Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15884
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor宋孔彬(Kung-Bin Sung宋孔彬)
dc.contributor.authorChen-Chuan Huangen
dc.contributor.author黃振荃zh_TW
dc.date.accessioned2021-06-07T17:54:29Z-
dc.date.copyright2012-08-28
dc.date.issued2012
dc.date.submitted2012-08-16
dc.identifier.citation1. Virkler K, L.I., Raman spectroscopic signature of blood and its potential application to forensic body fluid identification. Anal Bioanal Chem, 2010. 396: p. 525-534.
2. Bracco, D., et al., Epidural anesthesia improves outcome and resource use in cardiac surgery: a single-center study of a 1293-patient cohort. Heart Surg Forum, 2007. 10(6): p. E449-58.
3. Hong, J.Y., et al., Comparison of general and epidural anesthesia in elective cesarean section for placenta previa totalis: maternal hemodynamics, blood loss and neonatal outcome. Int J Obstet Anesth, 2003. 12(1): p. 12-6.
4. Rigg, J.R., et al., Epidural anaesthesia and analgesia and outcome of major surgery: a randomised trial. Lancet, 2002. 359(9314): p. 1276-82.
5. Grass, J.A., The role of epidural anesthesia and analgesia in postoperative outcome. Anesthesiol Clin North America, 2000. 18(2): p. 407-28, viii.
6. Buggy, D.J. and G. Smith, Epidural anaesthesia and analgesia: better outcome after major surgery?. Growing evidence suggests so. BMJ, 1999. 319(7209): p. 530-1.
7. Moran, M.C., Benefits of epidural anesthesia over general anesthesia in the prevention of deep vein thrombosis following total hip arthroplasty. J Arthroplasty, 1995. 10(3): p. 405-6.
8. Modig, J., et al., Thromboembolism after total hip replacement: role of epidural and general anesthesia. Anesth Analg, 1983. 62(2): p. 174-80.
9. Mandal, S., et al., Impact of general versus epidural anesthesia on early post-operative cognitive dysfunction following hip and knee surgery. J Emerg Trauma Shock, 2011. 4(1): p. 23-8.
10. Segal, S. and K.W. Arendt, A retrospective effectiveness study of loss of resistance to air or saline for identification of the epidural space. Anesth Analg, 2010. 110(2): p. 558-63.
11. Schier, R., et al., Epidural space identification: a meta-analysis of complications after air versus liquid as the medium for loss of resistance. Anesth Analg, 2009. 109(6): p. 2012-21.
12. Van de Velde, M., Identification of the epidural space: stop using the loss of resistance to air technique! Acta Anaesthesiol Belg, 2006. 57(1): p. 51-4.
13. Ames, W.A., et al., Loss of resistance to normal saline is preferred to identify the epidural space: a survey of Canadian pediatric anesthesiologists. Can J Anaesth, 2005. 52(6): p. 607-12.
14. Evron, S., et al., Identification of the epidural space: loss of resistance with air, lidocaine, or the combination of air and lidocaine. Anesth Analg, 2004. 99(1): p. 245-50.
15. de Filho, G.R., et al., Predictors of successful neuraxial block: a prospective study. Eur J Anaesthesiol, 2002. 19(6): p. 447-51.
16. Sprung, J., et al., Predicting the difficult neuraxial block: a prospective study. Anesth Analg, 1999. 89(2): p. 384-9.
17. Stojanovic, M.P., et al., The role of fluoroscopy in cervical epidural steroid injections: an analysis of contrast dispersal patterns. Spine (Phila Pa 1976), 2002. 27(5): p. 509-14.
18. Heran, M.K., A.D. Smith, and G.M. Legiehn, Spinal injection procedures: a review of concepts, controversies, and complications. Radiol Clin North Am, 2008. 46(3): p. 487-514, v-vi.
19. Salman, A., et al., Ultrasound imaging of the thoracic spine in paramedian sagittal oblique plane: the correlation between estimated and actual depth to the epidural space. Reg Anesth Pain Med, 2011. 36(6): p. 542-7.
20. Chiang, H.K., et al., Eyes in the needle: novel epidural needle with embedded high-frequency ultrasound transducer--epidural access in porcine model. Anesthesiology, 2011. 114(6): p. 1320-4.
21. Pandin, P., et al., Combined ultrasound and nerve stimulation-guided thoracic epidural catheter placement for analgesia following anterior spine fusion in scoliosis. Pain Pract, 2009. 9(3): p. 230-4.
22. Forster, J.G., et al., An evaluation of the epidural catheter position by epidural nerve stimulation in conjunction with continuous epidural analgesia in adult surgical patients. Anesth Analg, 2009. 108(1): p. 351-8.
23. Pattullo, G., The utility of fluoroscopic guidance in thoracic epidural placement. Anaesth Intensive Care, 2006. 34(3): p. 401-2; author reply 402.
24. Lennox, P.H., et al., A pulsatile pressure waveform is a sensitive marker for confirming the location of the thoracic epidural space. J Cardiothorac Vasc Anesth, 2006. 20(5): p. 659-63.
25. Botwin, K., J. Natalicchio, and L.A. Brown, Epidurography contrast patterns with fluoroscopic guided lumbar transforaminal epidural injections:a prospective evaluation. Pain Physician, 2004. 7(2): p. 211-5.
26. Ghia, J., et al., Confirmation of location of epidural catheters by epidural pressure waveform and computed tomography cathetergram. Reg Anesth Pain Med, 2001. 26(4): p. 337-41.
27. Tsui, B.C., S. Gupta, and B. Finucane, Confirmation of epidural catheter placement using nerve stimulation. Can J Anaesth, 1998. 45(7): p. 640-4.
28. Chiu, S.C., S.J. Bristow, and M. Gofeld, Near-infrared tracking system for epidural catheter placement: a feasibility study. Reg Anesth Pain Med, 2012. 37(3): p. 354-6.
29. Desjardins, A.E., et al., Epidural needle with embedded optical fibers for spectroscopic differentiation of tissue: ex vivo feasibility study. Biomed Opt Express, 2011. 2(6): p. 1452-61.
30. Ting, C.K., et al., A new technique to assist epidural needle placement: fiberoptic-guided insertion using two wavelengths. Anesthesiology, 2010. 112(5): p. 1128-35.
31. Ting, C.K. and Y. Chang, Technique of fiber optics used to localize epidural space in piglets. Opt Express, 2010. 18(11): p. 11138-47.
32. Rathmell, J.P., et al., Identification of the epidural space with optical spectroscopy: an in vivo swine study. Anesthesiology, 2010. 113(6): p. 1406-18.
33. Ellis, D.I. and R. Goodacre, Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst, 2006. 131(8): p. 875-85.
34. Choo-Smith, L.P., et al., Medical applications of Raman spectroscopy: from proof of principle to clinical implementation. Biopolymers, 2002. 67(1): p. 1-9.
35. Vitek, P., et al., Evaluation of portable Raman spectrometer with 1064 nm excitation for geological and forensic applications. Spectrochim Acta A Mol Biomol Spectrosc, 2012. 86: p. 320-7.
36. Edwards, H.G. and E.M. Ali, Raman spectroscopy of archaeological and ancient resins: problems with database construction for applications in conservation and historical provenancing. Spectrochim Acta A Mol Biomol Spectrosc, 2011. 80(1): p. 49-54.
37. De Beer, T., et al., Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes. Int J Pharm, 2011. 417(1-2): p. 32-47.
38. Izake, E.L., Forensic and homeland security applications of modern portable Raman spectroscopy. Forensic Sci Int, 2010. 202(1-3): p. 1-8.
39. Bersani, D. and P.P. Lottici, Applications of Raman spectroscopy to gemology. Anal Bioanal Chem, 2010. 397(7): p. 2631-46.
40. Lopez, F.J., et al., Diameter and polarization-dependent Raman scattering intensities of semiconductor nanowires. Nano Lett, 2012. 12(5): p. 2266-71.
41. Raman, C.V.a.K., K. S., A new type of secondary radiation. Nature, 1928. 121: p. 501.
42. Pelletier, M.J., Introduction to Applied Raman Spectroscopy, in Analytical applications of Raman spectroscopy, M.J. Pelletier, Editor 1999, Blackwell Science Ltd.: UK.
43. Even Smith, G.D., Modern Raman Spectroscopy: A Practical Approach2005, United Kingdom: John Wiley & Sons Ltd.
44. Movasaghi, Z., S. Rehman, and I.U. Rehman, Raman Spectroscopy of Biological Tissues. Applied Spectroscopy Reviews, 2007. 42(5): p. 493-541.
45. De Gelder, J., et al., Reference database of Raman spectra of biological molecules. Journal of Raman Spectroscopy, 2007. 38(9): p. 1133-1147.
46. Bashkatov AN, e.a., Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000nm. J Phys D: Appl Phys, 2005. 38: p. 2543-55.
47. Fedriksson I, e.a., Measurement depth and volume in laser Doppler flowmetry. Microvascular Research, 2009. 78: p. 4-13.
48. Ehrentreich, F.E., Wavelet transform applications in analytical chemistry. Analytical and Bioanalytical Chemistry, 2002. 372(1): p. 115-121.
49. Cai, W., et al., Application of the wavelet transform method in quantitative analysis of Raman spectra. Journal of Raman Spectroscopy, 2001. 32(3): p. 207-209.
50. Zhao, J., et al., Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy. Appl Spectrosc, 2007. 61(11): p. 1225-32.
51. Lieber, C.A. and A. Mahadevan-Jansen, Automated method for subtraction of fluorescence from biological Raman spectra. Appl Spectrosc, 2003. 57(11): p. 1363-7.
52. Fozard, A., J. Franses, and A. Wyatt, Real-time peak detection and area apportionment of unknown chromatograms. Chromatographia, 1972. 5(2): p. 130-135.
53. Zhu, G., et al., Raman spectra of amino acids and their aqueous solutions. Spectrochim Acta A Mol Biomol Spectrosc, 2011. 78(3): p. 1187-95.
54. Tuma, R., Raman spectroscopy of proteins: from peptides to large assemblies. Journal of Raman Spectroscopy, 2005. 36(4): p. 307-319.
55. Garfinkel, D., Raman spectra of amino acids and related compounds. XII, Various amino acids derived from proteins and creatine. J Am Chem Soc, 1958. 80(15): p. 5.
56. www.spectraonline.com/.
57. http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/cre_index.cgi?lang=eng.
58. http://www.chem.ualberta.ca/~mccreery/ramanmaterials.html.
59. Janko, M., et al., Anisotropic Raman scattering in collagen bundles. Opt Lett, 2010. 35(16): p. 2765-7.
60. J. Shen, L.F., J. Yang, A.G. Shen, J.M. Hu, A longitudinal Raman microspectroscopic study of osteoporosis induced by spinal cord injury. Osteoporos Int, 2010. 21: p. 7.
61. Singh, B.R., Basic aspects of the technique and applications of infrared spectroscopy of peptides and proteins, in Infrared analysis of peptides and proteins, B. Singh, Editor 2000, American Chemical Society: Washington DC.
62. Saxena, T., et al., Raman spectroscopic investigation of spinal cord injury in a rat model. J Biomed Opt, 2011. 16(2): p. 027003.
63. Samir U. Sane, S.M.C., and Todd M. Przybycien, A holistic approach to protein secondary structure characterization using Amide I band Raman spectroscopy. Analytical Biochemistry, 1999. 269: p. 18.
64. Sanford A. Asher, A.I., Guido Mix, Mary N. Boyden, Anton Karnoup, Max Diem and Reinhard Schweitzer-Stenner, Dihedral angle dependance of the amide III vibration: A uniquely sensitive UV resonance Raman secondary structural probe. J Am Chem Soc, 2001. 123: p. 7.
65. Debelle, L., Alain J.P. Alix, The structures of elastin and their function. Biochemie, 1999. 81: p. 14.
66. Frushour, B.G. and J.L. Koenig, Raman scattering of collagen, gelatin, and elastin. Biopolymers, 1975. 14(2): p. 379-91.
67. Richman J.M., J.E.M., Cohen S.R., Rowlingson A.J., Michaels R.K., Jeffries M.A., Wu C.L., Bevel direction and postdural puncture headache: a meta-analysis. Neurologist, 2006. 12(4): p. 5.
68. Jerilyn A. Timlin, A.C., and Michael D. Morris, Raman spectroscopic imaging markers for fatigue-related microdamage in bovine bone. Anal Chem, 2000. 72: p. 8.
69. Motz, J.T., et al., Optical fiber probe for biomedical Raman spectroscopy. Appl Opt, 2004. 43(3): p. 542-54.
70. Utzinger, U. and R.R. Richards-Kortum, Fiber optic probes for biomedical optical spectroscopy. J Biomed Opt, 2003. 8(1): p. 121-47.
71. Ma, J. and Y.S. Li, Fiber Raman background study and its application in setting up optical fiber Raman probes. Appl Opt, 1996. 35(15): p. 2527-33.
72. Mo, J., W. Zheng, and Z. Huang, Fiber-optic Raman probe couples ball lens for depth-selected Raman measurements of epithelial tissue. Biomed Opt Express, 2010. 1(1): p. 17-30.
73. Scepanovic, O.R., et al., A multimodal spectroscopy system for real-time disease diagnosis. Rev Sci Instrum, 2009. 80(4): p. 043103.
74. Komachi, Y., et al., Improvement and analysis of a micro Raman probe. Appl Opt, 2009. 48(9): p. 1683-96.
75. Esmonde-White, F.W., et al., Biomedical tissue phantoms with controlled geometric and optical properties for Raman spectroscopy and tomography. Analyst, 2011. 136(21): p. 4437-46.
76. Chopko, B.W., A novel method for treatment of lumbar spinal stenosis in high-risk surgical candidates: pilot study experience with percutaneous remodeling of ligamentum flavum and lamina. J Neurosurg Spine, 2011. 14(1): p. 46-50.
77. Chopko, B. and D.L. Caraway, MiDAS I (mild Decompression Alternative to Open Surgery): a preliminary report of a prospective, multi-center clinical study. Pain Physician, 2010. 13(4): p. 369-78.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/15884-
dc.description.abstract硬脊膜外置入術常用於麻醉及止痛。目前臨床上用空針裡的空氣或生理食鹽水的壓力測試到達硬脊膜外空間。到達硬脊膜外空腔會有阻力消失。此用空氣或水達到阻力消失的方法有一定的失敗率。此篇論文利用拉曼光譜技術來分析脊椎組織,進一步辨別各組織。脊椎組織的原始拉曼光譜會先作小波轉換及多級數基線擬合,以去除高頻雜訊及低頻螢光,再作進一步分析比較。經過訊號處理的脊椎組織拉曼光譜,在 δ(CH2),胺基III,胺基I及細胞膜相關分子的波高有不同的表現。進一步需研發拉曼光纖的探針,以利於臨床使用。zh_TW
dc.description.abstractAnesthesia and analgesia can be done with drug injecting into epidural space through epidural approach. Frequently this is done under loss of resistance method using air or normal saline. However, there is certain rate of failure rate with this method. Thus, we proposed use of Raman spectrum technique to analyze and differentiate the spinal tissues. The raw Raman spectrum was first preprocessed with wavelet transform and polynomial baseline fitting to remove the high frequency noise and low frequency fluorescence. The processed Raman spectrum of the spinal tissues showed different peak intensity and contours in regions of δ(CH2), amide III, amide I and region related to membrane molecules. Further research in fiberoptic Raman probe is needed to incorporate the probe into Tuohy needle and making the clinical differentiation of spinal tissues with Raman spectrum come to reality.en
dc.description.provenanceMade available in DSpace on 2021-06-07T17:54:29Z (GMT). No. of bitstreams: 1
ntu-101-R97945035-1.pdf: 2120155 bytes, checksum: 4f4ddc33956a434ba6d1909e0ada253a (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝Gratitude..………………………………………………………….. i
中文摘要 Chinese Abstract ……………………………………………..ii
英文摘要 English Abstract ….…………………………………………..iii
目錄 Table of Content …………………………………………………..iv
圖目錄 List of Figures………………………………………..................vi
表目錄 List of Tables…………………………………………………....viii
Chapter 1 Introduction………………………………………..................1
1.1 Epidural Space Confirmation……………………………………1
1.2 Raman Spectroscopy Application…………………….................3
1.2.1 Raman Scattering…………………………………………..5
Chapter 2 Motivation………………………………………....................10
Chapter 3 Methods…………………………………………....................11
3.1 Raman Spectroscopy Experiments……………………………....11
3.1.1 Sample collection and preparation………………………...11
3.1.2 Raman spectra collection………………………………….11
3.2 Raman data preprocessing………………………………………12
3.2.1 Noise reduction……………………………………............13
3.2.2 Baseline correction..……………………………………….15
3.2.3 Peak Detection (Differential Peak Search)………………..17
3.3 Software used……………………………………………………18
3.4 Raman shift assignment……………………………………..…..18
Chapter 4 Results………………………………………………..…........19
4.1 Overview…………………………………………………..…….19
4.2 Raman spectrum of supraspinal ligament………………..……...20
4.3 Raman spectrum of muscle…………………………..………….21
4.4 Raman spectrum of ligament flavum………………..…………. 22
4.5 Raman spectrum of epidural fat……………………..…………..23
4.6 Raman spectrum of dura mater……………………..…………...24
4.7 Raman spectrum of spinal cord…………………...……………..25
4.8 Raman spectrum of spinal bone………………….…..………….26
4.9 Data analysis…………………………………….…….………...27
Chapter 5 Discussions………………………………………..…………31
Chapter 6 Limitations and Future Directions……………….…………..34
6.1 Developing fiberoptic Raman spectroscopy………….…………. 34
6.2 Problems conducting in vivo study………………………………35
6.3 Possible applications……………………………………………...37
Chapter 7 Conclusion…………………………………………………...39
Chapter 8 References…………………………………………………....40
dc.language.isoen
dc.subject多級數基線擬合zh_TW
dc.subject硬脊膜外置入術zh_TW
dc.subject脊椎組織zh_TW
dc.subject拉曼光譜zh_TW
dc.subject小波轉換zh_TW
dc.subjectEpidural approachen
dc.subjectpolynomial baseline fittingen
dc.subjectwavelet transformen
dc.subjectRaman spectrumen
dc.subjectspinal tissueen
dc.title脊椎組織拉曼頻譜分析zh_TW
dc.titleSpinal Tissue Differentiation with Raman Spectroscopyen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江志雄,張煥宗(Huan-Tsung Chang張煥宗)
dc.subject.keyword硬脊膜外置入術,脊椎組織,拉曼光譜,小波轉換,多級數基線擬合,zh_TW
dc.subject.keywordEpidural approach,spinal tissue,Raman spectrum,wavelet transform,polynomial baseline fitting,en
dc.relation.page45
dc.rights.note未授權
dc.date.accepted2012-08-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
Appears in Collections:生醫電子與資訊學研究所

Files in This Item:
File SizeFormat 
ntu-101-1.pdf
  Restricted Access
2.07 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved