請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15929完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林裕彬 | |
| dc.contributor.author | Yu-Chi Chang | en |
| dc.contributor.author | 張育啟 | zh_TW |
| dc.date.accessioned | 2021-06-07T17:55:39Z | - |
| dc.date.copyright | 2012-08-17 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-15 | |
| dc.identifier.citation | 1. 行政院農業委員會苗栗區農業改良場:http://mdares.coa.gov.tw/view.php?catid=1444
2. 行政院環境保護署-水質淨化現地處理網站: http://wqp.epa.gov.tw/ecological/Default.aspx 3. 林昇甫、徐永吉,2009,遺傳演算法及其應用,五南圖書出版公司。 4. 林慶元,2007,植物保護圖鑑系列8-水稻保護(上冊),行政院農業委員會動植物防疫檢疫局。 5. 李得元,荊樹人,林瑩峰,黃獻文,左惠文,2003,以人工溼地系統處理校園廢污水之探討(I)-穩定操作下人工溼地系統處理校園廢污水操作參數之建立,行政院國家科學委員會專題研究計畫成果報告。 6. 李翠玉,2008,人工溼地對水中污染物削減之研究-以嘉義縣荷苞嶼溼地為例,國立雲林科技大學環境與安全衛生工程研究所碩士班。 7. 李銘全,1993,豬糞尿污水對水稻生育、產量及品質之影響,國立台灣大學農藝學研究所碩士論文。 8. 李銘全、盧虎生、朱鈞,1995a,豬糞尿污水灌溉與水稻生產(一)豬糞尿污水對水稻生育及產量之影響,中華農藝,Vol. 5, pp. 103-118。 9. 何茂賢,2003,以人工溼地系統處理受污染河水中營養鹽之探討,嘉南藥理科技大學環境工程衛生研究所。 10. 吳佩佳,2003。沉水植物對於水中磷地去除之研究-以水蘊草為例,台灣大學環境工程學研究所碩士論文。 11. 吳富春,房志懿,2004。水田生態環境微氣候及二氧化碳流通量模式分析。水田於農業及都會區域溫度和緩功能評估.行政院農委會。p.139-156。 12. 吳文雄,鄒燦陽,2003,自然淨化系統應用於改善冬山河水質之研究。 13. 洪國鑫,2002,高水力負荷下溼地污染物模式分析。國立成功大學環境工程學系碩士論文。 14. 高雅娟,2004,捷運地下車站火災應變安全系統可靠度評估。國立台灣大學土木工程學研究所碩士論文。 15. 施凱鐘,林瑩峰,荊樹人、李得元、陳韋志、巫俊忠、楊政龍,溫度變化對種植不同植物的人工溼地去除水中硝酸鹽氮之影響,2003,第28屆廢水處理技術研討會。 16. 施孟庭,2006,成大人工濕地維護管理之研究,國立成功大學建築研究所碩士論文。 17. 胡志清,2003,以模廠型人工溼地處理煉油及煉鋼廠廢水之研究,國立中山大學海洋環境及工程學系碩士論文。 18. 荊樹人,林瑩峰,王姿文,李得元,錢紀銘,2002,以達穩定狀態之人工溼地系統處理污染河水操作設計參數之建立,行政院國家科學委員會補助專題研究計畫成果報告。 19. 陳韋志,2004,環境因子的變化對人工溼地硝酸鹽去除效能地影響,嘉南藥理科技大學環境工學與科學系碩士班 20. 陳烈夫、楊清祥、卓緯玄、呂秀英,2003.幫水稻把脈看氣色.農業試驗所.農業試驗所技術服務季刊.14(2):7-13. 21. 陳鶴文,1999,柔性計算科學應用於永續性水資源管理之研究,博士論文,國立成功大學環境工程學系。 22. 張文亮,2004,水稻田對於豬糞尿氮污染涵容能力之分析,農業水利九十二年度計畫成果發表討論會論文集。 23. 張文亮,2005,台灣河川水質淨化工法成效之普查,2005年台灣環境資源永續發展研討會論文集。 24. 張正賢(譯),1988,稻作學精要,國立編譯館。 25. 張立弘,2001,生活污水之溼地處理及再利用研究,國立屏東科技大學碩士論文。 26. 葉繼東,2008。表面流人工濕地中不同植物除污一階反應係數之研究,東南科技大學防災科技研究所碩士論文。 27. 劉俊暉,2006,使用基因演算法建立機台維護保養排程之研究,國立成功大學工業與資訊管理碩士在職專班碩士論文。 28. 譚智宏,林慶杰,陳立人,2004. 水田於農業及都會區域溫度和緩功能評估.行政院農委會.pp. 123-137。 29. 歐陽嶠輝,2004。下水道工程學。長松,台北。 30. 謝育祥,2009,三段式表面流人工溼地氮之去除研究,國立宜蘭大學環境工程學系碩士班論文。 31. Arheimer, B., Wittgren, H. B., 1994. Modeling the Effects of Wetlands on Regional Nitrogen Transport. Ambio, Vol. 23, No. 6, pp. 378. 32. Angus, J. F., M. Ohnishi, T. Horie, and L. Williams., 1994. A preliminary study to predict net nitrogen mineralization in a flooded rice soil using anaerobic incubation. Australian Journal of Experimental. Agriculture 34, pp. 995–999. 33. Bachand, P. A. M., Horne, A. J., 2000, “Denitrification in constructed free-water surface wetlands: II. Effects of vegetation and temperature, ”Ecological. Engineering 14, pp.17-32. 34. Bouman, B. A. M., E. Humphreys, T. P. Tuong, R. Barker, and L. S. Donald., 2007. Rice and water. Advances in Agronomy 92, pp. 187–237. 35. Burton, A.G., Pitt, R., 2001. Stormwater Effects Handbook: A Toolbox for Watershed Managers, Scientists, and Engineers. Lewis Publishers, Boca Raton, FL. 36. De-Xi, L., F. Xiao-Hui, H. Fena, Z. Hong-Tao, and L. Jia-Fa., 2007. Ammonia volatilization and nitrogen utilization efficiency in response to urea application in rice fields of the Taihu Lake Region, China. Pedosphere 17, pp. 639–645. 37. Gray, S., J. K.P Read, A. Marland., 2000. Nutrient Assimilative Capacity Of Maerl as a Substrate in Constructed Wetland Systems for Waste Treatment, Water Research, Vol. 34, No. 8, pp. 2183-2190. 38. Gold, D. E.,1989. Genetic Algorithm in Search, Optimization, and Maching Learning, Addison-Wesley, U.S.A. 39. Herskowitz, J., 1986. Listowel Artificial Marsh Project Report. Ontario Ministry of the Environment, Water Resources ranch, Toronto, Can. 40. Jing, Q., B. Bouman, H., van Keulen, H., Hengsdijk, W. Cao, and T. Dai., 2008. Disentangling the effect of environmental factors on yield and nitrogen uptake of irrigated rice in Asia. Agricultural System 98, pp.177–188. 41. Kadlec R.H., 1995. “Overview: Surface Flow Constructed Wetlands,” Water Science and Technology, Vol. 32, No. 3, pp. 1-12. 42. Kadlec, R.H., Knight R.L., 1996. Treatment wetlands. Boca Raton, FL: CRC Press. 43. Kadlec, R. H., Crumptoo, W. G., Rose, C., 1997. Nutrient Dynamics in Event Driven Wetlands. Report to the U.S. Environmental ProTECTION Agency, Region V, Chicago, III. 44. Kadlec R.H., 1997.“Deterministic and Stochastic Aspects of Constructed Wetland Performance and Design,” Water Science and Technology, Vol. 35, No. 5, pp. 149-156. 45. Kadlec, R.H., Reddy K. R.,2001.Temperature effects in treatment wetlands. Water Environ. RES., Vol. 73, No. 5, pp.543-557. 46. Kallner, S., Wittgren, H.B., 2000. Modelling Nitrogen Transformations in Surface Flow Wastewater Treatment Wetlands In Sweden. Proc. 7th Int. Conf. Wetland Sys. Water Pollut. Control, Orlando, Fla., P.565. 47. Klomjek, P., Nitisoravut, S., 2005. Constructed treatment wetland: a study of eight plant species under saline conditions. Chemosphere, Vol. 58, No. 5, pp. 585-593. 48. Koonce, D. A., Tsai, S. C., 2000. Using Data Mining to Find Patterns in Genetic Algorithm Solutions to a Job Shop Schedule, Computers & Industrial Engineering, Vol. 38, pp. 361-374. 49. Lee, E. R., 1999. Set-Wet: A Wetland simulation model to optimize NPS pollutioncontrol. M.S. Thesis., Virginia State University, Blacksburg, VA. 50. Lin, Y. F., Jing, S. R., Wang, T. W., Lee, D. Y., 2002b. Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands. Environmental Pollution, Vol. 119, No. 3, pp. 413-420. 51. Novotny, V., Olem, H.,1994. Water quality: prevention, identification and management of diffuse pollution. Van Nostrand Reinhold Company. New York, New York. pp.290. 52. Mayo, A.W., Bigambo, T., 2005. Nitrogen transformation in horizontal subsurface flow constructed wetlands I: Model development. Phys. Chem. Earth, 30, 658–667. 53. Meadow, D.H., 1972, Limit to Growth: Earth Island Press. 54. Mitsch, W. J., Gosselink, J. G., 2009. Wetland Ecosystems, John Wiley & Sons. 55. Nolte, 1997. Sacramento Regional Waterwater Treatment Plant Demonstration Wetlands Project, 1996 Annual Report. 56. Novotny Vladimir., Olem Harvey. Water Quality, Van Nostrand Reinhold, 1994. 57. Pantip, K., 2005. Constructed treatment wetland: a study of eight plant species under saline conditions. Chemosphere, Vol. 58, No.5, pp.585-593. 58. Phipps, R.G., Crumpton, W.G.,1994. Factors affecting nitrogen loss in experimental wetlands with different hydrologic loads. Ecological Engineering, Vol. 3, No.4, pp. 399-408. 59. Rousseau, D.P.L., Vanrolleghem, P.A., De Pauw, N., 2004. Model-based design of horizontal subsurface flow constructed treatment wetlands: a review. Water Res. 38, pp. 1484–1493. 60. Sahrawat, K., 2006. Organic matter and mineralizable nitrogen relationships in wetland rice soils. Communications in Soil Science and Plant Analysis 37, pp. 787–796. 61. Tuncsiper, B. 2009. Nitrogen removal in a combined vertical and horizontal subsurface-flow constructed wetland system. Desalination, 247(1–3), 466–475. 62. van Oostrom, A. J., Russell, J. M., 1994. Denitrification in Constructed Wastewater Wetlands Receiving High Concentrations of Nitrate. Water Sci. Technol., Vol. 29, No. 4, 7. 63. van Oostrom, A,J.,1994. Nitrogen removal in constructed wetlands treating nitrified meat processing wastewater. In Proceedings of The Fourth International Conference on Wetland Systems for Water Pollution Control. Guangzhou, P.R. china: Center for International Development and Research , South China Institute for Environmental Sciences. pp.569-579. 64. van Oostrom, A. J., 1995. Nitrogen removal in Constructed Wastewater Wetlands Treating Nitrified Meat Processing Effluent. Water Sci. Technol., Vol. 32, No. 3, pp. 131. 65. Vymazal, J., 2007.Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, vol. 380, pp.48-65. 66. William, J., Mitsch, John W., Day JR., J. Wendell Gilliam, Peter M. Groffman, Donald L. Hey, Gyles W. Randall, Naiming Wang., 2001. Reducing Nitrogen Loading to the Gulf of Mexico from the Mississippi River Basin: Stragtegies to Counter a Persistent Ecological Problem. BioScience, Vol.51, No.5, pp.373-388. 67. Wilson, C. E., R. J. Norman, and B. R. Wells. 1994a. Chemical estimation of nitrogen mineralization in paddy rice soils: I. Comparison to laboratory indices. Communications in Soil Science and Plant Analysis 25, pp. 573–590. 68. Yochitomi, Y., Ikenoue, H., Takeba, T., Tomita, S., 2000. Genetic algorithm in Uncertainty Environments for Solving Stochastic Programming Problem, Journal of the Operations Research, Vol. 43, No. 2, pp. 266-290 69. Zhou, J., Liu, B., 2003. New Stochastic Models for Capacitated Location-allocation Problem, Computers & Industrial Engineering, Vol. 45, No. 1, pp. 111-125. 70. Zhu, T., Sikora, F. J., 1995. Ammonium and nitrate removal in vegetated and unvegetated gravel bed microcosm wetlands, Wat. Sci. Tech., Vol. 32, No. 3, PP. 219-228. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15929 | - |
| dc.description.abstract | 水稻為常見之經濟作物,除作為糧食外,近年亦有國內外相關研究探討水稻於去除氮營養鹽污染之成效,國內則較少有水稻去除生活污水氮之研究及相關一階反應係數(面積反應速率常數k20、溫度係數θ)之探討,因此本研究目的著重於探討水稻對於生活污水中氮之移除成效及分析其一階反應係數。本研究以鹿角溪人工溼地模場為研究區域,分析比較水稻(Oryza sativa Linn)、香蒲(Typha angustifolia L.)、大安水蓑衣(Hygrophila Pogonocalyx Hayata)等三種植物對新北市生活污水之去除效益,並透過不同去除標準之設定,以可靠度分析檢視此三類水生植物之除氮能力。其次,藉由台大水工所模場實驗,探討污水總氮削減量與水稻植物吸收比例。最後,率定及驗證一階K-C*模式,以求得相關之一階反應係數,並與文獻值比較。
研究結果顯示,鹿角溪人工溼地模場之水稻對於生活污水之氨氮(NH3-N)、硝酸鹽氮(NO3-N)、有機氮(ON)之平均去除效率分別為72%、65%、40%,與香蒲及大安水蓑衣之氮去除效率相似,透過可靠度分析比較三種植物於訂定之安全係數(去除效率40%)標準下,顯示水稻有92%之可靠度(成功機率)達到與香蒲及大安水蓑衣相近的去除成效,由去除效率及可靠度分析說明水稻適合作為人工溼地除氮之水生植物。於台大水工所模場之水稻實驗中,氨氮、硝酸鹽氮、有機氮之平均去除效率為52%、48%、43%。比較水工所模場之水稻植體攝取與生活污水總氮削減量,生活污水之總氮削減量透過水稻植體吸收比例可高達72%,顯示水稻植體可吸收並去除生活污水含總氮量達三分之二以上。於探討一階反應係數上,鹿角溪人工溼地模場率定之水稻一階反應係數如硝酸鹽氮之面積反應速率常數K20為0.02 m/day,溫度係數θ為1.08,推估之背景濃度值C*為0.61,由溫度係數θ之大小顯示於此模場中硝酸鹽氮之去除成效受到溫度影響;台大水工所模場水稻之氨氮、硝酸鹽氮及有機氮之一階反應係數如面積反應速率常數K20分別為0.0034 m/day、0.0055 m/day、0.0024 m/day,溫度係數θ分別為0.961、1.196、0.963,由實驗測得之背景濃度值C*分別為0.1 mg/L、0.12 mg/L、0.99mg/L,由溫度係數θ顯示於此模場中氮氮及有機氮之去除成效與溫度之間較無相關,可能原因在於引用之入流污水含氮濃度屬於輕度污染,使得溫度對於去除成效影響較不明顯,於實驗初期測得之實驗背景濃度值C*為使用一般自來水測試,因此測得之各項氮濃度值較低。透過上述研究結果,顯示水稻可作為污水淨化植物,本研究亦提供水稻之一階反應係數以供後續人工溼地於設計上參考及使用。 | zh_TW |
| dc.description.abstract | Rice is the common economical crops. Besides for foods, there are few foreign scholars explore the performance of removing river nutrient nitrogen with rice in constructed wetlands and the rice growth affected by waste water nutrient. In Taiwan, the exploration of removing wastewater nutrient nitrogen with rice is less and lack of related first-order reaction parameters(areal reaction rate constant k20, temperature coefficient θ)。Therefore, my research is to explore the performance of removing wastewater nutrient nitrogen by rice and related first-order reaction parameters.
The aim of the research is to explore the performance of removing wastewater nutrient nitrogen with rice and first-order reaction parameters related with nitrogen for rice. First of all, using the data from the experimental-scale wetland of the Lu-Jao stream to compare the rice removal performance with other two plants(Typha angustifolia L., Hygrophila Pogonocalyx Hayata), and then taking reliability analysis in order to view the probability of success that removes the nutrient under the setting of safety margin(removal efficiency). Second, using the data of the experiment-scale wetland in NTU campus to investigate the performance of nitrogen removal with low nitrogen concentrations and hydraulic loading rate. In the experimental period of NTU, collecting plant nitrogen contents and watstewater nitrogen removal contents for exploring the ratio of plant uptake to TN removal contents, the nitrogen and phosphorus contents of rice, and soil organic matter in the experimental period. Last, using the data from two experiment-scale wetlands to calibrate and validate first-order reaction parameter by first-order K-C* model, and then compared with references. The result shows that in the experimental-scale wetland of the Lu-Jao stream, average removal efficiencies of NH3-N, NO3-N, ON by rice is 72%, 65%, 40% separately, similar to Typha angustifolia L. and Hygrophila Pogonocalyx Hayata. From the reliability analysis, revealing that under the safety margin (removal efficiency 40%), the reliability(probability of success) of rice is nearly 92%. In the experiment-scale wetland of NTU campus, under low hydraulic loading rate and low inflow concentration, the removal efficiency of rice is nearly 50%. Comparing the the ratio of plant uptake to TN removal contents, it shows that the ratio of the rice plant uptake is up to 72%. On exploring the first-order reaction parameters, K20 of NO3-N in the Lu-Jao stream is 0.02 m/day and temperature coefficients θ is 1.08. Estimated background concentrations C* is 0.61. Under low inflow concentrations and low HLR of the experimental-scale weltands in NTU campus, K20 for NH3-N, NO3-N, ON of rice is 0.0034 m/day, 0.0055 m/day, 0.0024 m/day, temperature coefficient θ is 0.961, 1.196, 0.963, experimental background concentrations C* is 0.1 mg/L, 0.12 mg/L, 0.99mg/L . In the experimental period of NTU campus, it is showed that the measured soil organic matter decreased with time. The rapid decreasing period is between mid and end periods. The probably reason is due to the period of tillering and heading that needs sufficient nutrients to support its growth, but inflow wastewater doesn’t have so sufficient nutrients. Besides for soil organic matter, it is observed that the nitrogen and phosphorus contents decreased with time, the probable reason is that there are no sufficient nitrogen and phosphorus concentration to support the rice growth. In conclusion, rice could be used to removal wastewater, and in our study we provide the first-order reaction parameter for future study and reference. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T17:55:39Z (GMT). No. of bitstreams: 1 ntu-101-R99622029-1.pdf: 2923533 bytes, checksum: 1613b51243b75cee856925df532128bc (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 目錄
謝誌 I 摘要 II ABSTRACT IV 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1研究動機 1 1.2研究目的 2 1.3研究流程 3 第二章 文獻回顧 4 2.1溼地 4 2.1.1定義 4 2.1.2溼地分類 5 2.1.3溼地氮循環 8 2.2水稻氮移除相關研究 12 第三章 理論與方法 14 3.1研究區域 14 3.1.1鹿角溪人工溼地 14 3.1.2台大水工所 15 3.2實驗項目與模場 17 3.2.1 污水來源 17 3.2.2鹿角溪人工溼地 17 3.2.3台大水工所 19 3.2.4水質測量項目 22 3.2.4其他測量項目 22 3.3植物種類 23 3.3.1水稻 23 3.3.2大安水蓑衣 24 3.3.3香蒲 25 3.4人工溼地水文參數設計 26 3.4.1水力停留時間 26 3.4.2 水力負荷率 26 3.4.3 一階k-C*公式 27 3.4.4 溫度修正公式 29 3.4.5 濃度去除效率 29 3.5可靠度分析 30 3.5.1可靠度簡介 30 3.5.2可靠度分析理論 30 3.6遺傳演算法 33 3.6.1遺傳演算法簡介 33 3.6.2參數設定 35 第四章 結果與討論 38 4.1氮去除效率 38 4.1.1鹿角溪人工溼地模場 38 4.1.2 台大水工所實驗模場 39 4.2可靠度分析探討植物去除效率 40 4.3 一階反應係數(面積反應速率常數K20、溫度係數) 42 4.3.1 鹿角溪人工溼地 42 4.3.1.1 NH3-N一階反應係數值NSE率定及驗證結果 42 4.3.1.2 NO3-N一階反應係數NSE值率定及驗證結果 45 4.3.1.3 ON一階反應係數NSE值率定及驗證結果 47 4.3.1.4 TN一階反應係數NSE值率定及驗證結果 49 4.3.2 台大水工所實驗模場 54 4.3.3 鹿角溪人工溼地模場及台大水工所模場一階反應係數比較 60 4.4 植物吸收比 61 4.5土壤有機質變化 63 4.6水稻氮磷含量變化 64 第五章 結論與建議 65 第六章 參考文獻 67 附錄一、溼地模場實驗日誌 75 附錄二、台大水工所模場土質化驗 76 附錄三、台大水工所模場植體化驗 77 附錄三、河川污染程度指標(RIVER POLLUTION INEX, RPI) 78 圖目錄 圖1 研究流程圖 3 圖2 人工溼地氮轉化示意圖(MITSCH AND GOSSELINK, 2009;WILLIAM ET AL, 2001) 9 圖3 氨氮揮發(KADLEC & KNIGHT,1996) 11 圖4 鹿角溪人工溼地模場位置圖 14 圖6 台大水工所模場區域圖 16 圖7 入流三角堰 18 圖8 實驗模場平面配置暨水流方向圖 18 圖9 水工所模場設置圖(A、B為入流;C、D為出流口:E、F為作物生長狀況) 20 圖10 台大水工所模場俯視圖 21 圖11 台大水工所模場側面圖 21 圖12 水稻 24 圖13 大安水蓑衣 24 圖14 香蒲 25 圖15 可靠性之機率密度函數 32 圖16 遺傳演算法演算步驟(陳鶴文,1999) 34 圖18 可靠度累積機率圖((A)水稻、(B)香蒲、(C)大安水蓑衣) 42 圖19 NH3-N率定結果((A)水稻、(B)香蒲、(C)大安水蓑衣) 43 圖20 NH3-N驗證結果((A)水稻、(B)香蒲、(C)大安水蓑衣) 44 圖21 NO3-N率定結果((A)水稻、(B)香蒲、(C)大安水蓑衣) 46 圖22 NO3-N驗證結果((A)水稻、(B)香蒲、(C)大安水蓑衣) 47 圖23 ON率定結果((A)水稻、(B)香蒲、(C)大安水蓑衣) 48 圖24 ON驗證結果((A)水稻、(B)香蒲、(C)大安水蓑衣) 49 圖25 TN率定結果((A)水稻、(B)香蒲、(C)大安水蓑衣) 50 圖26 TN驗證結果((A)水稻、(B)香蒲、(C)大安水蓑衣) 51 圖27 水工所模場模式率定結果 56 圖28 水工所模場模式驗證結果 57 圖29 污水TN減少總量 61 圖30 植物吸收氮量 61 圖 31 台大水工所模場土壤有機質變化 63 圖 32 水稻植體含氮百分比 64 圖 33水稻植體含磷百分比 64 表目錄 表1 六大自然溼地類型分類(陳有祺,2005;廖倫偉,2011) 5 表2 一般生活污水平均性質 17 表3 水質分析項目及分析方法 22 表4 鹿角溪人工溼地模場氮平均去除效率 38 表5 台大水工所模場氮平均去除效率 40 表6 鹿角溪模場NH3-N率定及驗證結果 44 表7 鹿角溪模場NO3-N率定及驗證結果 47 表8 ON模式率定及驗證NSE值 49 表9 TN模式率定及驗證NSE值 51 表10 鹿角溪模場一階反應係數值 51 表11 台大水工所模場率定及驗證NSE值 57 表12 水工所模場一階反應係數值 57 | |
| dc.language.iso | zh-TW | |
| dc.subject | 氮 | zh_TW |
| dc.subject | 人工溼地 | zh_TW |
| dc.subject | 水稻 | zh_TW |
| dc.subject | 一階反應係數 | zh_TW |
| dc.subject | 可靠度分析 | zh_TW |
| dc.subject | 去除效率 | zh_TW |
| dc.subject | reliability | en |
| dc.subject | rice | en |
| dc.subject | constructed wetland | en |
| dc.subject | removal efficiency | en |
| dc.subject | nitrogen | en |
| dc.subject | first-order reaction parameter | en |
| dc.title | 表面流人工溼地中水稻去除生活污水之研究 | zh_TW |
| dc.title | Exploration of removing domestic wastewater with rice in free water surface constructed wetland | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張文亮,張尊國,任秀慧 | |
| dc.subject.keyword | 人工溼地,水稻,一階反應係數,可靠度分析,去除效率,氮, | zh_TW |
| dc.subject.keyword | constructed wetland,rice,first-order reaction parameter,reliability,removal efficiency,nitrogen, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-08-15 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
