請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15938完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳漢明(Han-Ming Chen) | |
| dc.contributor.author | Chun-Yi Liao | en |
| dc.contributor.author | 廖峻儀 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:55:54Z | - |
| dc.date.copyright | 2012-08-20 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-15 | |
| dc.identifier.citation | 1. Nam-Trung Nguyen and Zhigang Wu, Micromixers - a review, J. Micromech. Mi-croeng. 15 (2005) R1–R16.
2. Kevin P. Nichols, Julia R. Ferullo and Antje J. Baeumner, Recirculating passive mi-cromixer with a novel sawtooth structure, Lab Chip 6 (2006) 242–246. 3. Yuwadee Boonyasit, Thitima Maturos, Assawapong Sappat, Apichai Jomphoak, Adisorn Tuantranont and Wanida Laiwattanapaisal, Passive micromixer integration with a microfluidic chip for calcium assay based on the arsenazo III method, Bio-Chip J. 5 (2011) 1-7. 4. Daniel Therriault, Scott R. White and Jennifer A. Lewis, Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly, Nat. Mater. 2 (2003) 265–271. 5. Fiona G. Bessoth, Andrew J. deMello and Andreas Manz, Microstructure for effi-cient continuous flow mixing, Anal. Commun. 36 (1999) 213–215. 6. Jessamine M.K. Ng, Irina Gitlin, Abraham D. Stroock and George M. Whitesides, Components for integrated poly(dimethylsiloxane) microfluidic systems, Electro-phoresis 23 (2002) 3461–3473. 7. Samuel K. Sia and George M. Whitesides, Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies, Electrophoresis 24 (2003) 3563–3576. 8. Abraham D. Stroock, Stephan K.W. Dertinger, Armand Ajdari, Igor Mezić, Howard Stone, George M. Whitesides, Chaotic Mixer for Microchannels, Sci. 295 (2002) 647–651. 9. K.Y. Tung and J.T. Yang, Design and Analysis of a Chaotic Micromixer with Vorti-ces Modulation, Proceedings of Symposium on Design, Test, Integration and Pack-aging of MEMS/MOEMS, (2008) 9-11 April 282–284, Nice, France. 10. Terje Tofteberg, Maciej Skolimowski, Erik Andreassen and Oliver Geschke, A novel passive micromixer: lamination in a planar channel system, Microfluid Nanofluid 8 (2010) 209–215. 11. Ya-Hui Hu and Kao-Hui Lin, Two Fluids Mixing in a Micromixer with Helical Channel and Grooved Surfaces, Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol II (2008) 19-21 March, Hong Kong. 12. Chien-Chong Hong, Jin-Woo Choi and Chong H. Ahn, A novel in-plane passive mi-crofluidic mixer with modified Tesla structures, Lab Chip 4 (2004) 109–113. 13. Rei-Tang Tsai and Chih-Yang Wu, An efficient micromixer based on multidirectional vortices due to baffles and channel curvature, Biomicrofluidics 5 (2011) 014103-1-13. 14. D.J. Kim, H.J. Oh, T.H. Park, J.B. Choob and S.H. Lee, An easily integrative and efficient micromixer and its application to the spectroscopic detection of glu-cose-catalyst reactions, Anal. 130 (2005) 293–298. 15. Dong Sung Kim, Se Hwan Lee, Tai Hun Kwon and Chong H. Ahn, A serpentine laminating micromixer combining splitting/recombination and advection, Lab Chip 5 (2005) 739–747. 16. F. Schönfeld, V. Hessel and C. Hofmann, An optimised split-and-recombine mi-cro-mixer with uniform ‘chaotic’ mixing, Lab Chip 4 (2004) 65–69. 17. Jyh-Jian Chen, Yu-Ren Lai, Rei-Tang Tsai, Jenn-Der Lin and Chih-Yang Wu, Crosswise ridge micromixers with split and recombination helical flows, Chem. Eng. Sci. 66 (2011) 2164–2176. 18. Minye Liu, Computational study of convective – diffusive mixing in a microchannel mixer, Chem. Eng. Sci. 66 (2011) 2211–2223. 19. Cesar Augusto Cortes-Quiroz, Alireza Azarbadegan, Mehrdad Zangeneh and Akira Goto, Analysis and multi-criteria design optimization of geometric characteristics of grooved micromixer, Chem. Eng. Journal 160 (2010) 852–864. 20. Cesar Augusto Cortes-Quiroz, Mehrdad Zangeneh and Akira Goto, On mul-ti-objective optimization of geometry of staggered herringbone micromixer, Micro-fluid Nanofluid 7 (2009) 29–43. 21. Shakhawat Hossain, Mubashshir A. Ansari, Afzal Husain and Kwang-Yong Kim, Analysis and optimization of a micromixer with a modified Tesla structure, Chem. Eng. Journal 158 (2010) 305–314. 22. Shakhawat Hossain, Afzal Husain and Kwang-Yong Kim, Shape optimization of a micromixer with staggered-herringbone grooves patterned on opposite walls, Chem. Eng. Journal 162 (2010) 730–737. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15938 | - |
| dc.description.abstract | 使用兩層平面式流道上下貼合成一個簡單的雙層立體微混合流道(micro mixer),不需要複雜的製程達到良好的混合效果,具有成本低與製造時間短的優勢。設計的流道有兩項變數,藉由有限元素分析軟體將不同變數組合下的效果模擬並求得混合效率值。混合效率值的計算上考慮流體流速後,有別於傳統混合效率值計算方式,可使混合效率(mixing index)值曲線平滑。平滑的混合效率值曲線較容易使用迴歸(regression)分析方式找出最適合的變數組合。本研究中,藉由回歸方式計算出的參數最佳組合對照研究開始時的參考參數,可以將混合效率提升11.1%。 | zh_TW |
| dc.description.abstract | Design, simulation and optimization of a serial lamination micromixer are adapted with the concept of vortex-producing obstacle. Although the fluid motion is three-dimensional, the channel merely requires a simple fabrication process of adhering two layers of polymer. Optimization is analyzed with two main geometric parameters of the design. Simulation through one computational fluid dynamics software is used to optimize these two variables, while taking into consideration the physical properties of the fluid, i.e., viscosity and the Reynolds number. By additional consideration of the velocity field, a new mixing index is created based on the traditional mixing index. The inherent advantage of this new mixing index is that it always produces smoother curves than that of the traditional one. Optimization results are achieved by using the regression analysis with the two geometric parameters | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:55:54Z (GMT). No. of bitstreams: 1 ntu-101-R98522636-1.pdf: 1410479 bytes, checksum: a6539167a5ed95da0051065742b1a8ee (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 中文摘要 i
英文摘要 ii 圖目錄 iv 表目錄 v 第一章 緒論 1 1.1 前言 1 1.2 研究方法與流程 2 第二章 設計 4 2.1 流道形狀設計 4 2.2 混合效率値計算方式 5 第三章 模擬 8 第四章 討論 20 4.1 流體現象 20 4.2 參數組合 20 4.3 雷諾數 21 第五章 雷諾數 23 第六章 最佳化 25 第七章 結論 28 參考資料 29 附錄1:模擬結果數據 32 附錄2:Length of MIVF = 0.9 36 附錄3:MI計算程式碼 37 附錄4:MIVF計算程式碼 39 | |
| dc.language.iso | zh-TW | |
| dc.subject | 最佳化 | zh_TW |
| dc.subject | 流體流速 | zh_TW |
| dc.subject | 混合效率指數 | zh_TW |
| dc.subject | 雙層立體流道 | zh_TW |
| dc.subject | 迴歸 | zh_TW |
| dc.subject | Mixing index | en |
| dc.subject | Serial lamination Micromixer | en |
| dc.subject | Velocity field | en |
| dc.subject | Optimization | en |
| dc.subject | Regression | en |
| dc.title | 微混合流道設計、模擬與參數選擇 | zh_TW |
| dc.title | Design, Simulation and Optimization of a Micromixer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周元昉(Yuan-Fang Chou),劉正良(Cheng-Liang Liu) | |
| dc.subject.keyword | 雙層立體流道,混合效率指數,流體流速,最佳化,迴歸, | zh_TW |
| dc.subject.keyword | Serial lamination Micromixer,Mixing index,Velocity field,Optimization,Regression, | en |
| dc.relation.page | 40 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-08-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
