Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15932
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor潘子明(Tzu-Ming Pan)
dc.contributor.authorYu-Chun Huangen
dc.contributor.author黃郁珺zh_TW
dc.date.accessioned2021-06-07T17:55:44Z-
dc.date.copyright2012-08-16
dc.date.issued2012
dc.date.submitted2012-08-15
dc.identifier.citation蘇遠志、陳文亮、方鴻源、翁浩慶、王文祥。1970。紅麴菌 (Monascus anka) 之菌學研究。中國農業化學會誌。8: 45-58。
林讚峰。1995。紅麴菌培養工藝及紅麴應用之演進。製酒科技專論彙編。17: 156-168。
林讚鋒。1983。紅麴菌的鑑定及實用分類法。製酒科技專論彙論。5: 104-113。
鍾成沛。2006。含松樹皮萃取物製品對於倉鼠脂質代謝的影響。國立臺灣大學食品科技研究所碩士論文。
譚雅芸。2011。紅麴菌屬 (Monascus) 聚酮類生成路徑之蛋白體學研究。國立臺灣生化科技學系碩士論文。
陳庭宏。2012。紅麴二次代謝物 ankaflavin 及 monascin 對非酒精性脂肪肝之調控。國立臺灣生化科技學系碩士論文。
行政院衛生署。2009。食品中真菌毒素限量標準
Alberti, S., Schuster, G., Parini, P., Feltkamp, D., Diczfalusy, U., Rudling, M., Angelin, B., Bjorkhem, I., Pettersson, S., Gustafsson, J. A. 2001. Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXR beta-deficient mice. J Clin Invest. 107: 565–573.
Aniya, Y., Ohtani, I. I., Higa, T., Miyagi, C., Gibo, H., Shimabukuro, M., Nakanish, H., Taira, J. 2000. Dimerumic acid as an antioxidant of the mold, Monascus anka. Free Radi Boil Medic. 28: 999-1004.
Apfel, R., Benbrook, D., Lernhardt, E., Ortiz, M. A., Salbert, G., Pfahl, M. 1994. A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily. Mol Cell Biol. 14: 7025–7035.
Axelson, M., Sjovall, J. 1990. Potential bile acid precursors in plasma possible indicators of biosynthetic pathways to cholic and chenodeoxycholic acid in man. J Steroid Bio. 36: 631-640.
Azuma, N., Akasaka, N., Kito, H., Ikeda, M., Gahtan, V., Sasajima, T., Sumpio, B. E. 2001. Role of p38 MAP kinase in endothelial cell alignment induced by fluid shear stress. Am J Physiol Heart Circ Physiol. 280: 189-197.
Bao, X., Lu, C. Frangos, J. A. 2001. Mechanism of temporal gradients in shear-induced ERK1/2 activation and proliferation in endothelial cells. Am J Physiol Heart Circ Physiol. 281: 22-29.
Barak, Y., Liao, D., He, W., Ong, E. S., Nelson, M. C., Olefsky, J. M., Boland, R., Evans, R. M. 2002. Effects of peroxisome proliferator-activated receptor δ on placentation, adiposity, and colorectal cancer. Proc Natl Acad Sci. 99: 303–308.
Barak, Y., Nelson, M. C., Ong, E. S., Jones, Y. Z., Lozano, P. R., Chien, K.R., Koder, A., Evans, R. M. 1999. PPARγ is required for placental, cardiac, and adipose tissue development. Mol Cell. 4: 585-595.
Barbier, O., Trottier, J., Kaeding, J., Caron, P., Verreault, M. 2009. Lipid-activated transcription factors control bile acid glucuronidation. Mol Cell Biol. 326: 3–8.
Basso, F., Freeman, L., Knapper, C. L., Remaley, A., Stonik, J., Neufeld, E. B., Tansey, T., Amar, M. J., Fruchart-Najib, J., Duverger, N. Santamarina-Fojo, S., Brewer, H. B. J. 2003. Role of the hepatic ABCA1 transporter in modulating intrahepatic cholesterol and plasma HDL cholesterol concentrations. J Lipid Res. 44: 296–302.
Berge, K. E., Tian, H., Graf, G. A., Yu, L., Grishin, N. V., Schultz, J., Kwiterovich, P., Shan, B., Barnes1, R., Hobbs1, H. H. 2000. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science. 290: 1771–1775.
Berliner, J. A., Heinecke, J. W. 1996. The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med. 20: 707–727.
Blanc, P. J., Laussac, J. P., Le Bars, J., Le Bars, P., Loret, M. O., Pareilleux, A., Prome, D., Prome, J. C., Santerre, A. L., Goma, G. 1995. Characterization of monascidin A from Monascus as citrinin. Int J Food Microbiol. 27: 201-213.
Blanc, P. J., Loret, M. O., Santerre, A. L., Pareilleux, A., Prome, D., Prome, J. C., Laussac, J. P., Goma, G. 1994. Pigments of Monascus. J Food Sci. 59: 862-865.
Boots, A. W., Haenen, G. R., Bast, A. 2008. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol. 585: 325-337.
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Brown, B. G., Zhao, X. Q., Albers, J. J., Sacco, D. E. 1993. Lipid lowering and plaque regression. New insights into prevention of plaque disruption and clinical events in coronary disease Circulation. 87: 1781-1791.
Brown, M. S., Goldstein, J. L. 1986. A receptor-mediated pathway for cholesterol homeostasis. Science. 232: 34–47.
Brunham, L. R., Singaraja, R. R., Hayden, M. R. 2006. Variations on a gene: rare and common variants in ABCA1 and their impact on HDL cholesterol levels and atherosclerosis. Annu Rev Nutr. 26: 105–129.
Budavari, S., Maryadele, J. O., Smith, A., Heckelman, P. E. 1989. The Merck Index. 11: 2330-2331.
Camps, J., Garc´ıa-Heredia, A., Rull, A., Alonso-Villaverde, C. Aragon`es, G., Beltr´an-Deb´on, R., Rodr´ıguez-Gallego, E., Joven, J. 2012. PPARs in Regulation of Paraoxonases: Control of Oxidative Stress and Inflammation Pathways. PPAR Res. (On line)
Chakravarthy, M. V., Pan, Z., Zhu, Y. Tordjman, K., Schneider, J. G, Coleman, T., Turk, J., Clay Semenkovich1, F. 2005. “New” hepatic fat activates PPAR to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab. 1: 1445-1457.
Chang, T. Y., Chang, C. C. Y., Cheng, D. 1997. Acyl-coenzyme A: cholesterol acyltransferase. Annu Rev Biochem. 66: 613-638.
Chawla, A., Boisvert, W. A., Lee, C. H., Laffitte, B. A., Barak, Y., Joseph, S. B., Liao, D., Nagy, L., Edwards, P. A., Curtiss, L. K., Evans, R. M., Tontonoz, P. 2001a. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell. 7: 161–171.
Chawla, A., Repa, J. J., Evans, R. M., Mangelsdorf, D. J. 2001b. Nuclear receptors and lipid physiology: opening the X-files. Science. 294: 1866–1870.
Cheema, S. K., Agellon, L. B. 2000. The murine and human cholesterol 7 alpha-hydroxylase gene promoters are differentially responsive to regulation by fatty acids mediated via peroxisome proliferator-activated receptor alpha J Biol Chem. 275: 12530-12536.
Chuang, C. Y., Shi, Y. C., You, H. P., Lo, Y. H., Pan, T. M. 2011. Antidepressant effect of GABA-rich Monascus-fermented product on forced swimming rat model. J Agri Food Chem. 59: 3027-3034.
Chunyan, Z., Karin, D. W. 2010. Liver X receptor in cholesterol metabolism. J Endocrinol. 204: 233-240.
Costa, L. G., Vitalone, A., Cole, T. B., Furlong, C. E. 2005. Modulation of paraoxonase (PON1) activity. Biochem Pharmacol. 69: 541-550.
Das, U. N. 2001. Essential fatty acids as possible mediators of the actions of statins. Prost Leuk and Essen Fatty Acids. 65: 37-40.
Deakin, S., Leviev, I., Gomaraschi, M., Calabresi, L., Franceschini, G., James, R. W. 2002. Enzymatically active paraoxonase-1 is located at the external membrane of producing cells and released by a high affinity, saturable, desorption mechanism. J Biol Chem. 277: 4301–4308.
Dinkova-Kostova, A. T., Holtzclaw, W. D., Cole, R. N., Itoh, K, Wakabayashi, N., Katoh, Y., Yamamoto, M., Talalay, P. 2002. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Nat Acad Sci. 99: 11908–11913.
Dressel, U., Allen. T. L., Pippal, J. B., Rohde, P. R., Lau, P., Muscat, G. E. O. 2003. The peroxisome proliferator-activated receptor β/δ agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Mol. Endocrinol. 17: 2477–2493.
Dubois, M., Pattou, F., Kerr, C. J., Gmyr, V., Vandewalle, B., Desreumaux, P. 2000. Expression of peroxisome proliferator-activated receptor gamma (PPAR gamma) in normal human pancreatic islet cells. Diabetologia. 43: 1165–1169.
Ebrahim, S., Sung, J., Song, Y. M., Ferrer, R., Lawlor, D. A., Smith, G. D. 2006. Serum cholesterol, haemorrhagic stroke, ischaemic stroke, and myocardial infarction: Korean national health system prospective cohort study. BMJ. 333: 22-26.
Endo, A. 1979. A new hypocholesterolemic agent produced by a Monascus species. J Antibiot. 32: 852-854.
Evans, R. M., Barish, G. D., Wang, Y. X. 2004. PPARs and the complex journey to obesity. Nat Med. 10: 355-361.
Fabre, C. E., Santerre, A. L., Loret, M. O., Baberian, R., Pareilleux, A., Goma, G., Blanc, P. J. 1993. Production and food applications of the red pigments of Monascus ruber. J Food Sci. 58: 1099-1102.
Fan, X., Kim, H. J., Bouton, D., Warner, M., Gustafsson, J. A. 2008. Expression of liver X receptor beta is essential for formation of superficial cortical layers and migration of later-born neurons. Proc Natl Acad Sci. 105: 13445–13450.
Ferretti. G., Bacchetti. T., Busni. D., Rabini. R. A., Curatola, G. 2004. Protective effect of paraoxonase activity in high-density lipoproteins against erythrocyte membranes peroxidation: a comparison between healthy subjects and type 1 diabetic patients. J Clin Endocrinol Metab. 89: 2957–2962.
Ferretti, G., Bacchetti, T., N`egre-Salvayre b, A. Salvayre, R., Dousset, N., Curatola G. 2005. Structural modifications of HDL and functional consequences. Atherosclerosis. 184: 1-7.
Fielding, C. J., Fielding, P. E. 2002. 4th ed. Dynamics of lipoprotein transport in the human circulatory system. Biochemistry of Lipid, Lipoproteins and Membranes. 20: 527-552.
Garrington, T. P., Johnson, G. L. 1999. Organization and regulation of mitogen-avtivated protein kinase signaling pathways. Curr Opin Cell Bio. 11: 211-218.
Girona, J., La Ville, A. E., Heras, M., Oliv´e S, M. L. 1997. Oxidized lipoproteins including HDL and their lipid peroxidation products inhibit TNF-alpha secretion by THP-1 human macrophages. Free Radic Biol Med. 23: 658–667.
Goldberg, A. C., Schonfeld, G. 1985. Effects of diet on lipoprotein metabolism. Ann Rev Nutr. 5: 195-212.
Guo, W. Z., Ji, H., Yan, Z. H., Li, L., Li, D., Lu, C. L. 2011 Lovastatin changes activities of lactate dehydrogenase A and B genes in rat myocardial cells. Chin Med J. 124: 423-428.
Halliwell, B., Murcia, M. A., Chirico, S., Aruoma, O. I., 1995. Free radicals and antioxidants in food and in vivo: what they do and how they work. Crit Rev Food Sci Nutr. 35: 7-20.
Ho, B. Y., Pan, T. M. 2009. The Monascus metabolite, monacolin K, reduces tumor progression and metastasis of Lewis lung carcinoma cells. J Agri Food Chem. 57: 8258-8265.
Huang, H. C., Nguyen, T., Pickett, C. B. 2002. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem. 277: 42769-42774.
Huang, H. Y., Chang, C. K., Tso, T. K., Huang, J. J., Chang, W. W., Tsai, Y. C. 2004. Antioxidant activities of various fruits and vegetables produced in Taiwan. Int J Food Sci Nutr. 55: 423-429.
Huang, Z., He, W., Zhou, X., Nicholson, A. C., Jr A. M. G, Hajjar, D. P. 2007. Activation of PPAR alpha and PPAR gamma induce expression of the hepatic LDL receptor. FASEB J. 21: 867.10.
Ishikawa, K., Navab, M., Lusis, A. J. 2011. Vasculitis, atherosclerosis, and altered HDL composition in heme-oxygenase-1-knockout mice. Int J Hypertens. 2012: 1-6.
Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M., Nabeshima, Y. 1997. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 236: 313–322.
Janowski, B. A., Grogan, M. J., Jones, S. A., Wisely, G. B., Kliewer, S. A., Corey, E. J., Mangelsdorf, D. J. 1999. Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc Natl Acad Sci. 96: 266–271.
Janowski, B. A., Willy, P. J., Devi, T. R., Falck, J. R., Mangelsdorf, D. J. 1996. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature. 383: 728–731.
Jaouad, L., Milochevitch, C., Khalil, A. 2003. PON1 paraoxonase activity is reduced during HDL oxidation and is an indicator of HDL antioxidant capacity. Free Radic Res. 37: 77–83.
Jonas A. 1998. Regulation of lecithin cholesterol acyltransferase activity. Prog Lipid Res. 37: 209-234.
Joseph, S. B., Laffitte, B. A., Patel, P. H., Watson, M. A., Matsukuma, K. E., Walczak, R., Collins, J. L., Osborne, T. F., Tontonoz, P. 2002. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J Biol Chem. 277:11019–11025.
Jou, P. C., Ho, B. Y., Hsu, Y. W., Pan, T. M. 2010. The effect of Monascus secondary polyketide metabolites, monascin and ankaflavin, on adipogenesis and lipolysis activity in 3T3-L1. J Agri Food Chem. 58: 12703-12709.
Jo, Y., DeBose-Boyd, .R. A. 2010. Control of cholesterol synthesis through regulated ER associated degradation of HMG-CoA reductase. Crit Rev Biochem Mol Biol. 45: 185–198.
Kang, K. W., Lee, S. J., Kim, S. G. 2005. Molecular Mechanism of Nrf2 activation by oxidative stress. antioxid redox signal. 7: 1664-1672.
Kennedy, M. A., Barrera, G. C., Nakamura, K., Baldan, A., Tarr, P., Fishbein, M. C., Frank, J., Francone, O.L., Edwards, P. A. 2005. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab. 1: 121–131.
Kennedy, M. A., Venkateswaran, A., Tarr, P. T., Xenarios, I., Kudoh, J., Shimizu, N., Edwards, P. A. 2001. Characterization of the human ABCG1 gene: liver X receptor activates an internal promoter that produces a novel transcript encoding an alternative form of the protein. J Biol Chem. 276: 39438–39447.
Kersten, S., Seydoux, J., Peters, J. M., Gonzalez, F. J., Desvergne, B. and Wahli, W. 1999. Peroxisome proliferator-activated receptor α mediates the adaptive response to fasting. J. Clin Invest. 103: 1489-1498.
Keum, Y. S., Jeong, W. S., Kong, A. N. 2004. Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms. Mutat Res. 555: 191-202.
Khateeb, J., Gantman, A., A. Kreitenberg, J., Aviram, M., Fuhrman, B. 2010. Paraoxonase 1 (PON1) expression in hepatocytes is upregulated by pomegranate polyphenols: a role for PPAR-γ pathway. Atherosclerosis. 208: 119–125.
Kim, S. I., Han, D. C., Lee, H. B. 2000. Lovastatin inhibits transforming growth factor-beta 1 expression in diabetic rat glomeruli and cultured at mesangial cells. JASN. 11: 80-87.
Knight, B. L., Patel, D. D., Humphreys, S. M., Wiggins, D., Gibbons, G. F. 2003. Inhibition of cholesterol absorption associated with a PPAR alpha-dependent increase in ABC binding cassette transporter A1 in mice. J Lipid Res. 44: 2049–2058
Kohama, Y., Matsumoto, S., Mimura, T., Tanabe, N., Inada, A. Nakanishi, T. 1987. Isolation and identification of hypotensive principles in red-mold rice. Chem Pharm Bull. (Tokyo) 35: 2484-2489.
Kota, B. P., Huang, T. H., Roufogalis, B. D. 2005. An overview on biological mechanisms of PPARs. Pharmacol Res. 51: 85-94.
Kusunoki, M., Tsutsumi, K., Iwata, K., Yin, W., Nakamura, T., Ogawa, H. Nomura, T., Mizutani, K., Futenma, A., Utsumi, K., Miyata, T. 2005. NO-1886 (ibrolipim), a lipoprotein lipase activator, increases the expression of uncoupling protein 3 in skeletal muscle and suppresses fat accumulation in high-fat diet–induced obesity in rats. Metab Clin Exp. 54: 1587-1592.
Lee, B. H., Ho, B. Y., Wang, C. T., and Pan, T. M. 2009. Red mold rice promoted antioxidase activity against oxidative injury and improved the memory ability of Zn-deficient rats, J Agri Food Chem. 57: 10600-10607.
Lee, B. H., Hsu, W. H., Liao, T. H., Pan, T. M. 2011. The Monascus metabolite monascin against TNF-alpha-induced insulin resistance via suppressing PPAR-gamma phosphorylation in C2C12 myotubes. Food Chem Toxicol. 49: 2609-2617.
Lee, C. L., Kung, Y. H., Wu, C. L., Hsu, Y. W., Pan, T. M. 2010. Monascin and ankaflavin act as novel hypolipidemic and high-density lipoprotein cholesterol-raising agents in red mold dioscorea. J Agri Food Chem. 58: 9013-9019.
Lee, C. L., Wang, J. J., Kuo, S. L., Pan, T. M. 2006. Monascus fermentation of dioscorea for increasing the production of cholesterol-lowering agent--monacolin K and antiinflammation agent-monascin. Appl Microbiol Biotechnol. 72: 1254-1262.
Lee, M. H., Lu, K., Patel, S. B. 2001. Genetic basis of sitosterolemia. Curr Opin Lipidol. 12: 141–149.
Leffler, C. W., Nasjletti, A., Yu, C., Johnson, R. A., Fedinec, A. L., Walker, N. Carbon monoxide and cerebral microvascular tone in newborn pigs. 1999. Am J Physiol Heart Circ Physiol 276: 1641–1646.
Leibovitz, E., Schiffrin, E. L. 2007. PPAR activation: a new target for the treatment of hypertension. J Cardiovasc Pharmacol. 50: 120-125.
Li, A. C., Glass, C. K. 2012. PPAR- and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. J Lipid Res. 45: 2161-2173.
Li, T., Chiang, J. Y. L. 2009. Regulation of bile acid and cholesterol metabolism by PPARs. PPAR Res. 2009: 1-15.
Lu, K., Lee, M. H., Patel, S. B. 2001. Dietary cholesterol absorption; more than just bile. Trends Endocrinol Metab. 12: 314-320.
Manzoni, M., Rollini, M. 2002. Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl Microbiol Biotechnol. 58: 555-564.
Marzec, J. M., Christie, J. D., Reddy, J. A. E., Vuong, H., Lanken, P. N., Aplenc, R., Yamamoto, T., Yamamoto. M., Cho, H. Y., Kleeberger, S. R. 2007. Functional polymorphisms in the transcription factor NRF2 in humans increase the risk of acute lung injury. FASEB J. 21: 2237–2246.
Mazikréa, J. C., MyaraC, I., Salrnonb, S., Auclair, M., Haigleb, J., Santusb, R., Mazikre, C. 1993. Copper and malondialdehyde-induced modification of high density lipoprotein and parallel loss of lecithin cholesterol acyltransferase activation. Atherosclerosis. 104: 213-219.
McNeish, J., Aiello, R. J., Guyot, D., Turi, T., Gabel, C., Aldinger, C. Hoppe, K. L., Roach, M. L., Royer, L. J., Wet, J., Broccardo, C., Chimini, G., Francone, O. L. 2000. High density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of ATP-binding cassette transporter-1. Proc Natl Acad Sci. 97: 4245– 4250.
Minerva, R. G., Kwak, M. K., Dolan, P. M., Itoh, K., Yamamoto, M., Talalay, P., Kensler, T. W. 2001. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci. 98: 3410–3415.
Morrison, R. F., Farmer, S. R. 1999. Insights into the transcriptional control of adipocyte differentiation. J. Cell Biochem. S32: 59-67.
Nelson, D. L. Cox, M. M. 2008. Principles of biochemistry. 5th ed.
Nguyen, L. B., Shefer, S., Salen, G., Tint, G. S. Ruiz, F., Bullock, J. 2001. Mechanisms for cholesterol homeostasis in rat jejunal mucosa: effects of cholesterol, sitosterol, and lovastatin. J Lipid Res. 42: 195-200.
Nguyen, T., Sherratt, P. J., Pickett, C. B. 2003. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol. 43: 233-260.
Nishikawa, Y., Stepp, D. W., Merkus, D., Jones, D., Chilian, W. M. 2004. In vivo role of heme oxygenase in ischemic coronary vasodilation. Am J Physiol Heart Circ Physiol. 286: 2296–2304.
Nissen, S. E., Nicholls, S. J., Wolski, K., Howey, D. C., McErlean, E., Wang, M. D., Gomez, E. V. and Russo, J. M. 2007. Effects of a potent and selective PPAR-α agonist in patients with atherogenic dyslipidemia or hypercholesterolemia: two randomized controlled trials. JAMA. 297: 1362-1373.
Ntambi, J. M., Kim, Y. C. 2000. Adipocyte differentiation and gene expression. J Nutr. 130: 3122S-3126S
Pakala, R., Kuchulakanti, P., Rha, S. W., Cheneau E., Baffour, R., Waksman, R. 2004. Peroxisome proliferator-activated receptor gamma: its role in metabolic syndrome. Cardiovasc Radiat Med. 5: 97–103.
Peet, D. J., Turley, S. D., Ma, W., Janowski, B. A., Lobaccaro, J. M., Hammer, R. E. Mangelsdorf, D. J. 1998. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell. 93: 693–704.
Peters, J. M., Lee, S. S. T., Li, W., Ward, J. M., Gavrilova, O., Everett, C., Reitman, M. L., Hudson, L. D., Gonzalez, F. J. 2000. Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome roliferator-activated receptor β(δ). Mol Cell Biol. 20: 5119–5128.
Pyper, S. R., Viswakarma, N. Yu, S., Reddy, J. K. 2010. PPAR alpha: energy combustion, hypolipidemia, inflammation and cancer. Nucl Recept Signal. 8: 1-21.
Rader, D. J., Alexander, E. T., Weibel, G. L., Billheimer, J., Rothblat, G. H. 2009. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res. 50: 189–194.
Remaley, A. T., Bark, S., Walts, A. D., Freeman, L., Shulenin, S., Annilo, T., Elgin, E., Rhodes, H. E., Joyce, C., Dean, M. Santamarina-Fojo, S., Brewer, H. B. Jr. 2002. Comparative genome analysis of potential regulatory elements in the ABCG5–ABCG8 gene cluster. Annu Rev Pharmacol Toxicol. 43: 233-260.
Repa, J. J., Berge, K. E., Pomajzl, C., Richard-son, J. A., Hobbs, H., Mangelsdorf, D.
J. 2002. Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors α and β. J Biol Chem. 277:18793–18800.
Rosen, E. D., Sarraf, P., Troy, A. E., Bradwin, G., Moore, K., Milstone, D. S., Spiegelman, B. M., Mortensen, R. M. 1999. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell. 4: 611-617.
Roth, B. D., 1998. ACAT inhibitor: evolution from cholesterol-absoption inhibitors to antiatherosclerotic agent. Drug Discov Today. 3: 19-25.
Rumsey, S. C., Galeano, N. F., Lipschitz, B., Deckelbaum, R. J. 1995. Oleate and other long chain fatty acids stimulate low density lipoprotein receptor activity by enhancing acyl coenzyme A: cholesterol acyltransferase activity and altering intracellular regulatory cholesterol pools in cultured cells. J Biol Chem. 270: 10008-10016.
Russell, D. W., Setchell, K. D. 1992. Bile acid biosynthesis. Biochemistry. 31: 4737–4749.
Ryter, S. W., Choi, A. M. K. 2009. Heme oxygenase-1/carbon monoxide: from metabolism to molecular therapy. Am J Respir Cell Mol Biol. 41: 251-260.
Sabol, S. L., Brewer, H. B. Jr., Santamarina-Fojo, S. 2005. The human ABCG1 gene: identification of LXR response elements that modulate expression in macrophages and liver. J Lipid Res. 46; 2151-2167.
Sake, F., Kobayashi, N., Watabe, H., Yokosawa, N., Taniquchi, N. 1983. Induction of gamma-glutamyl transpeptidase and glutathione S-transferase in cultured fetal rat hepatocytes by laccaic acid and Monascus pigments. Chem Interact. 44: 17-26.
Salmon, S., Mazi`ere, C., Auclair, M., Theron, L., Santus, R., Mazière, J. C. 1992. Malondialdehyde modification and copper-induced autooxidation of high-density lipoprotein decrease cholesterol efflux from human cultured fibroblasts. Biochim Biophys Acta. 1125: 230–235.
Sankawa, U., Ebizuka, H., Noguchi, H., Isikawa, Y., Kitaghawa, S., Yamaoto, Y., Kobayashi, T. and Iitak, Y. 1983. Biosynthesis of citrinin in Aspergillus terreus. Tetrahedron. 39: 3583–3591.
Schultz, J. R., Tu, H., Luk, A., Repa, J. J., Medina, J. C., Li, L., Schwendner, S., Wang, S., Thoolen, M., Mangelsdorf, D. J., Lustig, K. D., Shan, B. 2000. Role of LXRs in control of lipogenesis. Genes Dev. 14: 2831–2838.
Shih, D. M., Gu, L., Xia, Y. R., Navab, M., Li, W. F., Hama, S., Castellani, L. W., Furlong, C. E., Costa, L. G., Fogelman, A. M., Lusis, A. J. 1998. Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature. 394: 284-287.
Spady, D. K., Stange, E. F., Bilhartz, L. E., Dietschy, J. M. 1986. Bile acids regulate hepatic low density lipoprotein receptor activity in the hamster by altering cholesterol flux across the liver. Proc Natl Acad Sci. 83: 1916-1920.
Stocker, R, McDonagh, A. F, Glazer, A. N., Ames, B. N. 1990. Antioxidant activities of bile pigments: biliverdin and bilirubin. Methods Enzymol 186: 301–309.
Su, N. W., Lin, Y. L., Lee, M. H., Ho, C. Y. 2005. Ankaflavin from Monascus-fermented red rice exhibits selective cytotoxic effect and induces cell death on HepG2 cells. J Agric Food Chem. 53: 1949-1954.
Sun, Z., Huang, Z., Zhang, D. D. 2009. Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response. PLoS One. 4: 1-9.
Surh, Y. J. 2003. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 3: 768-780.
Tanaka, Y., Aleksunes, L. M. Yeager, R. L., Gyamfi, M. A., Esterly, N., Guo, G. L. Klaassen, C. D. 2008. NF-E2-Related factor 2 inhibits lipid accumulation and oxidative stress in mice fed a high-fat diet. 325: 655-664.
Timmins, J. M., Lee, J. Y., Boudyguina, E., Kluckman, K. D., Brunham, L. R., Mulya, A. Gebre, A. K., Coutinho, J. M., Colvin, P. L., Smith, T. L., Hayden, M. R., Maeda, N., Parks, J S. 2005. Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. J Clin Invest. 115: 1333-1342.
Touyz, R. M., Schiffrin, E. L. 2006. Peroxisome proliferator-activated receptors in vascular biology-molecular mechanisms and clinical implications. Vascul Pharmacol. 45: 19-28.
Ueno, H. 2000. Enzymatic and structural aspects on glutamate decarboxylase. J Mol Catal B-Enzym. 10: 67-79.
Wang,Y. X., Lee, C. H., Tiep, S., Yu, R. T. Ham, J. Kang, H., Evans, R. M. 2003. Peroxisome-proliferator-activated receptor activates fat metabolism to prevent obesity. Cell. 113: 159-170.
Wellington. C. L., Brunham, L. R., Zhou, S., Singaraja, R. R., Visscher, H., Gelfer, A., Ross, C., James, E., Liu, G., Huber, M. T. Yang, Y. Z., Parks, R. J., Groen, A., Fruchart-Najib, J., Hayden, M. R. 2003. Alterations of plasma lipids in mice via adenoviral-mediated hepatic overexpression of human ABCA1. J Lipid Res. 44: 1470–1480.
Witztum, J. L., Steinberg, D. 1991. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 88: 1785-1792.
Wong, H. C., Bau, Y. S. 1977. Pigmentation and antibacterial activity of fast neutron- and X-Ray-induced strains of Monascus purpureus Went. Plant Physiol. 60: 578-581.
Wu, C. L., Lee, C. L., Pan, T. M. 2009. Red mold dioscorea has a greater antihypertensive effect than traditional red mold rice in spontaneously hypertensive rats. J Agric Food Chem. 57: 5035-5041.
Yu, R., Jiao, J. J., Duh, J. L. Gudehithlu, K., Tan, T. H., Kong, A. N. T. 1997. Activation of mitogen-activated protein kinases by green tea polyphenols: potential signaling pathways in the regulation of antioxidant-responsive element-mediated phase II enzyme gene expression. Carcinogenesis. 18: 451-456.
Yu, R., Lei, W., Mandlekar, S., Weber, M. J., Der, C. J., Wu, J., Kong, A. N. T. 1999. Role of a mitogen-activated protein kinase pathway in the induction of phase II detoxifying enzymes by chemicals. J Biol Chem. 274: 27545–27552.
Yu, S., Rao, S., Reddy, J. K. 2003. Peroxisome proliferator-activated receptors, fatty acid oxidation, steatohepatitis and hepatocarcinogenesis. Curr Mol Med. 3: 561-572.
Zhang, F., Kaide, J. I., Yang, L., Jiang, H., Quan, S., Kemp, R., Gong, W., Balazy, M., Abraham, N. G., Nasjletti, A. 2004. CO modulates the pulmonary vascular response to acute hypoxia: relation to endothelin. Am J Physiol Heart Circ Physiol. 286: 137–144.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15932-
dc.description.abstract本研究室實驗結果證實紅麴的黃色素 ankaflavin 及 monascin 具有降膽固醇及提升高密度脂蛋白膽固醇 (high density lipoprotein cholesterol, HDL-C) 之功效,且 ankaflavin 效果較 monascin 好,研究指出 monascin 能夠抑制活性氧自由基 (reactive oxygen species, ROS) 生成及降低胰島素抗性是透過過氧化體增生劑活化受體 (peroxisome proliferator-activated receptor gamma, PPAR gamma) 來調控,故推測和 monascin 結構相似的 ankaflavin 是透過 PPAR gamma 來調節高脂飲食倉鼠血漿之 HDL-C。實驗利用 30% 高脂飲食誘導倉鼠,同時餵食 ankaflavin,並利用腹腔注射 GW9662 (PPAR gamma antagonist; PPAR gamma 拮抗劑),評估 ankaflavin 對於膽固醇及 HDL-C 之調控;在細胞實驗方面,以油酸 (oleic acid, OA) 誘導細胞產生氧化壓力,評估 ankaflavin 抗氧化能力,及對總膽固醇 (total cholesterol, TC) 和 HDL-C 之調控作用。動物實驗結果顯示,ankaflavin 能降低體重、血漿中 TC,提升 HDL-C/TC 比值,以及糞便中膽酸和膽固醇濃度,然而對於 LDL-C 並無明顯降低效果。在 TC 及 HDL-C 調控方面,實驗結果發現 ankaflavin 可能透過 PPAR gamma 的活化進一步提升 liver X receptor (LXR alpha)、cytochrome P450, family 7, subfamily A, polypeptide 1 (CYP7A1) 及 low density lipoprotein receptor (LDLr) 的表現,使膽固醇運送至肝臟中,再藉由 CYP7A1 將膽固醇轉成膽酸藉由糞便排出體外來達到降低血漿膽固醇之作用。此外 ankaflavin 可以促進 LXR alpha 轉錄 ATP-binding cassette subfamily A member 1 (ABCA1),進而將膽固醇運輸至 apolipoprotein A1 (apo-A1) 增加 HDL-C 濃度;而 ankaflavin 也能夠促進 apo-A1 mRNA 的表現但對於蛋白表現量無顯著提升,實驗也發現油酸合併 ankaflavin 處理對提升 ABCA1 及 apo-A1 mRNA 能力較 ankaflavin 處理為低,顯示在高脂飲食中,ankaflavin 提升 HDL-C 之能力是避免 HDL-C 受氧化分解而達成。此外動物實驗顯示,血漿中巴拉松酶 (paraoxonase, PON) 活性在高脂誘導並餵食 ankaflavin 的組別和正常飲食組相比雖有提升,但在細胞試驗顯示 ankaflavin 對 PON1 並無提升其蛋白表現,顯示 ankaflavin 避免 HDL-C 氧化並非透過 PON1,此外經由試管試驗發現 ankaflavin 能夠抑制經由銅離子誘導造成的 HDL 之氧化,且效果較 monascin 及 quercetin 來的好。細胞實驗也發現 ankaflavin 能藉由 extracellular signal-regulated kinases (ERK) 途徑再活化 NF-E2-related factor 2 (Nrf2),使 Nrf2 能夠進入核中進一步轉錄出二期抗氧化酵素第一型血紅素氧化酶 (heme oxygenase 1, HO-1) 保護 HDL 避免受到氧化壓力之傷害。綜合以上結果,ankaflavin 具有降低膽固醇及抑制 HDL-C 氧化之功效,具有開發成為降膽固醇及改善肥胖所造成的低濃度 HDL-C 之保健食品或藥物之潛力。zh_TW
dc.description.abstractOur previous study has identified that Monascus yellow pigments monascin and ankaflavin could reduce concentration of cholesterol and elevate level of high density lipoprotein cholesterol (HDL-C). In addition, monascin could inhibit reactive oxygen species (ROS) and improve insulin resistance via regulation of NF-E2-related factor 2 (Nrf2) and activation of peroxisome proliferator-activated receptor gamma (PPAR gmma). In this study, the effect of ankaflavin on regulation of HDL-C by activating PPAR gamma was investigated. In the animal experiments, 30% high fat (HF) diet was used in hamsters which were recommended for hyperlipidemia and obesity. Ankaflavin and GW9662 (PPAR gamma antagonist) were introduced by oral gavage to estimate that whether ankaflavin reduces cholesterol and elevates HDL-C levels by PPAR gamma regulation. In cell experiments, we used oleic acid (OA)-treated HepG2 cells to find out the effect of ankaflavin on anti-oxidative ability. We also determined whether ankaflavin can regulate cholesterol and HDL-C level on OA-treated FL83B cells. In vivo results showed that ankaflavin reduced body weight and plasma TC level. Ankaflavin also elevated HDL-C/TC ratio, fecal cholesterol and bile acid concentration but, LDL-C level did not decrease significantly. We found that, ankaflavin facilitated conversion of cholesterol to bile acid by elevating liver X receptor (LXR alpha and cytochrome P450, family 7, subfamily A, polypeptide 1 (CYP7A1) expression, and subsequently decreasing TC level. Ankaflavin increased HDL-C level by cholesterol transporting via ATP-binding cassette subfamily A member 1 (ABCA1) which mediated the conversion of cholesterol to apo-A1 to increase HDL-C concentration. In vitro analysis, ankaflavin elevated apo-A1 mRNA level but not protein expression. PON1 is an HDL-associated enzyme with anti-oxidative properties. Although ankaflavin didn’t increase PON1 activity significantly, it could inhibit Cu2+-induced HDL oxidation. In addition, extracellular signal-regulated kinases (ERK) level was elevated by ankaflavin treatment to promote Nrf2 transcriptional activity. The increasing p-Nrf2 concentration in the cell then protected HDL-C via binding to ARE, which promoted the gene expression of an antioxidant enzyme heme oxygenase 1 (HO-1). These results obtained a conclusion that ankaflavin could reduce cholesterol and protect HDL-C from diminishing. In the future, we hope ankaflavin could serve as a functional food or drugs for decreasing cholesterol and improving low level of HDL-C from obesity.en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:55:44Z (GMT). No. of bitstreams: 1
ntu-101-R99b22001-1.pdf: 2676886 bytes, checksum: 5cd45de2d66b7a79173280cf571e6363 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents謝誌 I
縮寫表 III
摘要 V
Abstract VII
第一章 文獻回顧 1
一、紅麴 1
(一) 紅麴菌種分類及特性 1
(二) 紅麴生活史 1
(三) 紅麴的二次代謝物 1
1. 色素 1
2. Monacolins 3
3. Gamma-胺基丁酸 (gamma- amino butyric acid, GABA) 6
4. Dimerumic acid 6
5. 橘黴素 (citrinin) 7
二、生物體內脂質之代謝 7
(一) 三酸甘油酯 7
(二) 膽固醇 8
1. 高膽固醇血症 8
(三) 膽固醇之代謝 9
三、肝臟 X 受體 (liver X receptor, LXR) 12
(一) LXR 對於膽固醇代謝之影響 12
(二) 直接或間接影響膽固醇代謝相關基因 13
1. CYP7A1 及 UGT1A3 13
2. ABCG5 和 ABCG8 13
(三) 直接或間接影響逆膽固醇運輸及提升 HDL-C 相關基因 16
(四) 影響脂質生合成相關基因 17
四、過氧化體增生劑活化受體 (peroxisome proliferator-activated receptors, PPARS) 17
(ㄧ) PPAR gamma 19
(二) PPAR alpha 19
(三) PPAR delta 20
五、氧化壓力對於脂蛋白的傷害 20
六、巴拉松酶(paraoxonase, PON) 21
七、NF-E2-related factor 2 (Nrf2) 於氧化壓力中扮演之角色 22
(一) Kelch-like ECH-associated protein 1 (KEAP1) 的調控 24
(二) 抗氧化劑對於 mitogen-activated protein kinases (MAPK) pathway 的調控 24
第二章 研究目的及大綱 27
第三章 材料與方法 29
一、實驗材料 29
(一) 實驗藥品 29
(二) 實驗器材 29
(三) 實驗細胞株 30
(四) 實驗動物 30
二、實驗方法 31
(一) 體外試驗 31
1. 細胞實驗 31
2. 聚丙烯醯胺膠體電泳分析法 31
3. 膽固醇及 HDL 相關路徑表現分析 32
4. HDL 氧化試驗 33
(二) 動物實驗 35
1. 動物實驗模式 35
2. 血漿生化值 36
3. 血漿 paraoxonase (PON) 活性測定 37
4. 糞便脂質 37
5. 肝臟組織切片分析 37
6. 統計分析法 38
第四章 結果與討論 39
第一部份 倉鼠體重變化量、肝組織切片及安全性評估 39
(一) 體重變化量 39
1. 倉鼠體重變化量 39
2. 白色脂肪組織 (white adipose tissue, WAT) 比值 39
3. 血漿肝指數 (AST、ALT) 42
4. 肝臟組織切片分析 42
第二部份 評估 ankaflavin 對於血脂質調控機制之探討 45
(一) Ankaflavin 對於高脂飲食倉鼠血脂質調控之評估及機制探討 45
1. 血脂質 45
2. Ankaflavin 對於 LXR alpha 表現量之影響 48
3. 糞便脂質 48
4. Ankaflavin 對於 LDLr 表現量之影響 55
5. Ankaflavin 對於 CYP7A1 表現量之影響 57
第三部份 評估 ankaflavin 對於提升 HDL-C 相關機制之探討 60
(一) Ankaflavin 對於 HDL-C 調控之評估及機制探討 60
1. 餵食 ankaflavin 對於倉鼠血漿 HDL-C、LDL-C 及 HDL-C/TC 之變化 60
2. 血漿巴拉松酶 (paraoxonase, PON) 活性測定 64
3. Ankaflavin 對 PPAR gamma 及 PON1 蛋白表現量之影響 64
4. Ankaflavin 對於 ABCA1 表現量之影響 64
5. Ankaflavin 對於 apo-A1 mRNA 表現量之影響 67
6. Ankaflavin 對於 PPAR alpha 及 apo-A1 蛋白表現量之影響 69
第四部份 評估 ankaflavin 預防 HDL-C 氧化之機制探討 73
(一) 抑制 HDL 氧化反應 73
(二) Ankaflavin 對活化 Nrf2 路徑之影響 73
1. Ankaflavin 對 p-Nrf2 蛋白表現量之影響 75
2. Ankaflavin 對於不同時間點活化 MAPK 路徑之影響 75
3. Ankaflavin 對於 heme oxygenase 1 (HO-1) 表現量之影響 78
第五章 綜合討論 82
第六章 參考文獻 86
dc.language.isozh-TW
dc.subjectNrf2zh_TW
dc.subjectankaflavinzh_TW
dc.subjectPPAR gammazh_TW
dc.subjectLXR alphazh_TW
dc.subjectHDL-Czh_TW
dc.titleAnkaflavin 調節高脂飲食倉鼠血漿中高密度脂蛋白膽固醇之可能機制zh_TW
dc.titleThe possible mechanisms of ankaflavin regulated plasma high density lipoprotein cholesterol in high fat diet induced hamsteren
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.coadvisor何佳安(Ja-An Ho)
dc.contributor.oralexamcommittee蘇遠志(Yuan-Zhi Su),黃健雄(Jan-Hsiung Huang),左克強(Tim K. Tso)
dc.subject.keywordankaflavin,PPAR gamma,LXR alpha,HDL-C,Nrf2,zh_TW
dc.relation.page101
dc.rights.note未授權
dc.date.accepted2012-08-15
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
Appears in Collections:生化科技學系

Files in This Item:
File SizeFormat 
ntu-101-1.pdf
  Restricted Access
2.61 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved