J.
S.; Darienzo, C.; Kamath, A.; Marathe, P.; Zhang, Y.; Lippy, J.; Jeyaseelan, R. Sr.;
Wautlet, B.; Henley, B.; Gullo-Brown, J.; Manne, V.; Hunt, J. T.; Fargnoli, J.;
Borzilleri, R. M. Discovery of pyrrolopyridine-pyridone based inhibitors of Met
kinase: synthesis, X-ray crystallographic analysis, and biological activities. J.
Med. Chem. 2008, 51, 5330-5341.
20. Masu, H.; Ohmori, K.; Kishikawa, K.; Yamamoto, M.; Yamaguchi, K.; Kohmoto,
S. Creation of concave-shaped conformation in crystal structures using an
iminodicarbonyl kinker. An application to solid-state intramolecular [4 + 4]
photocycloaddition reactions of 2-Pyridone Derivatives. Bull. Chem. Soc. Jpn.
2005, 78, 1127-1131.
21. Balogh, M.; Hermecz, I.; Meszaros, Z.; Simon, K.; Pusztay, L.; Horvath, G.;
Dvortsak, P. Studies on chemotherapeutics I. Synthesis of 5-substituted-4-oxo-1,4-
dihydro-3-pyridinecarboxylic acid derivatives. J. Heterocycl. Chem. 1980, 17,
359-368.
136
22. Lin, Z. Z.; Jeng, Y. M.; Hu, F. C.; Pan, H. W.; Tsao, H. W.; Lai, P. L.; Lee, P. H.;
Cheng, A. L.; Hsu, H. C. Significance of Aurora B overexpression in
hepatocellular carcinoma. Aurora B overexpression in HCC. BMC Cancer 2010,
28, 461-475.
23. 王文睿、楊勝生、林金祥、曾志勇、劉道明、劉宏濤 (2009):非小細胞肺癌
中Aurora-B 的表達及其臨床意義。南方醫科大學學報,29,1853-1856。
24. Sun, L.; Tran, N.; Tang, F.; App, H.; Hirth, P.; McMahon, G.; Tang, C. Synthesis
and biological evaluations of 3-substituted indolin-2-ones: a novel class of
tyrosine kinase inhibitors that exhibit selectivity toward particular receptor
tyrosine kinases. J. Med. Chem. 1998, 41, 2588-2603.
25. Silverman, R. B. Drug Discovery, Design and Development. The Organic
Chemistry of Drug Design and Drug Action, second edition; Elsevier Academic
Press: San Diego, CA, 2004; pp 7-105.
26. Waring, M. J.; Johnstone, C. A quantitative assessment of hERG liability as a
function of lipophilicity. Bioorg. Med. Chem. Lett. 2007, 17, 1759-1764.
27. Gilliland, D. G.; Griffin, J. D. The roles of FLT3 in hematopoiesis and leukemia.
Blood 2002, 100, 1532-1542.
28. Sessa, F.; Mapelli, M.; Ciferri, C.; Tarricone, C.; Areces, L. B.; Schneider, T. R.;
Stukenberg, P. T.; Musacchio, A. Mechanism of Aurora B activation by INCENP
and inhibition by hesperadin. Mol. Cell. 2005, 18, 379-391.
29. Cee, V. J.; Cheng, A. C.; Romero, K.; Bellon, S.; Mohr, C.; Whittington, D. A.;
Bak, A.; Bready, J.; Caenepeel, S.; Coxon, A.; Deak, H. L.; Fretland, J.; Gu, Y.;
Hodous, B. L.; Huang, X.; Kim, J. L.; Lin, J.; Long, A. M.; Nguyen, H.; Olivieri,
P. R.; Patel, V. F.; Wang, L.; Zhou, Y.; Hughes, P.; Geuns-Meyer, S. Pyridylpyrimidine
benzimidazole derivatives as potent, selective, and orally bioavailable
inhibitors of Tie-2 kinase. Bioorg. Med. Chem. Lett. 2009, 19, 424-427.
30. Wilkinson, R. W.; Odedra, R.; Heaton, S. P.; Wedge, S. R.; Keen, N. J.; Crafter,
C.; Foster, J. R.; Brady, M. C.; Bigley, A.; Brown, E.; Byth, K. F.; Barrass, N. C.;
Mundt, K. E.; Foote, K. M.; Heron, N. M.; Jung, F. H.; Mortlock, A. A.; Boyle, F.
137
T.; Green, S. AZD1152, a selective inhibitor of Aurora B kinase, inhibits human
tumor xenograft growth by inducing apoptosis. Clin. Cancer Res. 2007, 13, 3682-
3688.
31. Li, J.; Anderson, M. G.; Tucker, L. A.; Shen, Y.; Glaser, K. B.; Shah, O. J.
Inhibition of Aurora B kinase sensitizes a subset of human glioma cells to TRAIL
concomitant with induction of TRAIL-R2. Cell Death Differ. 2009, 16, 498-511.
32. Gully, C. P.; Zhang, F.; Chen, J.; Yeung, J. A.; Velazquez-Torres, G.; Wang, E.;
Yeung, S. C.; Lee, M. H. Antineoplastic effects of an Aurora B kinase inhibitor in
breast cancer. Mol. Cancer 2010, 9, 42-55.
33. Moore, A. S.; Blagg, J.; Linardopoulos, S.; Pearson, A. D. Aurora kinase
inhibitors: novel small molecules with promising activity in acute myeloid and
Philadelphia-positive leukemias. Leukemia 2010, 24, 671-678.
34. Becher, J; Johansen, T and Michael, M. A. Pyridinethiones. IX Preparation of
Ricinidine, Thioricinidine and Other 2(1H)-Pyridones and -thiones Related to
Nicotinic acid. J. Heterocycl. Chem. 1984, 21, 41-48.
35. Hsu, S. C.; Kuo, C. L.; Lin, J. P.; Lee, J. H.; Lin, C. C.; Su, C. C.; Yang, M. D.;
Chung, J. G. Crude extracts of Euchresta formosana radix inhibit invasion and
migration of human hepatocellular carcinoma cells. Anticancer Res. 2007, 27(4B),
2377-2384.
References
1. Chen, C. Y. Design and synthesis of benzenesulfonamide derivatives as potential
cell cycle targeting inhibitors. Master Thesis, National Taiwan University, 2001.
2. Unpublished data.
3. Chien, H. Y. Design and synthesis of benzenesulfonamidoindolinone derivatives
as potential antitumor agents. Master Thesis, National Taiwan University, 2004.
4. Chern, T. R. Mechanistic Studies of Benzenesulfonamidoindolinone Derivative J-
3944 against Human Non-small Cell Lung Cancer A549 Cells. Master Thesis,
National Taiwan University, 2007.
5. Khanwelkar, R. R.; Chen, G. S.; Wang, H. C.; Yu, C. W.; Huang, C. H.; Lee, O.;
Chen, C. H.; Hwang, C. S.; Ko, C. H.; Chou, N. T.; Lin, M. W.; Wang, L. M.;
Chen, Y. C.; Hseu, T. H.; Chang, C. N.; Hsu, H. C.; Lin, H. C.; Shih, Y. C.; Chou,
S. H.; Tseng, H. W.; Liu, C. P.; Tu, C. M.; Hu, T. L.; Tsai, Y. J.; Chern, J. W.
Synthesis and structure-activity relationship of 6-arylureido-3-pyrrol-2-
ylmethylideneindolin-2-one derivatives as potent receptor tyrosine kinase
inhibitors. Bioorg. Med. Chem. 2010, 18, 4674-4686.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15943-
dc.description.abstract為同時抑制多個疾病相關之標靶,先期研究將抗有絲分裂劑之藥效基團(磺醯胺基)和吲哚-2-酮結合。第一系列共軛吲哚-2-酮類蛋白質抑制劑以J3944為代表。以此為基礎設計第二系列化合物,將位於吲哚-2-酮骨架第三位置的苯環由吡咯環取代,這致使化合物對細胞週期蛋白依賴型激酶2具有更強的抑制活性,其半抑制濃度為0.4微莫爾。若在吲哚-2-酮之第五或七位置進行修飾則會導致化合物的活性變差。相反的,6-芳基脲-3-吡咯-2-亞甲基吲哚-2-酮類衍生物對多個受體酪氨酸激酶具有納莫爾級的抑制活性。構效關係的研究結果顯示,化合物具有蛋白質激酶抑制活性的關鍵在於:鏈結取代基位於吲哚-2-酮骨架中心之位置,以及脲基中的羰基官能基。因此,設計第三系列基於吲哚-2-酮的抑制劑時,在吲哚-2-酮的六號位置引入了丙二醯胺鏈結。而丙二醯胺的構象限制又致使第四系列具有吡啶-2-酮基和吡啶-4-酮基的抑製劑隨之被研發出來。生物活性研究顯示,第三系列丙二醯胺類化合物和第四系列吡啶酮類化合物是有潛效的極光激酶B抑制劑,其半抑制濃度在亞微莫爾至納莫爾範圍。這些化合物對Fms樣的酪胺酸激酶3也有交叉抑制作用。我們認為相繼抑制Fms樣酪胺酸激酶3和極光激酶B可能會對治療急性髓系白血病提供潛在的幫助。本論文以吲哚-2-酮之適用性為出發點,進行有潛效蛋白質激酶抑制劑的研發,並從而得到具抑制極光激酶和其他蛋白激酶的化合物。zh_TW
dc.description.abstractIn order to hit several disease-relevant targets simultaneously, sulfonamido moiety, which is a pharmacophore of antimitotic agents, was conjugated to indolin-2-one. This resulted in the first series of indolin-2-one based inhibitors, such as J3944. Replacing phenyl ring on the 3-position of indolin-2-one by pyrrolyl ring led to more potent CDK2 inhibitor (IC50 = 0.4 μM). Modifications on linkages at the 5- or 7-position of indolin-2-one core resulted in much inferior compounds. In contrary, 6-arylureido-3-pyrrol-2-ylmethylideneindolin-2-one derivatives exhibited potency to multiple receptor tyrosine kinases in nanomolar range. Results of structure-activity relationship study showed that both position of linker on indolin-2-one core and carbonyl group in ureido moiety are crucial for kinase inhibition activity. The third series indolin-2-one based inhibitors were designed with malonamido moiety attached to the 6-position of indolin-2-one as the linker. Conformational restriction of malonamido moiety led to the fourth series inhibitors bearing pyridin-2-one and pyridin-4-one moieties. Biological studies showed that malonamide and pyridone compounds were potential Aurora-B kinase inhibitors with IC50 values in submicro- to nanomolar range. They also had cross activity to Flt-3. It is believed that the sequential inhibition of Flt-3 and Aurora-B kinase may provide potential therapeutic benefits to treat acute myeloid leukemia. In this thesis, the applicability of indolin-2-one as a reasonable starting point to develop potential protein kinase inhibitors was highlighted.en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:56:02Z (GMT). No. of bitstreams: 1
ntu-101-F95423003-1.pdf: 2758793 bytes, checksum: b72f1b2d43408b62b96ec0b3c80e2b72 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 ........................................................................................................... i
誌謝 .................................................................................................................................. ii
中文摘要 ......................................................................................................................... iii
Abstract .......................................................................................................................... iv
Contents ........................................................................................................................... v
List of Figures .............................................................................................................. viii
List of Tables .................................................................................................................. ix
List of Schemes ............................................................................................................... x
Chapter 1. Introduction ................................................................................................. 1
1.1 Cancer and Protein Kinases ............................................................................ 1
1.2 Protein Kinases Inhibitors in Clinical Settings ............................................... 2
1.3 Protein Kinase Inhibitors in the Development Pipeline .................................. 3
1.4 Summary ......................................................................................................... 4
1.5 References ....................................................................................................... 9
Chapter 2. Development of Novel Multiple Targeted Kianse Inhibitors by Hybridization of Privileged Pharmacophores ........................................................... 12
2.1 Introduction ................................................................................................... 12
2.2 Design ........................................................................................................... 15
2.3 Chemistry ...................................................................................................... 16
2.4 Results and Discussion ................................................................................. 22
2.5 Summary ....................................................................................................... 25
2.6 Experiment Section ....................................................................................... 25
2.7 References ..................................................................................................... 29
Chapter 3. Development of Aurora-B kinase/Flt-3 Inhibitors with Pyridones as Conformational Restriction Bioisosteres of Urea and Malonamide ........................ 34
3.1 Introduction ................................................................................................... 34
3.2 Design ........................................................................................................... 37
3.3 Chemistry ...................................................................................................... 38
3.4 Results and Discussion ................................................................................. 45
3.4.1 Biochemical Activity and Cell Survival Inhibition ................................ 45
3.4.2 Computer Modeling ............................................................................... 59
3.4.3 Mechanism Study ................................................................................... 61
3.4.4 Anti-metastatic Effect ............................................................................ 66
3.4.5 Safety and in vivo Pharmacokinetic Study ............................................. 68
3.4.6 In vivo Efficacy Study ............................................................................ 69
3.4.7 Kinase Selectivity Study ........................................................................ 71
3.5 Summary ....................................................................................................... 72
3.6 Experiment Section ....................................................................................... 73
3.6.1 Compound Information .......................................................................... 73
3.6.2 In vitro Kinase Activity Assay and Safety Assay ................................ 125
3.6.3 Cell Culture and Cell Survival Inhibition Assay .................................. 126
3.6.4 Western Blot and Dot Blot Analysis .................................................... 127
3.6.5 Morphological Examination ................................................................. 128
3.6.6 ApoTox-Glo™ Assay .......................................................................... 128
3.6.7 Anti-metastasis Effect: Migration and Invasion Experiments ............. 129
3.6.8 In vivo Pharmacokinetic Study ............................................................. 131
3.6.9 In vivo Efficacy Study .......................................................................... 131
3.7 References ................................................................................................... 133
Chapter 4. Conclusion ................................................................................................ 138
dc.language.isoen
dc.subject吲zh_TW
dc.subject構效關係zh_TW
dc.subject極光激&#37238zh_TW
dc.subject標靶治療zh_TW
dc.subject抑制劑zh_TW
dc.subject酵素激&#37238zh_TW
dc.subject癌症zh_TW
dc.subject酮zh_TW
dc.subjectprotein kinase inhibitoren
dc.subjectAurora-B kinaseen
dc.subjectindolin-2-oneen
dc.subjectoxindoleen
dc.subjectstructure-activity relationshipen
dc.subjectcanceren
dc.subjecttarget therapyen
dc.title設計與合成吲哚-2-酮衍生物作為潛能蛋白激酶抑制劑及其活性評估zh_TW
dc.titleDesign, Synthesis and Biological Evaluation of Indolin-2-one Derivatives as Potential Protein Kinase Inhibitorsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee王光昭,顧記華,尤啟冬,陳香惠,忻凌偉
dc.subject.keyword酵素激&#37238,抑制劑,標靶治療,癌症,構效關係,吲,&#21722,酮,極光激&#37238,B,zh_TW
dc.subject.keywordprotein kinase inhibitor,target therapy,cancer,structure-activity relationship,oxindole,indolin-2-one,Aurora-B kinase,en
dc.relation.page141
dc.rights.note未授權
dc.date.accepted2012-08-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved